[go: up one dir, main page]

JPH0685336B2 - Thermocompression bonding member and manufacturing method thereof - Google Patents

Thermocompression bonding member and manufacturing method thereof

Info

Publication number
JPH0685336B2
JPH0685336B2 JP25580192A JP25580192A JPH0685336B2 JP H0685336 B2 JPH0685336 B2 JP H0685336B2 JP 25580192 A JP25580192 A JP 25580192A JP 25580192 A JP25580192 A JP 25580192A JP H0685336 B2 JPH0685336 B2 JP H0685336B2
Authority
JP
Japan
Prior art keywords
fine particles
thermocompression
pattern
insulating
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25580192A
Other languages
Japanese (ja)
Other versions
JPH0676877A (en
Inventor
一義 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP25580192A priority Critical patent/JPH0685336B2/en
Priority to US08/017,638 priority patent/US5371327A/en
Priority to TW082101033A priority patent/TW210396B/zh
Priority to DE4304747A priority patent/DE4304747C2/en
Priority to KR1019930002268A priority patent/KR970004764B1/en
Priority to GB9303256A priority patent/GB2265500B/en
Publication of JPH0676877A publication Critical patent/JPH0676877A/en
Publication of JPH0685336B2 publication Critical patent/JPH0685336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱圧着性接続部材、特に
は液晶ディスプレイ(LCD)、エレクトロルミネッセ
ンス(EL)、発行ダイオード(LED)、エレクトロ
クロミックディスプレイ(ECD)、プラズマディスプ
レイなどの表示体の接続端子と、その駆動部分を搭載し
た回路基板、あるいは各種電気回路の基板間を接続する
ために使用される熱圧着性接続部材およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermocompression-bonding connecting member, and more particularly to a liquid crystal display (LCD), an electroluminescence (EL), an emitting diode (LED), an electrochromic display (ECD), a display such as a plasma display. The present invention relates to a thermocompression-bonding connecting member used for connecting between a connection terminal and a circuit board on which a driving part thereof is mounted, or a board of various electric circuits, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】LCD、EL、LED、ECD、プラズ
マディスプレイなどの表示器と、硬質プリント配線板
(PCB)、フレキシブルプリント基板(FPC)との
接続、あるいはPCB、FPC間の接続などには従来か
ら熱圧着性接続部材が用いられている。 この熱圧着性
接続部材としては図3に示したように、絶縁性可撓性基
材11の上に所望のパターン13を導電性ペーストで形成
し、その上に導電性微粒子12を絶縁性接着剤14に分散し
てなる異方導電性接着剤層を設けたものが公知とされて
いる。
2. Description of the Related Art Conventionally, a display device such as an LCD, EL, LED, ECD, or plasma display is connected to a hard printed wiring board (PCB) or a flexible printed circuit board (FPC), or between a PCB or an FPC. Thermocompression-bondable connecting members are used. As the thermocompression-bonding connecting member, as shown in FIG. 3, a desired pattern 13 is formed on the insulating flexible base material 11 with a conductive paste, and the conductive fine particles 12 are insulating-bonded thereon. It is known that an anisotropic conductive adhesive layer formed by being dispersed in the agent 14 is provided.

【0003】しかし、近年の電気、電子機器の小型化、
精密化に伴ない、熱圧着性接続部材に要求される接続端
子のピッチが 0.3mm、0.2mm オーダーと微細化してきた
ことから、上記したような導電性微粒子を絶縁性接着剤
中に分散したタイプでは、パターン間が導電性微粒子に
よって短絡し易いために、これについては図4に示した
ように絶縁性可撓性基材16の上に導電性微粒子17を分散
配合した導電性ペースト18で所望のパターンを形成し、
その上から絶縁性接着剤層19を設けたものが提案されて
いる。
However, in recent years, miniaturization of electric and electronic equipment,
With the refinement, the pitch of connecting terminals required for thermo-compression bonding connecting members has been reduced to 0.3 mm and 0.2 mm order. Therefore, the conductive fine particles as described above were dispersed in the insulating adhesive. In the type, since the patterns are easily short-circuited by the conductive fine particles, the conductive paste 18 in which the conductive fine particles 17 are dispersed and mixed on the insulating flexible base material 16 is used as shown in FIG. Form the desired pattern,
It is proposed that an insulating adhesive layer 19 is provided on top of this.

【0004】しかして、この従来公知の図3、図4に示
されている熱圧着性接続部材では絶縁性可撓性基材11、
16に設けられた導電ペースト13、18からなるパターンと
ITOなどからなる接続端子15、20とを電気的に確実に
接続するためには導電ペースト内の導電性付与剤とは別
の導電性微粒子12、17の存在が不可欠であり、この導電
性微粒子としてはAu、Ag、Ptなどの貴金属微粒子
や、Ni、Al、Feなどの金属粒子、またはそれらを
核としてその表面に貴金属メッキを施したもの、あるい
は高硬度のカーボンブラック、黒鉛粉末、カーボンファ
イバーなどが用いられている。
In the conventional thermocompression-bonding connecting members shown in FIGS. 3 and 4, the insulating flexible base material 11,
In order to reliably and electrically connect the pattern made of the conductive pastes 13 and 18 provided in 16 and the connection terminals 15 and 20 made of ITO or the like, conductive fine particles different from the conductivity-imparting agent in the conductive paste are used. The presence of 12 and 17 is indispensable, and as the conductive fine particles, fine particles of precious metals such as Au, Ag and Pt, metal particles such as Ni, Al and Fe, or the surfaces thereof are plated with precious metals. Materials, high hardness carbon black, graphite powder, carbon fiber, etc. are used.

【0005】[0005]

【発明が解決しようとする課題】しかし、ここに使用さ
れている導電性微粒子は熱圧着時の加熱、加圧による絶
縁性可撓性基材、導電性ペーストおよび絶縁性接着剤層
の変形、流動の変移量に容易に追従できず、接続後にお
かれる種々の環境下での、絶縁性可撓性基材、導電性ペ
ーストおよび絶縁性接着剤層の残存応力を受けて微視的
に動き、部分的に導通不良、高低抗化などを生じさせる
ので、電気的接続の信頼性に重大な影響を及ぼしてい
た。
However, the conductive fine particles used here are the deformation of the insulating flexible base material, the conductive paste and the insulating adhesive layer due to heating and pressure during thermocompression bonding, It cannot easily follow the amount of flow change, and moves microscopically under the residual stress of the insulating flexible base material, conductive paste and insulating adhesive layer under various environments after connection. Since it partially causes conduction failure and high resistance, it has seriously affected the reliability of electrical connection.

【0006】したがって、これについては低硬度の絶縁
性プラスチック弾性体を核とし、その表面に貴金属メッ
キを施した導電性微粒子も提案されているが、このもの
は熱圧着時の加熱、加圧の際に貴金属と絶縁性プラスチ
ック弾性体との硬度差でその表面に微小クラックが生じ
るし、メッキの際に電解質やイオンが付着した絶縁性プ
ラスチック弾性体表面が露出し、その電解質やイオンが
原因となって電蝕が発生するというような問題を発生す
るし、さらに貴金属を使用するために製造コストがかさ
むという問題があった。
Therefore, there is proposed a conductive fine particle having a low hardness insulating plastic elastic body as a core and a precious metal plating on the surface thereof. At that time, a minute crack is generated on the surface due to the hardness difference between the noble metal and the insulating plastic elastic body, and the surface of the insulating plastic elastic body on which the electrolyte and ions are attached is exposed during plating, and the electrolyte and ions cause Then, there is a problem that electrolytic corrosion occurs, and there is a problem that the manufacturing cost is increased because the precious metal is used.

