JPH0682857A - Optical wavelength conversion element - Google Patents
Optical wavelength conversion elementInfo
- Publication number
- JPH0682857A JPH0682857A JP26063592A JP26063592A JPH0682857A JP H0682857 A JPH0682857 A JP H0682857A JP 26063592 A JP26063592 A JP 26063592A JP 26063592 A JP26063592 A JP 26063592A JP H0682857 A JPH0682857 A JP H0682857A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- wavelength conversion
- conversion element
- crystal
- cyclobutenedione
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 29
- 230000003287 optical effect Effects 0.000 title abstract description 31
- 239000013078 crystal Substances 0.000 claims abstract description 51
- RGBVWCQARBEPPW-UHFFFAOYSA-N cyclobut-3-ene-1,2-dione Chemical compound O=C1C=CC1=O RGBVWCQARBEPPW-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 3
- 238000002441 X-ray diffraction Methods 0.000 abstract description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002798 polar solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000005466 cherenkov radiation Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レーザー発振機能と基
本波をその1/2の波長の第2高調波に変換する機能を
持つ光波長変換素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength conversion device having a laser oscillating function and a function of converting a fundamental wave into a second harmonic having a half wavelength.
【0002】[0002]
【従来の技術】従来より、レーザー光を短波長変換する
試みがなされている。この様な光波長変換を行う光波長
変換素子として、具体的には、例えば、「光エレクトロ
ニクスの基礎」A.Yariv著、多田邦雄、神谷武志
訳(丸善(株))第200〜204頁に示されるような
バルク結晶を用いたものがよく知られている。これらの
結晶を用いる場合、複屈折を利用した角度を変化させる
位相整合方法が利用される。ところが、位相整合方法に
使用される光波長変換素子は、結晶の複屈折を利用して
位相整合条件を満たすようにするため、非線形性が大き
い材料でも複屈折性がないもの或いは小さいものは利用
できないという問題があった。上記の問題点を解決でき
る光波長変換素子として、例えば、O.Sugiur
a, et al,Extended Abstrac
ts, Physical Concepts of
Materials for Novel Optoe
lectronic Device Applicat
ions, SPIE, Vol. 1361, 59
9(1990)に示される3次元光導波路型の光波長変
換素子が知られている。この3次元光導波路を利用した
第2高調波の位相整合方法は、1)膜厚制御による基本
波と第2高調波のモード間の位相整合と、2)基本波の
導波モードと第2高調波の基板部への放射モードとの間
で行われる位相整合(チェレンコフ放射型位相整合)の
2種類がよく知られている。この2つの中で、1)は伝
搬長の2乗に比例した出力が得られるので有望である。2. Description of the Related Art Conventionally, attempts have been made to convert laser light into a short wavelength. Specific examples of the light wavelength conversion element for performing such light wavelength conversion include, for example, “Basics of Optoelectronics” A. The one using a bulk crystal as shown in Yariv, Kunio Tada, Takeshi Kamiya (Maruzen Co., Ltd.), pp. 200-204 is well known. When using these crystals, a phase matching method that changes the angle using birefringence is used. However, the optical wavelength conversion element used in the phase matching method uses the birefringence of the crystal so that the phase matching condition is satisfied. There was a problem that I could not. As an optical wavelength conversion element capable of solving the above problems, for example, O. Sugiur
a, et al, Extended Abstrac
ts, Physical Concepts of
Materials for Novel Optoe
electronic Device Applicat
ions, SPIE, Vol. 1361, 59
9 (1990), a three-dimensional optical waveguide type optical wavelength conversion element is known. The second harmonic phase matching method using this three-dimensional optical waveguide is as follows: 1) phase matching between the fundamental wave mode and the second harmonic mode by film thickness control; and 2) the fundamental wave guided mode and the second wave mode. Two types of phase matching (Cherenkov radiation type phase matching) performed between the harmonics and the radiation mode of the substrate are well known. Of these two, 1) is promising because an output proportional to the square of the propagation length can be obtained.
【0003】光波長変換素子を構成する結晶として、従
来リン酸チタン酸カリウム(KTP=KTiOPO4 )
やニオブ酸リチウム(LN=LiNbO3 )等の無機非
線形光学結晶が知られている。ところで、変換効率は、
材料の持つ非線形光学定数の2乗に比例して高い値とな
るために、無機非線形光学材料よりも非線形が大きく、
応答速度が速い有機非線形光学材料に関して、近年研究
が盛んになされている。有機分子は分子1個で分極構造
を取るため、非中心対称の結晶を育成することにより、
非線形光学結晶として使用することができる。本発明者
等は、既に粉末法によりシクロブテンジオン誘導体分子
が高い非線形効果を持つことを報告してきた(特開平2
−333172号、同2−333173号、同2−33
3174号、2−333175号公報)。また、X線解
析の結果、下記化学構造式(I)Conventionally, potassium phosphate titanate (KTP = KTiOPO 4 ) has been used as a crystal constituting an optical wavelength conversion element.
Inorganic nonlinear optical crystals such as lithium niobate (LN = LiNbO 3 ) are known. By the way, the conversion efficiency is
Since the value becomes high in proportion to the square of the nonlinear optical constant of the material, the nonlinearity is larger than that of the inorganic nonlinear optical material,
In recent years, much research has been done on organic nonlinear optical materials having a fast response speed. Since an organic molecule has a polarization structure with one molecule, by growing a non-centrosymmetric crystal,
It can be used as a nonlinear optical crystal. The present inventors have already reported that the cyclobutenedione derivative molecule has a high non-linear effect by the powder method (Japanese Patent Laid-Open No. Hei 2).
-333172, 2-333173, 2-33
Nos. 3174 and 2-333175). In addition, as a result of X-ray analysis, the following chemical structural formula (I)
【0004】[0004]
【化2】 (式中、*は不整炭素原子を意味する。)で示されるシ
クロブテンジオン結晶が三斜晶系、空間群P1、分子が
完全に一次元に並んだ結晶であることが解明されている
(L.S.Pu,ln“Materials for
Nonlinear Optics”:Chemica
lPerspectives; S.Marder,
J.Sohn and G.Stucky Rd.;
ACS Symposium Series No.4
55; American Chemical Soc
iety: Washington DC,p331〜
342(1991), L.S.Pu, J.Che
m.Comm.,429(1991))。[Chemical 2] It has been clarified that the cyclobutenedione crystal represented by the formula (* means an asymmetric carbon atom) is a triclinic system, a space group P1, and a molecule in which molecules are perfectly arranged one-dimensionally ( L.S. Pu, In “Materials for
Nonlinear Optics ": Chemica
S. I. Perspectives; Marder,
J. Sohn and G.M. Stacky Rd. ;
ACS Symposium Series No. Four
55; American Chemical Soc
iety: Washington DC, p331-
342 (1991), L.S. S. Pu, J .; Che
m. Comm. , 429 (1991)).
【0005】[0005]
【発明が解決しようとする課題】これまで、報告されて
いる有機単結晶は、上記したように無機単結晶よりも高
い非線形光学定数(d定数)を持つが、100pm/V
以上の非線形光学定数を持つ単結晶は余り知られていな
い。上記一般式(I)で示されるシクロブテンジオン誘
導体についても、高い非線形効果を持つことは知られて
いるが、未だ光波長変換素子として使用することは知ら
れていない。本発明は、従来の技術における上記のよう
な実状の下になされたものである。すなわち、本発明の
目的は、シクロブテンジオン誘導体の単結晶を用いた新
規な光波長変換素子を提供することにある。The organic single crystal reported so far has a nonlinear optical constant (d constant) higher than that of the inorganic single crystal as described above, but it is 100 pm / V.
Single crystals having the above nonlinear optical constants are not well known. The cyclobutenedione derivative represented by the general formula (I) is also known to have a high nonlinear effect, but it is not yet known to be used as an optical wavelength conversion element. The present invention has been made under the above circumstances in the conventional art. That is, an object of the present invention is to provide a novel optical wavelength conversion element using a single crystal of cyclobutenedione derivative.
【0006】[0006]
【課題を解決するための手段】本発明者等は、検討の結
果、シクロブテンジオン誘導体について、極性溶媒を使
用して特定の条件下で結晶成長を行うことにより、大き
なサイズの単結晶が得ることに成功し、本発明を完成す
るに至った。本発明の光波長変換素子は、上記構造式
(I)で示されるシクロブテンジオン誘導体の単結晶を
用いたことを特徴とする。Means for Solving the Problems As a result of investigations by the present inventors, a large-sized single crystal was obtained by growing crystals of a cyclobutenedione derivative under a specific condition using a polar solvent. This has led to the completion of the present invention. The light wavelength conversion element of the present invention is characterized by using a single crystal of the cyclobutenedione derivative represented by the structural formula (I).