【0007】[0007]

【課題を解決するための手段】本発明はこのような不
利、問題点を解決した熱圧着性接続部材およびその製造
方法に関するもので、これは絶縁性可撓性基材の少なく
とも片面に、多孔質絶縁性微粒子を混合した導電性ペー
ストにより所望のパターンを形成し、少なくとも該パタ
ーンの接続端子部分に絶縁性接着剤層を設けてなること
を特徴とするものであり、この製造方法は絶縁性可撓性
基材の少なくとも片面に、粒径(r)が式(1/3)t≦r
≦L(ここでtはパターンの厚さ、Lはスクリーン開口
部の一辺の長さ)で示されるものである多孔質絶縁性微
粒子を混合した導電性ペーストを、スクリーン印刷によ
り所望のパターンに形成することを特徴とするものであ
る。
SUMMARY OF THE INVENTION The present invention relates to a thermocompression-bonding connecting member and a method for producing the same, which solves the above disadvantages and problems. The method is characterized in that a desired pattern is formed by a conductive paste mixed with fine insulating fine particles, and an insulating adhesive layer is provided at least on the connection terminal portion of the pattern. The particle size (r) is expressed by the formula (1/3) t ≦ r on at least one surface of the flexible substrate.
≦ L (where t is the thickness of the pattern, and L is the length of one side of the screen opening), a conductive paste mixed with porous insulating fine particles is formed into a desired pattern by screen printing. It is characterized by doing.

【0008】すなわち、本発明者は従来公知のものの不
利、欠点を解決し得る熱圧着性接続部材を開発すべく種
々検討した結果、種々の接続端子とパターン間の電気的
接続構造において、導電性ペーストに多孔質絶縁性微粒
子を混合させ、この多孔質絶縁性微粒子を被覆している
導電性ペーストの被膜を突出させて接続端子同士を直接
接触させて接続すると、より高い信頼度の電気的導通を
確保することができることを見出し、ここに使用する多
孔質絶縁性微粒子などの各素材の種類、これらによる構
成などについての研究を進めて本発明を完成させた。以
下にこれをさらに詳述する。
That is, the present inventor has conducted various studies to develop a thermocompression-bonding connecting member capable of solving the disadvantages and drawbacks of the conventionally known ones, and as a result, in the electrical connecting structure between various connecting terminals and the pattern, the conductive If you mix porous insulating fine particles with the paste and project the coating of the conductive paste that covers the porous insulating fine particles so that the connecting terminals are in direct contact with each other and connected, a more reliable electrical conduction is achieved. The present invention has been completed by researching the types of materials such as porous insulating fine particles used here and the constitutions by these materials. This will be described in more detail below.

【0009】[0009]

【作用】本発明は熱圧着性接続部材に関するものであ
り、これは絶縁性可撓性基材の少なくとも片面に、多孔
質絶縁性微粒子を混合した導電性ペーストにより所望の
パターンを形成させ、少なくとも該パターンの接続端子
部分に絶縁性接着剤層を設けてなることを特徴とするも
のであるが、これによれば接続端子間の短絡のおそれな
しに、また多孔質絶縁性微粒子が用いられるので電蝕の
おそれもなく、各種表示体の接続端子と各種電気回路基
板との接続を高度の信頼度で行なうことができるという
有利性が与えられる。
The present invention relates to a thermocompression-bonding connecting member, in which a desired pattern is formed on at least one surface of an insulating flexible base material by a conductive paste mixed with porous insulating fine particles. It is characterized in that an insulating adhesive layer is provided on the connection terminal portion of the pattern, but according to this, there is no fear of a short circuit between the connection terminals, and since porous insulating fine particles are used. There is an advantage that the connection terminals of various display bodies and various electric circuit boards can be connected with high reliability without fear of electrolytic corrosion.

【0010】本発明の熱圧着性接続部材は、絶縁性可撓
性基材に多孔質絶縁性微粒子を混合した導電性ペースト
でパターンを作り、このパターンの接続端子部分に絶縁
性接着剤層を設けたものである。ここに使用される絶縁
性可撓性基材は特に限定されるものではないが、これは
例えばポリイミド、ポリエチレンテレフタレート、ポリ
エチレンナフタレート、ポリブチレンテレフタレート、
ポリカーボネート、ポリフェニレンサルファイド、ポリ
−1,4−シクロヘキサンジメチレンテレフタレート、
ポリアリレート、液晶ポリマーなどから選ばれる厚さが
10〜50μmである耐熱性を有する高分子フィルムとすれ
ばよい。
In the thermocompression-bonding connecting member of the present invention, a pattern is formed by a conductive paste in which porous insulating fine particles are mixed with an insulating flexible base material, and an insulating adhesive layer is formed on the connecting terminal portion of this pattern. It is provided. The insulating flexible substrate used here is not particularly limited, and examples thereof include polyimide, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate,
Polycarbonate, polyphenylene sulfide, poly-1,4-cyclohexanedimethylene terephthalate,
The thickness selected from polyarylate, liquid crystal polymer, etc.
A polymer film having a heat resistance of 10 to 50 μm may be used.

【0011】また、ここに使用される導電性ペーストは
その有機性バインダーが絶縁性の熱可塑性樹脂または熱
硬化性樹脂などの樹脂組成物からなるものとされるが、
これは接続時の加熱、加圧に耐え得るものとするために
熱硬化性樹脂からなるものとするのが好ましく、必要に
応じて硬化促進剤、レベリング剤、分散安定剤、消泡
剤、揺変剤などを添加してもよい。なお、この有機性バ
インダーとしての樹脂組成物にはこれを導電性とするた
めに導電性付与剤が添加されるが、これは外径が0.1〜1
0ミクロンの球状、粒状、鱗片状、板状、樹枝状、サイ
コロ状、海綿状などのAg、AgメッキCu、Au、N
i、Pdさらにはこれらの合金類、これらをメッキした
樹脂粉、ファーネスブラック、チャンネルブラックなど
のカーボンブラックやグラファイト粉末の1種または2
種以上とすればよくこのものの樹脂組成物 100重量部に
対する添加量はその10〜950 重量部とすればよい。
The conductive paste used here has an organic binder made of a resin composition such as an insulating thermoplastic resin or thermosetting resin.
It is preferably made of a thermosetting resin so that it can withstand heating and pressurization at the time of connection, and if necessary, a curing accelerator, a leveling agent, a dispersion stabilizer, a defoaming agent, a rocking agent. A modifier or the like may be added. In addition, a conductivity-imparting agent is added to the resin composition as the organic binder in order to make it conductive, but the outer diameter is 0.1 to 1
0 micron spherical, granular, scale-like, plate-like, dendritic, dice-like, sponge-like Ag, Ag-plated Cu, Au, N
i, Pd, one of these alloys, resin powder plated with these, carbon black such as furnace black and channel black, and one or two of graphite powder.
More than one kind may be used, and the addition amount of this product to 100 parts by weight of the resin composition may be 10 to 950 parts by weight.