【0007】以下、本発明を詳細に説明する。本発明に
おいて使用するシクロブテンジオン誘導体の単結晶は、
上記構造式(I)で示されるシクロブテンジオン誘導体
を極性溶媒中に溶解し、雰囲気温度10〜40℃の範囲
において、温度変動幅を±1℃以内に保ちながら、1分
間に0.1〜100mm3 の蒸発速度で溶媒を蒸発させ
ることによって製造することができる。極性溶媒として
は、液温10〜40℃の範囲において上記シクロブテン
ジオン誘導体を溶解するものが使用でき、具体的には、
アセトン、メタノール、エタノール等があげられるが、
メタノールが特に好ましい。本発明において、結晶の成
長は、特に、雰囲気温度10〜25℃の範囲において、
温度変動幅を±0.5℃以内に保ちながら、1分間に3
〜10mm3 の蒸発速度で行うのが好ましい。The present invention will be described in detail below. The single crystal of the cyclobutenedione derivative used in the present invention is
The cyclobutenedione derivative represented by the above structural formula (I) is dissolved in a polar solvent, and within a range of an ambient temperature of 10 to 40 ° C., the temperature fluctuation range is kept within ± 1 ° C. and the amount is 0.1 to 1 minute. It can be produced by evaporating the solvent at an evaporation rate of 100 mm 3 . As the polar solvent, those that dissolve the cyclobutenedione derivative in the liquid temperature range of 10 to 40 ° C. can be used, and specifically,
Acetone, methanol, ethanol, etc. can be mentioned,
Methanol is particularly preferred. In the present invention, the crystal growth is performed especially at an ambient temperature of 10 to 25 ° C.
Keeping the temperature fluctuation range within ± 0.5 ° C, 3 in 1 minute
It is preferable to carry out at an evaporation rate of -10 mm 3 .
【0008】[0008]
【作用】上記のようにして製造されたシクロブテンジオ
ン誘導体の単結晶は、通常、1〜30mm3 の大きさを
有するものであり、そのd定数(d33)は約400pm
/V程度の値を有し、高い非線形光学定数を持ってい
る。また、X線解析によれば、この単結晶は、3斜晶系
で空間群がP1であり、分子が平行に並んだ結晶である
ことが確認される。この単結晶は、屈折率によりタイプ
IとタイプIIの角度位相整合が可能であり、そして、こ
の単結晶を位相整合方向にカットするとバルクの状態で
光波長変換素子を組み立てることができる。したがっ
て、この単結晶は、3斜晶系で空間群がP1であり、分
子が平行に並んだ結晶であるため、導波路として用いる
ことができ、d33を十分に利用した光波長変換素子とし
て高い変換効率を示す。The single crystal of the cyclobutenedione derivative produced as described above usually has a size of 1 to 30 mm 3 , and its d constant (d 33 ) is about 400 pm.
It has a value of about / V and a high nonlinear optical constant. Further, according to X-ray analysis, it is confirmed that this single crystal is a triclinic system, a space group is P1, and molecules are arranged in parallel. This single crystal is capable of type I and type II angular phase matching due to the refractive index, and when this single crystal is cut in the phase matching direction, the optical wavelength conversion element can be assembled in a bulk state. Therefore, this single crystal can be used as a waveguide because it is a crystal in which the space group is P1 in the triclinic system and the molecules are arranged in parallel, and it can be used as an optical wavelength conversion element that sufficiently utilizes d 33. Shows high conversion efficiency.