【0012】本発明では、この導電性ペーストに多孔質
の絶縁性微粒子が添加されるのであるが、この多孔質絶
縁性微粒子の形状は球状、粒状、鱗片状、樹枝状、板
状、サイコロ状、海綿状などのいずれであってもよく、
押圧された状態でより安定した電気的接続を得るために
は、導電パターンがこれに対向する接続端子に多点で接
触するような形状として樹枝状、海綿状のものとするこ
とがよい。
In the present invention, the porous insulating fine particles are added to the conductive paste. The shape of the porous insulating fine particles is spherical, granular, scale-like, dendritic, plate-like, or dice-like. , Spongy, etc.,
In order to obtain a more stable electrical connection in the pressed state, it is preferable that the conductive pattern has a dendritic or sponge-like shape so as to make contact with the connection terminal facing it at multiple points.

【0013】また、この多孔質絶縁性微粒子はこれが導
電性パターン形成時および熱圧着時に導電性ペーストの
被膜を突破しないようにするため、またこの多孔質の表
面が導電性ペースト中の有機バインダー成分を物理的に
吸着し、これにより非常に高い密着性を得ることができ
るようにするために、表面が多孔質のものとすることが
必要とされる。したがって、このものはより望ましくは
その表面のSP値と導電性ペースト中の有機性バインダ
ーのそれとの差が2以上、好ましくは1以内とすること
がよく、これによれば化学的、分子的な結合力、相似性
が得られ、多孔質絶縁性微粒子と有機性バインダーとの
ぬれがよくなり、高い密着性を得ることができる。
Further, the porous insulating fine particles prevent the porous insulating fine particles from breaking through the coating of the conductive paste at the time of forming the conductive pattern and at the time of thermocompression bonding, and the porous surface has an organic binder component in the conductive paste. In order to be able to physically adsorb and thereby obtain very high adhesion, it is necessary for the surface to be porous. Therefore, it is more preferable that the difference between the SP value of the surface and that of the organic binder in the conductive paste is 2 or more, preferably 1 or less. The binding force and the similarity are obtained, the wettability between the porous insulating fine particles and the organic binder is improved, and high adhesion can be obtained.

【0014】しかし、この多孔質絶縁性微粒子としては
これが導電性ペースト中の有機溶剤に容易に溶解するも
のは使用できないし、この有機溶剤を容易に吸収して膨
張を起こすものも好ましくなく、さらには80〜200 ℃の
熱圧着時に容易に溶融するものであってもいけないの
で、溶融点が80℃以上、好ましくは 120℃以上の樹脂、
プラスチック、ゴムなどから作られたものとすることが
よく、したがってこれはポリスチレン系、ポリイミド
系、ポリアクリル系、ポリエステル系、ポリウレタン
系、ポリアミド系、フェノール系、エポキシ系、ポリオ
レフィン系、ポリビニル系などの樹脂またはこれらの共
重合体、およびこれらのエラストマー樹脂や、イソプレ
ン系、ブタジェン系などの合成ゴム、天然ゴムなどで作
られたものとすればよいが、これには耐溶剤性、弾性
率、成形性、吸油性、密着性などから特にポリアミド系
樹脂、例えばナイロン、アラミド、ポリイミドなどが好
ましいものとされる。なお、この樹脂、ゴムから作られ
るものにはその形状、弾性を制御することができるし、
その表面を多孔質としたり、表面のSP値を調節するこ
とができるという有利性も与えられる。
However, as the porous insulating fine particles, those which are easily dissolved in the organic solvent in the conductive paste cannot be used, and those which easily absorb the organic solvent and cause expansion are also not preferable. Should not be one that melts easily during thermocompression bonding at 80 to 200 ° C, so a resin with a melting point of 80 ° C or higher, preferably 120 ° C or higher,
It is often made from plastic, rubber, etc., and therefore it is made of polystyrene, polyimide, polyacrylic, polyester, polyurethane, polyamide, phenol, epoxy, polyolefin, polyvinyl, etc. Resins or copolymers thereof, and elastomer resins thereof, synthetic rubbers such as isoprene-based and butadiene-based rubbers, natural rubbers, etc. may be used, which include solvent resistance, elastic modulus, molding Polyamide resins, such as nylon, aramid, and polyimide, are particularly preferable in terms of properties, oil absorption, adhesion, and the like. The shape and elasticity of this resin and rubber can be controlled,
It also provides the advantage that the surface can be made porous and the SP value of the surface can be adjusted.

【0015】この多孔質絶縁性微粒子を分散配合した導
電性ペーストはついで前記した絶縁性可撓性基材の表面
にこれを塗布して導電パターンを形成するのであるが、
この導電パターンの形成はこの多孔質絶縁性微粒子が埋
没されるだけの厚みを1回の印刷で得るためにはスクリ
ーン印刷が最適とされる。しかし、これによって形成さ
れた導電パターンに埋没、固定される多孔質絶縁性微粒
子を安定した接続状態に保つためには、導電パターンの
接続端子部分の面積1mm2 当り、粒子数が20個よりも少
ないとこれを熱圧着したときに粒子の存在が少なくな
り、粒子の存在しないことも起り、特に低ピッチの場合
には安定した接続状態をとることができず、この粒子数
が極端に多すぎるとこれをスクリーン印刷するときに粒
子によって版詰まりを起こしたり、導電性ペーストの体
積抵抗率が減少して安定な抵抗値が得られなくなるの
で、これは粒子数が20個以上、好ましくは50個以上とな
るようにすればよいが、この観点からは導電ペーストに
分散配合する多孔質絶縁性微粒子の配合部数は5〜500
容量部、好ましくは5〜100 容量部とすることがよい。
The conductive paste in which the porous insulating fine particles are dispersed and mixed is then applied onto the surface of the above-mentioned insulating flexible base material to form a conductive pattern.
Screen printing is optimal for forming the conductive pattern in order to obtain a thickness enough to bury the porous insulating fine particles in one printing. However, in order to maintain a stable connected state of the porous insulating fine particles embedded and fixed in the conductive pattern formed by this, the number of particles is more than 20 per 1 mm 2 of the connection terminal portion of the conductive pattern. If it is too small, the presence of particles will be reduced when it is thermocompression bonded, and the absence of particles will occur. In particular, when the pitch is low, a stable connection state cannot be achieved, and the number of particles is extremely large. And when it is screen-printed with it causes plate clogging by particles, or the volume resistivity of the conductive paste decreases and stable resistance value cannot be obtained, so this is the number of particles is 20 or more, preferably 50 From the above viewpoint, the number of blending parts of the porous insulating fine particles dispersed and blended in the conductive paste is 5 to 500.
It is preferable that the capacity part is 5 to 100 parts by volume.

【0016】この導電性ペーストの絶縁性可撓性基材へ
の塗布は通常スクリーン印刷で行なわれるが、このスク
リーン印刷に用いられるスクリーン材としては線径が10
〜40μmのステンレスなどの鉄合金を平織、綾織したも
の、またはニッケルメッキなどによって格子状に形成し
た電鋳版を剛性のフレームに張ったものが一般的に使用
されるが、精密なパターンを形成するにはアクリル系な
どのマスク材の開口部を線材や線材の交点が塞がないよ
うに線材を細くする必要があり、紗厚(Ts)は必然的
に薄くなるが、導電性ペーストの通過性の点からはTs
に対する開口率(φ)の比は望ましくは 0.8以上、さら
に望ましくは 1.5以上とすることがよく、そのためには
紗、板の強度を落とさずに線材の強度を上昇させ、線径
を細くすることが必要で、φは35%以上、好ましくは60
%以上とすることがよい。
The application of the conductive paste to the insulating flexible substrate is usually carried out by screen printing. The screen material used for this screen printing has a wire diameter of 10 mm.
-40μm stainless steel and other iron alloys are plain woven or twill woven, or electroformed plates formed in a grid pattern by nickel plating etc. are stretched on a rigid frame, but a precise pattern is formed. In order to do so, it is necessary to make the wire material thin so that the openings of the mask material such as acrylic resin are not blocked by the wire material or the intersections of the wire materials, and the mesh thickness (Ts) is inevitably thin, but the passage of the conductive paste From the point of sex Ts
The ratio of the opening ratio (φ) to the diameter is preferably 0.8 or more, more preferably 1.5 or more. For that purpose, the strength of the wire rod should be increased without decreasing the strength of the gauze or plate, and the wire diameter should be reduced. Is required, φ is 35% or more, preferably 60
It is better to set it to% or more.

【0017】また、このスクリーン印刷については他の
スクリーン材としてステンレスなどの金属メッシュに薄
いニッケル箔などを電解ラミネートし、エッチングによ
りパターンを形成したメタルマスクと呼ばれるスクリー
ンが用いられることがあるが、この場合には低ピッチの
印刷をするときには寸法安定性の点からその強度が印刷
時のスキージングによって容易に変形しないものを用い
る必要があり、印刷には十分な注意が必要とされる。
For this screen printing, a screen called a metal mask in which a thin nickel foil or the like is electrolytically laminated on a metal mesh such as stainless steel and a pattern is formed by etching is used as another screen material. In this case, when printing at a low pitch, it is necessary to use a material whose strength is not easily deformed by squeegeeing during printing from the viewpoint of dimensional stability, and sufficient care must be taken in printing.

【0018】なお、この多孔質絶縁性微粒子の粒径につ
いては、前記した導電性ペーストをスクリーン印刷で絶
縁性可撓性基材に塗布する場合、この導電性ペーストに
分散配合されている多孔質絶縁性微粒子の粒径(r)
は、パターンの線幅(Tc)および厚み(t)、印刷版
の格子状の開口部の一辺の長さ(L)との関係により決
定され、rがtに対して小さすぎると突出部の形成が困
難となり、接続の安定性が悪くなるので、これはr≧
(1/3)t、好ましくはr≧tとすることがよく、またr
がTcおよびLに対して大きいと物理的にパターンの形
成が困難となり、印刷時に版づまりを生ずるので、これ
はr<Tc、r<L、好ましくはr< (1/2)Tcとする
ことがよく、したがってこのrは (1/3)t≦r≦Lとす
ることが必要とされる。
Regarding the particle diameter of the porous insulating fine particles, when the above-mentioned conductive paste is applied to the insulating flexible substrate by screen printing, the porous paste dispersed and blended with the conductive paste is used. Particle size of insulating particles (r)
Is determined by the relationship between the line width (Tc) and thickness (t) of the pattern and the length (L) of one side of the grid-like openings of the printing plate. If r is too small with respect to t, the protrusion Since it is difficult to form and the connection is less stable,
(1/3) t, preferably r ≧ t, and r
Is larger than Tc and L, it becomes difficult to form a pattern physically, and a plate jam occurs during printing. Therefore, r <Tc, r <L, and preferably r <(1/2) Tc. Well, therefore, this r needs to be (1/3) t ≦ r ≦ L.

【0019】しかし、通常この導電パターンの厚み
(t)は5〜30μm程度であり、印刷版の格子状の開口
部の一辺の長さ(L)はスクリーンメッシュにより異な
るものの、0.4mm ピッチ以下の精細な導電パターンを形
成する際には 250メッシュ以上、500 メッシュ程度まで
の版を用いることが多く、このときのLは25〜70μm程
度であるため、多孔質絶縁性微粒子の粒径(r)は5〜
70μm、好ましくは20〜50μmの範囲から適宜に選択す
ればよい。
However, the thickness (t) of this conductive pattern is usually about 5 to 30 μm, and the length (L) of one side of the grid-like openings of the printing plate varies depending on the screen mesh, but is 0.4 mm pitch or less. When forming a fine conductive pattern, a plate with a size of 250 mesh or more and up to about 500 mesh is often used. Since L at this time is about 25 to 70 μm, the particle size (r) of the porous insulating fine particles is Is 5
It may be appropriately selected from the range of 70 μm, preferably 20 to 50 μm.

【0020】さらに、この多孔質絶縁性微粒子について
は連続印刷した際のスクリーン印刷性と安定した接続状
態を得るために、その粒度分布の変動係数を定める必要
があるが、この変動係数が80%より大きいとスクリーン
印刷時に版の上にメッシュを通過しない大きな粒子が残
り、版詰まりを起こして電気的に接続した導電パターン
が得られなかったり、熱圧着性接続部材とした際に熱圧
着した後の導電パターンの突出部の高さが異なり、接続
状態がまばらになって安定した接続が得られなくなるこ
ともあるので、この変動係数は80%以下とすることが必
要とされる。
Further, regarding the porous insulating fine particles, it is necessary to determine the variation coefficient of the particle size distribution in order to obtain the screen printability and the stable connection state when continuously printed, but this variation coefficient is 80%. If it is larger, large particles that do not pass through the mesh will remain on the plate during screen printing, resulting in clogging of the plate and an electrically connected conductive pattern cannot be obtained, or after thermocompression bonding when used as a thermocompression bonding connecting member. Since the heights of the protruding portions of the conductive patterns are different and the connection state may be sparse, and a stable connection may not be obtained, this variation coefficient is required to be 80% or less.

【0021】また、本発明の熱圧着性接続部材は前記し
た絶縁性可撓性基材に上記した多孔質絶縁性微粒子を分
散配合した導電性ペーストでパターンを形成したのち、
このパターンの接続端子部分に絶縁性接着材層を設ける
ことによって形成されるが、この絶縁性接着剤は特に限
定されるものではなく、これは加熱によって接着性を示
すものであれば熱可塑性、熱硬化性のいずれであっても
よいが、熱可塑性のものは比較的低温、短時間の加熱で
接着し、ポットライフも長く、熱硬化性のものは接着強
度が大きく、耐熱性もすぐれているので、これらはその
使用目的に応じて適宜選択すればよい。
In the thermocompression-bonding connecting member of the present invention, a pattern is formed with a conductive paste prepared by dispersing and mixing the above-mentioned porous insulating fine particles in the above-mentioned insulating flexible base material,
It is formed by providing an insulating adhesive layer on the connection terminal portion of this pattern, but this insulating adhesive is not particularly limited, as long as it exhibits adhesiveness by heating, thermoplastic, It may be either thermosetting, but thermoplastics can be bonded at relatively low temperature for a short period of time, have a long pot life, and thermosettings have high adhesive strength and excellent heat resistance. Therefore, these may be appropriately selected according to the purpose of use.