【0009】[0009]
実施例1 前記式(I)で示されるシクロブテンジオン誘導体(D
AD)のメタノール溶液を用い、22℃で温度変動幅を
±0.1℃以内に保った室内で、溶媒の蒸発速度を所定
の値に設定し、三角フラスコの中で種結晶を育成させ
た。その結果、3〜5mm3 /minの蒸発速度のと
き、0.5〜1mm角の形のよい結晶を得ることができ
た。その後、DADの飽和メタノール溶液を三角フラス
コに入れ、その三角フラスコを温度が一定に保たれた囲
いの中に入れた。そして、この三角フラスコの中に上記
のようにして得られた種結晶を入れ、22℃の温度で、
温度変動幅を±0.1℃以内に保って、3〜5mm3 /
minの蒸発速度で育成させた。その結果、最大で1×
4×4mm3 の大きさのDAD結晶を得ることができ
た。ジオキサンを溶媒として、ソルバトクロミック法で
測定したDADの超分子分極率(β)は171×10
-30 esuであるため、DADのd定数はかなり高い値
であることが予想される。Example 1 A cyclobutenedione derivative represented by the above formula (I) (D
Using a methanol solution of (AD), the evaporation rate of the solvent was set to a predetermined value in a room in which the temperature fluctuation range was kept within ± 0.1 ° C at 22 ° C, and seed crystals were grown in an Erlenmeyer flask. . As a result, when the evaporation rate was 3 to 5 mm 3 / min, it was possible to obtain a crystal with a good shape of 0.5 to 1 mm square. Then, a saturated methanol solution of DAD was placed in an Erlenmeyer flask, and the Erlenmeyer flask was placed in an enclosure in which the temperature was kept constant. Then, the seed crystal obtained as described above was put into this Erlenmeyer flask, and at a temperature of 22 ° C.,
Keeping the temperature fluctuation range within ± 0.1 ° C, 3-5 mm 3 /
It was grown at an evaporation rate of min. As a result, up to 1x
A DAD crystal having a size of 4 × 4 mm 3 could be obtained. The supramolecular polarizability (β) of DAD measured by the solvatochromic method using dioxane is 171 × 10 7.
Since it is -30 esu, the d constant of DAD is expected to be a considerably high value.
【0010】得られた単結晶を、Maker frin
ge法で非線形光学定数d33を測定した結果、約200
pm/Vという高い値が得られた。また、散乱による補
正を加えると、400pm/V近い値が得られた。屈折
率から位相整合曲線を求めたところ、図1に示す結果が
得られた。この単結晶を図2に示すように位相整合角度
に合わせて、Nd3+:YAGレーザー(λ=1064n
m)を基本波光源として用いたところ、第2高調波(λ
=532nm)が高い変換効率で得られた。その結果を
図3に示す。なお、図2において、1は単結晶の結晶軸
X、YおよびZ向への移動およびθおよびψの回転を可
能にするコニオンメーターヘッドであって、シクロブテ
ンジオン誘導体単結晶2が載置されている。このシクロ
ブテンジオン誘導体単結晶2を回転し、所定の位置
(θ、ψ)に基本波3が投射されると、第2高調波4と
して取り出される。このようにして光波長変換素子を得
ることができる。The single crystal thus obtained was subjected to Maker frin.
As a result of measuring the nonlinear optical constant d 33 by the ge method, about 200
A high value of pm / V was obtained. In addition, a value close to 400 pm / V was obtained when the correction by scattering was added. When the phase matching curve was obtained from the refractive index, the results shown in FIG. 1 were obtained. This single crystal is adjusted to the phase matching angle as shown in FIG. 2 and the Nd 3+ : YAG laser (λ = 1064n
m) as the fundamental wave light source, the second harmonic (λ
= 532 nm) was obtained with high conversion efficiency. The result is shown in FIG. In FIG. 2, reference numeral 1 is a conion meter head that enables movement of the single crystal in the X, Y and Z directions and rotation of θ and ψ, on which the cyclobutenedione derivative single crystal 2 is mounted. Has been done. When this cyclobutenedione derivative single crystal 2 is rotated and the fundamental wave 3 is projected at a predetermined position (θ, ψ), it is extracted as the second harmonic wave 4. In this way, the light wavelength conversion element can be obtained.
【0011】図4は、本発明の応用例であって、半導体
レーザー励起の緑色レーザーを示したものである。図4
において、5は波長810nm発振の半導体レーザー
(SONY:SLD304V)、6はf=4.5mmの
コリメーティングレンズ、7はf=80mmのシリンド
リカルレンズ、8はf=14.5mmのフォーカシング
レンズ、9は半導体レーザー5側に波長1060nmお
よび波長530nmの光に対して高反射でかつ波長81
0nmの光に対して無反射であるコート(例えば誘電体
多層膜)が施されたNd:YVO4 結晶、10は半導体
レーザー5と反対側の面に、波長1060nmの光に対
して高反射でかつ波長530nmの光に対して無反射で
あるコートが施された出力ミラーである。FIG. 4 shows an application example of the present invention, showing a green laser excited by a semiconductor laser. Figure 4
In the figure, 5 is a semiconductor laser (SONY: SLD304V) having an oscillation wavelength of 810 nm, 6 is a collimating lens of f = 4.5 mm, 7 is a cylindrical lens of f = 80 mm, 8 is a focusing lens of f = 14.5 mm, and 9 Is highly reflective to the semiconductor laser 5 side with respect to light having a wavelength of 1060 nm and 530 nm, and has a wavelength of 81
A Nd: YVO 4 crystal 10 coated with a coating (for example, a dielectric multilayer film) that is non-reflective with respect to 0 nm light is highly reflective for light with a wavelength of 1060 nm on the surface opposite to the semiconductor laser 5. In addition, the output mirror is provided with a coating that is non-reflective with respect to light having a wavelength of 530 nm.