【0022】この絶縁性接着剤は、エチレン−酢酸ビニ
ル共重合体、カルボキシル変成エチレン−酢酸ビニル共
重合体、エチレン−アクリレート共重合体、エチレン−
エチルアクリレート共重合体、エチレン−イソブチルア
クリレート共重合体、ポリアミド、ポリエステル、ポリ
メチルメタクリレート、ポリビニルエーテル、ポリビニ
ルブチラール、ポリウレタン、スチレン−ブチレン−ス
チレン(SBS)共重合体、カルボキシル変成SBS共
重合体、スチレン−イソプレン−スチレン(SIS)共
重合体、スチレン−エチレン−ブチレン−スチレン(S
EBS)共重合体、マレイン酸変成SEBS共重合体、
ポリブタジエンゴム、クロロプレンゴム(CR)、カル
ボキシル変成CR、スチレン−ブタジエンゴム、イソブ
チレン−イソプレン共重合体、アクリロニトリル−ブタ
ジエンゴム(NBR)、カルボキシル変成NBR、エポ
キシ樹脂、シリコーンゴム(SR)などから選ばれる1
種または2種以上の組合せにより得られるものとすれば
よい。
This insulating adhesive includes ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-acrylate copolymer, ethylene-
Ethyl acrylate copolymer, ethylene-isobutyl acrylate copolymer, polyamide, polyester, polymethyl methacrylate, polyvinyl ether, polyvinyl butyral, polyurethane, styrene-butylene-styrene (SBS) copolymer, carboxyl modified SBS copolymer, styrene -Isoprene-styrene (SIS) copolymer, styrene-ethylene-butylene-styrene (S
EBS) copolymer, maleic acid modified SEBS copolymer,
1 selected from polybutadiene rubber, chloroprene rubber (CR), carboxyl modified CR, styrene-butadiene rubber, isobutylene-isoprene copolymer, acrylonitrile-butadiene rubber (NBR), carboxyl modified NBR, epoxy resin, silicone rubber (SR), etc.
It may be obtained by one kind or a combination of two or more kinds.

【0023】なお、この絶縁性接着剤に粘着付与剤とし
てのロジン、ロジン誘導体、テルペン樹脂、テルペン−
フェノール共重合体、石油樹脂、クマロン−インデン樹
脂、スチレン系樹脂、イソプレン系樹脂、アルキルフェ
ノール樹脂、フェノール樹脂などの1種または2種以上
および反応性助剤、架橋剤としてのフェノール樹脂、ポ
リオール類、イソシアネート類、メラミン樹脂、尿素樹
脂、ウロトロピン類、アミン類、酸無水物、過酸化物、
金属酸化物、トリフルオロ酢酸クロム塩などの有機酸金
属塩、チタン、ジルコニア、アルミニウムなどのアルコ
キシド、ジブチル錫オキサイドなどの有機金属化合物、
2,2−ジエトキシアセトフェノン、ベンジルなどの光
開始剤、アミン類、リン化合物、塩素化合物などの増感
剤などを添加することは任意とされるし、これにはまた
硬化剤、加硫剤、制御剤、劣化防止剤、耐熱添加剤、熱
伝導向上剤、軟化剤、着色剤、各種カップリング剤、金
属不活性剤等が適宜添加されてもよい。
Incidentally, rosin, a rosin derivative, a terpene resin, a terpene-
One or more of phenol copolymers, petroleum resins, coumarone-indene resins, styrene resins, isoprene resins, alkylphenol resins, phenol resins and the like, and reactive auxiliaries, phenol resins as crosslinking agents, polyols, Isocyanates, melamine resins, urea resins, urotropins, amines, acid anhydrides, peroxides,
Metal oxides, organic acid metal salts such as chromium trifluoroacetate salts, alkoxides such as titanium, zirconia and aluminum, organometallic compounds such as dibutyltin oxide,
It is optional to add a photoinitiator such as 2,2-diethoxyacetophenone and benzyl, a sensitizer such as amines, phosphorus compounds and chlorine compounds, and a curing agent and a vulcanizing agent. A control agent, an anti-degradation agent, a heat resistance additive, a thermal conductivity improver, a softening agent, a coloring agent, various coupling agents, a metal deactivator and the like may be appropriately added.

【0024】また、この絶縁性接着剤は溶液として調製
され、スクリーン印刷などの適宜の方法で接続端子上に
形成されるが、ここで使用される溶剤としてはエステル
系、ケトン系、エーテルエステル系、塩素系、エーテル
系、アルコール系、炭化水素系などの、例えば酢酸メチ
ル、酢酸エチル、酢酸イソプロピル、酢酸イソブチル、
酢酸ブチル、酢酸アミル、メチルエチルケトン、メチル
イソアミルケトン、メチルアミルケトン、エチルアミル
ケトン、イソブチルケトン、メトキシメチルペンタノ
ン、シクロヘキサノン、ジアセトンアルコール、酢酸メ
チルセロソルブ、酢酸エチルセロソルブ、酢酸ブチルセ
トソルブ、酢酸メトキシブチル、酢酸メチルカルビトー
ル、酢酸エチルカルビトール、酢酸ジブチルカルビトー
ル、トリクロロエタン、トリクロロエチレン、n−ブチ
ルエーテル、ジイソアミルエーテル、n−ブチルフェニ
ルエーテル、プロピレンオキサイド、フルフラール、イ
ソプロピルアルコール、イソブチルアルコール、アミル
アルコール、シクロヘキサノール、ベンゼン、トルエ
ン、キシレン、イソプロピルベンゼン、石油スピリッ
ト、石油ナフサなどが挙げられるが、これはエステル
系、ケトン系、エーテルエステル系のものなどが多用さ
れる。
The insulating adhesive is prepared as a solution and formed on the connection terminal by an appropriate method such as screen printing. The solvent used here is an ester-based, ketone-based or ether ester-based solvent. , Chlorine-based, ether-based, alcohol-based, hydrocarbon-based, such as methyl acetate, ethyl acetate, isopropyl acetate, isobutyl acetate,
Butyl acetate, amyl acetate, methyl ethyl ketone, methyl isoamyl ketone, methyl amyl ketone, ethyl amyl ketone, isobutyl ketone, methoxymethylpentanone, cyclohexanone, diacetone alcohol, methyl cellosolve acetate, ethyl cellosolve acetate, butyl cetosolve acetate, methoxybutyl acetate, acetic acid Methyl carbitol, ethyl carbitol acetate, dibutyl carbitol acetate, trichloroethane, trichloroethylene, n-butyl ether, diisoamyl ether, n-butyl phenyl ether, propylene oxide, furfural, isopropyl alcohol, isobutyl alcohol, amyl alcohol, cyclohexanol, benzene , Toluene, xylene, isopropylbenzene, petroleum spirit, petroleum naphtha, etc. Is, this is an ester, ketones, such as those of the ester type are frequently used.

【0025】本発明の熱圧着性接続部材は上記した方法
により製造されるが、このようにして作られた本発明の
熱圧着性接続部材はパターンを形成する導電性ペースト
中に多孔質絶縁性微粒子が分散配合されており、これが
ペースト中に埋設、固定されていてパターン上に突出部
分を形成するので、接続時の加熱、加圧操作によってこ
の導電性ペーストの突出部分が対抗する接続端子と直接
接触して電気的導通が行なわれるのであるが、この熱圧
着性接続部材では接続端子同士の直接接触で電気的接続
が行なわれるので接続端子間の短絡のおそれは全くない
し、多孔質絶縁性微粒子が用いられるので電蝕の生ずる
こともなく、さらには絶縁性接着剤層で接続端子間の接
着構造を強固に保持するために種々の環境下での電気的
導通の信頼性の向上が図れるという有利性が与えられ
る。
The thermocompression-bonding connecting member of the present invention is manufactured by the above-mentioned method. The thermocompression-bonding connecting member of the present invention thus produced has a porous insulating property in the conductive paste forming the pattern. Fine particles are dispersed and mixed, and they are embedded and fixed in the paste to form a protruding portion on the pattern.Therefore, when the connection is heated and pressed, the protruding portion of the conductive paste is opposed to the connecting terminal. Although electrical contact is made by direct contact, this thermo-compression bonding connecting member makes electrical connection by direct contact between the connecting terminals, so there is no risk of short-circuiting between the connecting terminals, and the porous insulating property Since fine particles are used, no electrolytic corrosion occurs, and since the insulating adhesive layer firmly holds the adhesive structure between the connection terminals, the reliability of electrical continuity in various environments is improved. Advantage that can be achieved is given.

【0026】本発明の熱圧着接続部材は以上のように構
成され、この接続端子部分は図1に示すように基材1上
にパターンを形成する導電性ペースト3に分散配合さ
れ、埋没、固定された多孔質絶縁性微粒子2によって、
パターン上に突出部分(導電性ペースト3による突出被
膜)が形成され、この上に絶縁性接着剤層4が設けられ
たものとなる。これを接続時に加熱、加圧することによ
り、図2に示すように突出した部分の導電性ペースト3
が絶縁性接着剤層4を突破し対抗する接続端子5に直接
接触することにより、電気的接続を行なうものである。
The thermocompression-bonding connecting member of the present invention is constructed as described above, and the connecting terminal portion is dispersed and blended in the conductive paste 3 forming a pattern on the base material 1 as shown in FIG. Due to the porous insulating fine particles 2 thus formed,
A projecting portion (projecting coating film of the conductive paste 3) is formed on the pattern, and the insulating adhesive layer 4 is provided thereon. By heating and pressurizing this at the time of connection, as shown in FIG.
Is to make an electrical connection by breaking through the insulating adhesive layer 4 and making direct contact with the opposing connection terminal 5.

【0027】したがって、図2(b)に示すように接続
端子同士(導電性ペースト3とITO接続端子5)を直
接接触させて電気的に接続するため、接続端子間の短絡
の可能性は全くなく、また、絶縁性の多孔質絶縁性微粒
子2を用いているので電蝕を生じる恐れがない。さら
に、多孔質絶縁性微粒子2が多孔質ゆえに導電性ペース
ト3との濡れがよく、パターン形成時および加熱、加圧
時において導電性ペースト3が突破することがないばか
りでなく、図2(b)、(c)に示すように多孔質絶縁
性微粒子2がその弾性ゆえに押圧した状態で変形し、そ
の反発力により対向する接続端子5に接触圧力を保持し
続け、種々の環境下においても安定した接続が図れ、そ
の電気的接続の信頼性の向上がなされるという優位性が
与えられる。
Therefore, as shown in FIG. 2B, the connection terminals (the conductive paste 3 and the ITO connection terminal 5) are brought into direct contact with each other for electrical connection, so that there is no possibility of a short circuit between the connection terminals. Moreover, since the insulating porous insulating fine particles 2 are used, there is no possibility of causing electrolytic corrosion. Furthermore, since the porous insulating fine particles 2 are porous, they are well wetted with the conductive paste 3, and the conductive paste 3 does not break through during pattern formation and during heating and pressurization. ), (C), the porous insulating fine particles 2 are deformed in a pressed state due to their elasticity, and the repulsive force keeps the contact pressure of the connecting terminals 5 facing each other, and is stable in various environments. And the reliability of the electrical connection is improved.

【0028】[0028]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1〜4、比較例1〜2 (導電性ペーストの作成)有機性バインダーとして分子
量20,000〜25,000、水酸基価6.0 KOH mg/g、酸価1.0 KO
H mg/g、溶解度パラメーター 9.2の飽和共重合ポリエス
テル樹脂と、ヘキサメチレンジイソシアネートのビウレ
ット3量体をメチルエチルケトオキシムでブロックした
ブロックイソシアネートの混合物を用い、この 100重量
部に導電粒子としての鱗片状の粒径が1〜3μmのAg
粉末 870重量部と有機高分子系レベリング剤と揺変剤と
してのシリカ各5重量を加え、これらを酢酸エチルカル
ビトール 200重量部に溶解した。
EXAMPLES Next, examples and comparative examples of the present invention will be described. Examples 1 to 4 and Comparative Examples 1 to 2 (Preparation of conductive paste) As organic binder, molecular weight 20,000 to 25,000, hydroxyl value 6.0 KOH mg / g, acid value 1.0 KO
Using a mixture of saturated copolyester resin with H mg / g and solubility parameter of 9.2 and blocked isocyanate obtained by blocking biuret trimer of hexamethylene diisocyanate with methyl ethyl ketoxime, 100 parts by weight of scaly particles as conductive particles were used. Diameter 1-3 μm Ag
870 parts by weight of powder, 5 parts by weight of each of an organic polymer type leveling agent and silica as a thixotropic agent were added, and these were dissolved in 200 parts by weight of ethyl carbitol acetate.

【0029】ついでこれに10%変形時の圧縮強度が3.0k
gf/mm2である、つぎの4種の 多孔質ナイロン樹脂弾性微粒子(平均粒径約30μm、
粒度分布変動係数7%、海綿状)、〔実施例1〕 多孔質ナイロン樹脂弾性微粒子(平均粒径約5μm、
粒度分布変動係数4%、海綿状)、〔実施例2〕 多孔質ナイロン樹脂弾性微粒子(平均粒径約80μm、
粒度分布変動係数8%、海綿状)、〔実施例3〕 多孔質ナイロン樹脂弾性微粒子(平均粒径約30μm、
粒度分布変動係数 120%、海綿状)、〔実施例4〕 を多孔質絶縁性微粒子として45容量部を加えて4種の導
電性ペーストA〜Dを作成した。
Then, the compressive strength at 10% deformation is 3.0k.
The following 4 types of porous nylon resin elastic fine particles (average particle size of about 30 μm, gf / mm 2 ;
Particle size distribution variation coefficient 7%, spongy, [Example 1] Porous nylon resin elastic fine particles (average particle size of about 5 μm,
Particle size distribution variation coefficient 4%, spongy, [Example 2] Porous nylon resin elastic fine particles (average particle size of about 80 μm,
Particle size distribution variation coefficient 8%, spongy, [Example 3] Porous nylon resin elastic fine particles (average particle size of about 30 μm,
Four kinds of conductive pastes A to D were prepared by adding 45 parts by volume of the particle size distribution variation coefficient of 120%, sponge-like) and [Example 4] as porous insulating fine particles.