【0012】半導体レーザー5から発せられた波長81
0nmの単色光(励起光)は、コリメーティングレンズ
6、シリンドリカルレンズ7およびフォーカシングレン
ズ8の光学系により集光され、Nd:YVO4 結晶9に
投射される。Nd:YVO4結晶9と出力ミラー10と
は、キャビティ形成しており、Nd:YVO4 結晶9側
から投射された励起光によって、キャビティ内には波長
1060nmの基本波が発生する。キャビティ内に配置
され、位相整合角度にカットされたシクロブテンジオン
誘導体単結晶2は、波長1060nmの基本波により、
波長530nmの第2高調波を発生する。この第2高調
波は、出力ミラー10側から取り出すことができる。The wavelength 81 emitted from the semiconductor laser 5
The monochromatic light (excitation light) of 0 nm is condensed by the optical system of the collimating lens 6, the cylindrical lens 7 and the focusing lens 8 and projected onto the Nd: YVO 4 crystal 9. The Nd: YVO 4 crystal 9 and the output mirror 10 form a cavity, and the excitation light projected from the Nd: YVO 4 crystal 9 side generates a fundamental wave having a wavelength of 1060 nm in the cavity. The cyclobutenedione derivative single crystal 2 placed in the cavity and cut to the phase matching angle is
A second harmonic wave having a wavelength of 530 nm is generated. This second harmonic can be extracted from the output mirror 10 side.
【0013】このように、本発明の応用例によれば、半
導体レーザー励起の緑色レーザーを提供することができ
る。なお、Nd:YVO4 結晶の代わりにNd3+:YA
G結晶を用いても同様な(ただし、第2高調波はは長5
32nm)半導体レーザー励起の緑色レーザーを提供す
ることができる。As described above, according to the application example of the present invention, a green laser excited by a semiconductor laser can be provided. It should be noted that instead of the Nd: YVO 4 crystal, Nd 3+ : YA
The same is true with a G crystal (however, the second harmonic is long 5
(32 nm) A green laser excited by a semiconductor laser can be provided.
【0014】[0014]
【発明の効果】本発明のシクロブテンジオン誘導体単結
晶を用いた光波長変換素子は、高い変換効率を示し、例
えば、精密走査を行う光走査記録装置や、光走査読取り
装置等に使用することができる。The optical wavelength conversion element using the cyclobutenedione derivative single crystal of the present invention exhibits a high conversion efficiency, and is used in, for example, an optical scanning recording device for performing precision scanning, an optical scanning reading device, and the like. You can
【図1】 本発明の光波長変換素子の位相整合曲線を示
すグラフ。FIG. 1 is a graph showing a phase matching curve of an optical wavelength conversion device of the present invention.
【図2】 本発明の光波長変換素子を載置した状態を示
す図。FIG. 2 is a diagram showing a state in which an optical wavelength conversion element of the present invention is placed.
【図3】 本発明の光波長変換素子による位相整合のチ
ューニング曲線を示すグラフ。FIG. 3 is a graph showing a tuning curve for phase matching by the optical wavelength conversion element of the present invention.
【図4】 本発明の応用例を示すものであって、半導体
レーザー励起の緑色レーザー装置の概略構成図。FIG. 4 is a schematic configuration diagram of a semiconductor laser-excited green laser device, showing an application example of the present invention.
1…コニオンメーターヘッド、2…光波長変換素子、3
…基本波、4…第2高調波、5…は長810nm発振の
半導体レーザー、6…f=4.5mmのコリメーティン
グレンズ、7…f=80mmのシリンドリカルレンズ、
8…f=14.5mmのフォーカシングレンズ、9…N
d:YVO4 結晶、10…出力ミラー。1 ... Conion meter head, 2 ... Optical wavelength conversion element, 3
... fundamental wave, 4 ... second harmonic, 5 ... semiconductor laser of 810 nm oscillation, 6 ... f = 4.5 mm collimating lens, 7 ... f = 80 mm cylindrical lens,
8 ... f = 14.5 mm focusing lens, 9 ... N
d: YVO 4 crystal, 10 ... Output mirror.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 敬介 東京都江戸川区南篠崎町五丁目4番9号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keisuke Sasaki 5-4-9 Minamishinozaki-cho, Edogawa-ku, Tokyo
Claims (1)
クロブテンジオン誘導体の単結晶を用いたことを特徴と
する光波長変換素子。1. The following structural formula (I): (In the formula, * means an asymmetric carbon atom.) A light wavelength conversion element characterized by using a single crystal of a cyclobutenedione derivative.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26063592A JPH0682857A (en) | 1992-09-04 | 1992-09-04 | Optical wavelength conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26063592A JPH0682857A (en) | 1992-09-04 | 1992-09-04 | Optical wavelength conversion element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0682857A true JPH0682857A (en) | 1994-03-25 |
Family
ID=17350661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26063592A Pending JPH0682857A (en) | 1992-09-04 | 1992-09-04 | Optical wavelength conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0682857A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5616802A (en) * | 1994-10-19 | 1997-04-01 | Fuji Xerox Co., Ltd. | Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element |
US5659085A (en) * | 1994-05-20 | 1997-08-19 | Fuji Xerox Co., Ltd. | Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element |
US5811552A (en) * | 1994-05-20 | 1998-09-22 | Fuji Xerox Co., Ltd. | Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element |
-
1992
- 1992-09-04 JP JP26063592A patent/JPH0682857A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5659085A (en) * | 1994-05-20 | 1997-08-19 | Fuji Xerox Co., Ltd. | Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element |
US5811552A (en) * | 1994-05-20 | 1998-09-22 | Fuji Xerox Co., Ltd. | Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element |
US5872256A (en) * | 1994-05-20 | 1999-02-16 | Fuji Xerox Co., Ltd. | Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element |
US5616802A (en) * | 1994-10-19 | 1997-04-01 | Fuji Xerox Co., Ltd. | Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4199698A (en) | 2-Methyl-4-nitro-aniline nonlinear optical devices | |
EP0767396B1 (en) | Optical converting method and converter device using the single-crystal lithium tetraborate, and optical apparatus using the optical converter device | |
JPH0758378B2 (en) | Non-linear optical device | |
US3965375A (en) | Lithium perchlorate trihydrate nonlinear devices | |
Hewig et al. | Frequency doubling in an organic waveguide | |
Rosker et al. | Salt-based approach for frequency conversion materials | |
US5130844A (en) | Optical wavelength converter system | |
JPH0682857A (en) | Optical wavelength conversion element | |
US5229038A (en) | Organic nonlinear optical material and method of converting the wavelength of light using said material | |
JPH08504966A (en) | Doped KTP with high birefringence suitable for type-II phase matching and similar forms thereof | |
US3982136A (en) | Ternary ferroelectric fluoride nonlinear devices | |
JP2972375B2 (en) | Wavelength conversion by quasi-phase matching and production and use of optical articles therefor | |
JP3368753B2 (en) | Wavelength conversion method | |
JPS6366543A (en) | Optical recording method | |
Yamamoto et al. | Linear and nonlinear optical properties of a new organic crystal, N-(4-aminobenzenesulfonyl) acetamide | |
US4985178A (en) | Nonlinear optical device from 3-methyl-4-methoxy-4'-nitrostilbene | |
US5397508A (en) | 2-amino-5-nitropyridinium salts usable in non-linear optics and in electroptics and a process for preparing the same | |
JP2003114454A (en) | Wavelength conversion element and wavelength conversion method and laser apparatus | |
JP3084964B2 (en) | Method for producing cyclobutenedione derivative crystals | |
JPH0354117A (en) | Potassium-lithium niobate crystal and preparation thereof | |
Sutter et al. | Linear and nonlinear optical properties of 2-(N-prolinol)-5-nitropyridine (pnp | |
JPH06306027A (en) | Cyclobutenedionyl derivative crystal and production thereof | |
JPH07181531A (en) | Molecular crystal and wavelength conversion device using the same | |
JP2660576B2 (en) | Laser diode pumped solid state laser | |
JP2724641B2 (en) | Molecular crystal and method of converting light wavelength using the same |