【0030】また、これについては 10%変形時の圧縮強度が3.4kgf/mm2であり、平均粒径
が約30μmで、粒度分布変動係数が7%、球状である非
孔質アクリル樹脂弾性微粒子〔比較例1〕10%変形時
の圧縮強度が 16.3kgf/mm2であり、平均粒径が約30μm
で、粒度 分布変動係数が8%、球状であるAuメッキ
Ni粒子〔比較例2〕 を45容量部を加えて2種の導電性ペーストE、Fを作成
した。
Further, regarding this, the compression strength at 10% deformation is 3.4 kgf / mm 2 , the average particle size is about 30 μm, the particle size distribution variation coefficient is 7%, and spherical non-porous acrylic resin elastic fine particles. [Comparative Example 1] The compressive strength at 10% deformation is 16.3 kgf / mm 2 , and the average particle size is about 30 μm.
Then, two kinds of conductive pastes E and F were prepared by adding 45 volume parts of spherical Au-plated Ni particles having a particle size distribution variation coefficient of 8% [Comparative Example 2].

【0031】(絶縁性接着剤溶液の作成)カルボキシル
変性NBR 100重量部にアルキルフェノール系粘着付与
剤40重量部、劣化防止剤としてのフェノール系樹脂、耐
熱添加剤としての酸化チタンおよびアミン系シランカッ
プリング剤を各1重量部加え、これを石油ナフサ:ブチ
ルカルビトール=1:1の混合溶媒に溶解して35重量%
の絶縁性接着剤溶液を作成した。
(Preparation of Insulating Adhesive Solution) 100 parts by weight of carboxyl-modified NBR, 40 parts by weight of alkylphenol tackifier, phenol resin as deterioration inhibitor, titanium oxide and amine silane coupling as heat resistant additive 1 part by weight of each agent was added, and this was dissolved in a mixed solvent of petroleum naphtha: butyl carbitol = 1: 1 to obtain 35% by weight.
An insulating adhesive solution was prepared.

【0032】(熱圧着性接続部材の製造)つぎに、厚さ
25μmのPENフィルムからなる絶縁性可撓性基材の上
に、上記で得た導電性ペーストA〜Fを スクリーン線径16μm、紗厚35μm、開口部一辺の長
さ(l)63μm、開口率65%の強化ステンレススクリー
ン版、 ステンレス−ニッケル箔ラミネートスクリーン版 のいずれがを用いて 0.3mmピッチのパターンを形成し、
その全面に上記で作成した絶縁性接着剤を溶媒を除去し
た後の厚みが20μmになるようにバーコーターを用いて
塗布し、乾燥して絶縁性接着剤層を形成し、所望の寸法
に裁断して熱圧着性接続部材を作成した。
(Production of thermocompression-bonding connecting member) Next, the thickness
On the insulating flexible base material made of a 25 μm PEN film, the conductive pastes A to F obtained above were screen wire diameter 16 μm, gauze thickness 35 μm, opening side length (l) 63 μm, opening ratio A pattern of 0.3 mm pitch is formed using either the 65% reinforced stainless screen plate or the stainless-nickel foil laminated screen plate,
The insulating adhesive prepared above is applied to the entire surface using a bar coater so that the thickness after removal of the solvent will be 20 μm, dried to form an insulating adhesive layer, and cut into desired dimensions. Then, a thermocompression bonding connection member was prepared.

【0033】ついで、このようにして得た熱圧着性接続
部材を、面積抵抗率が30Ωである透明導電酸化膜基板
(ITO)の接続端子に 140℃、30kg/cm2、12秒の条件
で熱圧着し、これについて熱衝撃試験(85℃、30分と -
30℃、30分とを交互にくり返す)を行なった後の放置時
間と両接続端子間の抵抗値の変化、および60℃、95%R
Hの環境に放置した時間と両接続端子間の抵抗値の変化
との関係をしらべたところ、表1、表2に示したとおり
の結果が得られた。なお、導電ペーストEでは混合した
絶縁性微粒子のぬれが悪く、パターン形成時、あるいは
熱圧着後にこれが導電性ペーストを突破した。
Then, the thermocompression-bonding connecting member thus obtained was connected to a connecting terminal of a transparent conductive oxide film substrate (ITO) having an area resistivity of 30Ω under the conditions of 140 ° C., 30 kg / cm 2 , and 12 seconds. Thermocompression bonding and thermal shock test (85 ° C, 30 minutes-
After 30 ℃, 30 minutes), change the resistance value between both connecting terminals and 60 ℃, 95% R
When the relationship between the time left in the H environment and the change in the resistance value between both connection terminals was examined, the results shown in Tables 1 and 2 were obtained. In the conductive paste E, the mixed insulating fine particles did not wet well, and this penetrated the conductive paste during pattern formation or after thermocompression bonding.

【0034】[0034]

【表1】 [Table 1]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明は熱圧着性接続部材およびその製
造方法に関するものであり、これは前記したように、絶
縁性可撓性基材の少なくとも片面に、多孔質絶縁性微粒
子を混合した導電性ペーストにより所望のパターンを形
成させ、少なくとも該パターンの接続端子部分に絶縁性
接着剤層を設けてなることを特徴とする熱圧着性接続部
材、および絶縁性可撓性基材の少なくとも片面に、粒径
(r)が式 (1/3)t≦r≦L(ここにtはパターンの厚さ、Lはス
クリーン開口部の一辺の長さ) で示されるものである多孔質絶縁性微粒子を混合した導
電性ペーストを、スクリーン印刷により所望のパターン
に形成することを特徴とする熱圧着性接続部材の製造方
法を要旨とするものである。
The present invention relates to a thermocompression-bonding connecting member and a method for producing the same, which, as described above, has a conductive material obtained by mixing porous insulating fine particles on at least one side of an insulating flexible substrate. Pattern is formed by a conductive paste, and an insulating adhesive layer is provided on at least a connecting terminal portion of the pattern, and a thermocompression-bonding connecting member, and at least one surface of an insulating flexible base material. , The particle diameter (r) is expressed by the formula (1/3) t ≦ r ≦ L (where t is the thickness of the pattern, and L is the length of one side of the screen opening). The present invention is directed to a method for manufacturing a thermocompression-bonding connecting member, which is characterized in that a conductive pattern in which is mixed is formed into a desired pattern by screen printing.

【0036】しかして、この本発明の熱圧着性接続部材
を使用すれば、微細な電気、電子回路などの接続端子で
あっても短絡するおそれはないし、導電性ペースト中に
多孔質絶縁性微粒子が分散配合されており、これがペー
スト中に埋没、固定されているので、加熱、加圧操作に
よりその突出した部分が確実に対抗する接続端子と接続
でき、電気的導通の信頼性の向上が図れるという有利性
が与えられ、しかも導電性粒子として貴金属を使用しな
いので、安価に製造することができる。
However, when the thermocompression-bonding connecting member of the present invention is used, there is no fear of short-circuiting even in connection terminals of fine electric and electronic circuits, and the porous insulating fine particles are contained in the conductive paste. Is dispersed and mixed, and is embedded and fixed in the paste, so that the protruding part can be reliably connected to the opposing connecting terminal by heating and pressurizing operation, and the reliability of electrical conduction can be improved. Since no noble metal is used as the conductive particles, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱圧着性接続部材の縦断面図を示した
ものである。
FIG. 1 is a vertical sectional view of a thermocompression-bonding connecting member of the present invention.

【図2】(a)は本発明の熱圧着性接続部材とパターン
ITOとの接続説明図、(b)はそのX−X線に沿う縦
断面図、(c)はそのY−Y線に沿う縦断面図を示した
ものである。
2A is a connection explanatory view of a thermocompression-bonding connection member of the present invention and a pattern ITO, FIG. 2B is a longitudinal sectional view taken along line XX thereof, and FIG. 2C is a line YY thereof. It is a longitudinal cross-sectional view along.

【図3】従来公知の熱圧着性接続部材の縦断面図を示し
たものである。
FIG. 3 is a vertical sectional view of a conventionally known thermocompression-bonding connecting member.

【図4】従来公知の他の熱圧着性接続部材の縦断面図を
示したものである。
FIG. 4 is a vertical cross-sectional view of another conventionally known thermocompression-bonding connecting member.

【符号の説明】[Explanation of symbols]

1,11,16…絶縁性可撓性基材、2…多孔質絶縁性微粒
子、3,13,18…導電性ペースト、 4,19…絶縁性接
着剤層、5…ITO接続端子、 12,17…導電
性微粒子。
1, 11, 16 ... Insulating flexible base material, 2 ... Porous insulating fine particles, 3, 13, 18 ... Conductive paste, 4, 19 ... Insulating adhesive layer, 5 ... ITO connection terminal, 12, 17 ... Conductive fine particles.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絶縁性可撓性基材の少なくとも片面に、多
孔質絶縁性微粒子を混合した導電性ペーストにより所望
のパターンを形成し、少なくとも該パターンの接続端子
部分に絶縁性接着材層を設けてなることを特徴とする熱
圧着性接続部材。
1. A desired pattern is formed on at least one surface of an insulating flexible substrate with a conductive paste mixed with porous insulating fine particles, and an insulating adhesive layer is provided at least on the connection terminal portion of the pattern. A thermocompression-bonding connecting member characterized by being provided.
【請求項2】多孔質絶縁性微粒子がポリアミド樹脂より
なるものである請求項1に記載した熱圧着性接続部材。
2. The thermocompression bonding connecting member according to claim 1, wherein the porous insulating fine particles are made of a polyamide resin.
【請求項3】多孔質絶縁性微粒子の粒度分布の変動係数
が80%以内のものである請求項1または2に記載した熱
圧着性接続部材。
3. The thermocompression-bonding connecting member according to claim 1, wherein the coefficient of variation of the particle size distribution of the porous insulating fine particles is within 80%.
【請求項4】絶縁性可撓性基材の少なくとも片面に、粒
径(r)が式 (1/3)t≦r≦L(ここでtはパターンの厚さ、Lはス
クリーン開口部の一辺の長さ) で示されるものである多孔質絶縁性微粒子を混合した導
電性ペーストを、スクリーン印刷により所望のパターン
に形成する請求項1に記載の熱圧着性接続部材の製造方
法。
4. The particle size (r) of the formula (1/3) t ≦ r ≦ L on at least one surface of the insulating flexible substrate (where t is the thickness of the pattern, and L is the opening of the screen). 2. The method for producing a thermocompression-bondable connecting member according to claim 1, wherein the conductive paste mixed with the porous insulating fine particles having a length of one side is formed into a desired pattern by screen printing.
JP25580192A 1992-02-19 1992-08-31 Thermocompression bonding member and manufacturing method thereof Expired - Fee Related JPH0685336B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25580192A JPH0685336B2 (en) 1992-08-31 1992-08-31 Thermocompression bonding member and manufacturing method thereof
US08/017,638 US5371327A (en) 1992-02-19 1993-02-12 Heat-sealable connector sheet
TW082101033A TW210396B (en) 1992-02-19 1993-02-15
DE4304747A DE4304747C2 (en) 1992-02-19 1993-02-17 Heat-sealable electrical connection foil
KR1019930002268A KR970004764B1 (en) 1992-02-19 1993-02-18 Heat-Sealable Junction Plates
GB9303256A GB2265500B (en) 1992-02-19 1993-02-18 Heat-sealable connector sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25580192A JPH0685336B2 (en) 1992-08-31 1992-08-31 Thermocompression bonding member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0676877A JPH0676877A (en) 1994-03-18
JPH0685336B2 true JPH0685336B2 (en) 1994-10-26

Family

ID=17283827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25580192A Expired - Fee Related JPH0685336B2 (en) 1992-02-19 1992-08-31 Thermocompression bonding member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0685336B2 (en)

Also Published As

Publication number Publication date
JPH0676877A (en) 1994-03-18

Similar Documents

Publication Publication Date Title
US5371327A (en) Heat-sealable connector sheet
GB2152060A (en) Electrically conductive adhesive composition
JPH11134934A (en) Anisotropic conductive adhesive
JPS6174205A (en) Anisotropically electroconductive composition
JP4107769B2 (en) Conductivity imparting particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same
JPH0685336B2 (en) Thermocompression bonding member and manufacturing method thereof
JPH0757805A (en) Thermal pressure connection type connection member
JPH06318478A (en) Heat seal connector
JP2502900B2 (en) Heat seal connector and method for manufacturing the same
JPH0651337A (en) Connecting structure for electric circuit
JP2823799B2 (en) Anisotropic conductive adhesive
JP3914206B2 (en) Conductive fine particles and anisotropic conductive materials
JP2883511B2 (en) Thermocompression connection member
JP3192549B2 (en) Heat seal connector
JPH0869850A (en) Manufacture of thermocompression bonding connecting member
JP3169506B2 (en) Insulating adhesive composition for heat seal connector and method for producing the same
JPH08148251A (en) Manufacture of thermally pressure connected connection member
JP2001214149A (en) Anisotropic electrically conductive adhesive
JP4056772B2 (en) Manufacturing method of heat seal connector
JPH08335472A (en) Heat seal connector
JPH0793156B2 (en) Thermal adhesive flexible connecting member and connecting structure
JP3007145U (en) Flexible connector
JPH0799700B2 (en) Thermocompression bonding member and manufacturing method thereof
JPH0817100B2 (en) Heat seal connector
JPH0685333B2 (en) Heat seal connector and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees