[go: up one dir, main page]

JPH0682857A - Optical wavelength conversion element - Google Patents

Optical wavelength conversion element

Info

Publication number
JPH0682857A
JPH0682857A JP26063592A JP26063592A JPH0682857A JP H0682857 A JPH0682857 A JP H0682857A JP 26063592 A JP26063592 A JP 26063592A JP 26063592 A JP26063592 A JP 26063592A JP H0682857 A JPH0682857 A JP H0682857A
Authority
JP
Japan
Prior art keywords
single crystal
wavelength conversion
conversion element
crystal
cyclobutenedione
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26063592A
Other languages
Japanese (ja)
Inventor
Takao Tomono
孝夫 友野
Ryujun Fu
龍淳 夫
Keisuke Sasaki
敬介 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP26063592A priority Critical patent/JPH0682857A/en
Publication of JPH0682857A publication Critical patent/JPH0682857A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the optical wavelength conversion element having high conversion efficiency by using the single crystal of a specific cyclobutenedione deriv. CONSTITUTION:The single crystal of the cyclobutenedione deriv. expressed by formula is used. In the formula, * denotes an asymmetric carbon atom. The single crystal of the cyclobutenedione deriv. usually has 1 to 30mm<3> sizes. The d constant (d33) thereof has about 400pm/V value and has a high nonlinear optical constant. This single crystal is confirmed to be a triclinic crystal system and is the crystal in which the space groups are P1 and molecules line up in parallel according to an X-ray analysis. The angle phase matching of a type I and type II is possible with this single crystal by refractive indices and the assembling of the wavelength conversion element in a bulk state is possible when such single crystal is cut in the phase production direction. The use of the single crystal as a waveguide is possible as well and the wavelength conversion element exhibits high conversion efficiency for which d33 is sufficiently utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー発振機能と基
本波をその1/2の波長の第2高調波に変換する機能を
持つ光波長変換素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength conversion device having a laser oscillating function and a function of converting a fundamental wave into a second harmonic having a half wavelength.

【0002】[0002]

【従来の技術】従来より、レーザー光を短波長変換する
試みがなされている。この様な光波長変換を行う光波長
変換素子として、具体的には、例えば、「光エレクトロ
ニクスの基礎」A.Yariv著、多田邦雄、神谷武志
訳(丸善(株))第200〜204頁に示されるような
バルク結晶を用いたものがよく知られている。これらの
結晶を用いる場合、複屈折を利用した角度を変化させる
位相整合方法が利用される。ところが、位相整合方法に
使用される光波長変換素子は、結晶の複屈折を利用して
位相整合条件を満たすようにするため、非線形性が大き
い材料でも複屈折性がないもの或いは小さいものは利用
できないという問題があった。上記の問題点を解決でき
る光波長変換素子として、例えば、O.Sugiur
a, et al,Extended Abstrac
ts, Physical Concepts of
Materials for Novel Optoe
lectronic Device Applicat
ions, SPIE, Vol. 1361, 59
9(1990)に示される3次元光導波路型の光波長変
換素子が知られている。この3次元光導波路を利用した
第2高調波の位相整合方法は、1)膜厚制御による基本
波と第2高調波のモード間の位相整合と、2)基本波の
導波モードと第2高調波の基板部への放射モードとの間
で行われる位相整合(チェレンコフ放射型位相整合)の
2種類がよく知られている。この2つの中で、1)は伝
搬長の2乗に比例した出力が得られるので有望である。
2. Description of the Related Art Conventionally, attempts have been made to convert laser light into a short wavelength. Specific examples of the light wavelength conversion element for performing such light wavelength conversion include, for example, “Basics of Optoelectronics” A. The one using a bulk crystal as shown in Yariv, Kunio Tada, Takeshi Kamiya (Maruzen Co., Ltd.), pp. 200-204 is well known. When using these crystals, a phase matching method that changes the angle using birefringence is used. However, the optical wavelength conversion element used in the phase matching method uses the birefringence of the crystal so that the phase matching condition is satisfied. There was a problem that I could not. As an optical wavelength conversion element capable of solving the above problems, for example, O. Sugiur
a, et al, Extended Abstrac
ts, Physical Concepts of
Materials for Novel Optoe
electronic Device Applicat
ions, SPIE, Vol. 1361, 59
9 (1990), a three-dimensional optical waveguide type optical wavelength conversion element is known. The second harmonic phase matching method using this three-dimensional optical waveguide is as follows: 1) phase matching between the fundamental wave mode and the second harmonic mode by film thickness control; and 2) the fundamental wave guided mode and the second wave mode. Two types of phase matching (Cherenkov radiation type phase matching) performed between the harmonics and the radiation mode of the substrate are well known. Of these two, 1) is promising because an output proportional to the square of the propagation length can be obtained.

【0003】光波長変換素子を構成する結晶として、従
来リン酸チタン酸カリウム(KTP=KTiOPO4
やニオブ酸リチウム(LN=LiNbO3 )等の無機非
線形光学結晶が知られている。ところで、変換効率は、
材料の持つ非線形光学定数の2乗に比例して高い値とな
るために、無機非線形光学材料よりも非線形が大きく、
応答速度が速い有機非線形光学材料に関して、近年研究
が盛んになされている。有機分子は分子1個で分極構造
を取るため、非中心対称の結晶を育成することにより、
非線形光学結晶として使用することができる。本発明者
等は、既に粉末法によりシクロブテンジオン誘導体分子
が高い非線形効果を持つことを報告してきた(特開平2
−333172号、同2−333173号、同2−33
3174号、2−333175号公報)。また、X線解
析の結果、下記化学構造式(I)
Conventionally, potassium phosphate titanate (KTP = KTiOPO 4 ) has been used as a crystal constituting an optical wavelength conversion element.
Inorganic nonlinear optical crystals such as lithium niobate (LN = LiNbO 3 ) are known. By the way, the conversion efficiency is
Since the value becomes high in proportion to the square of the nonlinear optical constant of the material, the nonlinearity is larger than that of the inorganic nonlinear optical material,
In recent years, much research has been done on organic nonlinear optical materials having a fast response speed. Since an organic molecule has a polarization structure with one molecule, by growing a non-centrosymmetric crystal,
It can be used as a nonlinear optical crystal. The present inventors have already reported that the cyclobutenedione derivative molecule has a high non-linear effect by the powder method (Japanese Patent Laid-Open No. Hei 2).
-333172, 2-333173, 2-33
Nos. 3174 and 2-333175). In addition, as a result of X-ray analysis, the following chemical structural formula (I)

【0004】[0004]

【化2】 (式中、*は不整炭素原子を意味する。)で示されるシ
クロブテンジオン結晶が三斜晶系、空間群P1、分子が
完全に一次元に並んだ結晶であることが解明されている
(L.S.Pu,ln“Materials for
Nonlinear Optics”:Chemica
lPerspectives; S.Marder,
J.Sohn and G.Stucky Rd.;
ACS Symposium Series No.4
55; American Chemical Soc
iety: Washington DC,p331〜
342(1991), L.S.Pu, J.Che
m.Comm.,429(1991))。
[Chemical 2] It has been clarified that the cyclobutenedione crystal represented by the formula (* means an asymmetric carbon atom) is a triclinic system, a space group P1, and a molecule in which molecules are perfectly arranged one-dimensionally ( L.S. Pu, In “Materials for
Nonlinear Optics ": Chemica
S. I. Perspectives; Marder,
J. Sohn and G.M. Stacky Rd. ;
ACS Symposium Series No. Four
55; American Chemical Soc
iety: Washington DC, p331-
342 (1991), L.S. S. Pu, J .; Che
m. Comm. , 429 (1991)).

【0005】[0005]

【発明が解決しようとする課題】これまで、報告されて
いる有機単結晶は、上記したように無機単結晶よりも高
い非線形光学定数(d定数)を持つが、100pm/V
以上の非線形光学定数を持つ単結晶は余り知られていな
い。上記一般式(I)で示されるシクロブテンジオン誘
導体についても、高い非線形効果を持つことは知られて
いるが、未だ光波長変換素子として使用することは知ら
れていない。本発明は、従来の技術における上記のよう
な実状の下になされたものである。すなわち、本発明の
目的は、シクロブテンジオン誘導体の単結晶を用いた新
規な光波長変換素子を提供することにある。
The organic single crystal reported so far has a nonlinear optical constant (d constant) higher than that of the inorganic single crystal as described above, but it is 100 pm / V.
Single crystals having the above nonlinear optical constants are not well known. The cyclobutenedione derivative represented by the general formula (I) is also known to have a high nonlinear effect, but it is not yet known to be used as an optical wavelength conversion element. The present invention has been made under the above circumstances in the conventional art. That is, an object of the present invention is to provide a novel optical wavelength conversion element using a single crystal of cyclobutenedione derivative.

【0006】[0006]

【課題を解決するための手段】本発明者等は、検討の結
果、シクロブテンジオン誘導体について、極性溶媒を使
用して特定の条件下で結晶成長を行うことにより、大き
なサイズの単結晶が得ることに成功し、本発明を完成す
るに至った。本発明の光波長変換素子は、上記構造式
(I)で示されるシクロブテンジオン誘導体の単結晶を
用いたことを特徴とする。
Means for Solving the Problems As a result of investigations by the present inventors, a large-sized single crystal was obtained by growing crystals of a cyclobutenedione derivative under a specific condition using a polar solvent. This has led to the completion of the present invention. The light wavelength conversion element of the present invention is characterized by using a single crystal of the cyclobutenedione derivative represented by the structural formula (I).

【0007】以下、本発明を詳細に説明する。本発明に
おいて使用するシクロブテンジオン誘導体の単結晶は、
上記構造式(I)で示されるシクロブテンジオン誘導体
を極性溶媒中に溶解し、雰囲気温度10〜40℃の範囲
において、温度変動幅を±1℃以内に保ちながら、1分
間に0.1〜100mm3 の蒸発速度で溶媒を蒸発させ
ることによって製造することができる。極性溶媒として
は、液温10〜40℃の範囲において上記シクロブテン
ジオン誘導体を溶解するものが使用でき、具体的には、
アセトン、メタノール、エタノール等があげられるが、
メタノールが特に好ましい。本発明において、結晶の成
長は、特に、雰囲気温度10〜25℃の範囲において、
温度変動幅を±0.5℃以内に保ちながら、1分間に3
〜10mm3 の蒸発速度で行うのが好ましい。
The present invention will be described in detail below. The single crystal of the cyclobutenedione derivative used in the present invention is
The cyclobutenedione derivative represented by the above structural formula (I) is dissolved in a polar solvent, and within a range of an ambient temperature of 10 to 40 ° C., the temperature fluctuation range is kept within ± 1 ° C. and the amount is 0.1 to 1 minute. It can be produced by evaporating the solvent at an evaporation rate of 100 mm 3 . As the polar solvent, those that dissolve the cyclobutenedione derivative in the liquid temperature range of 10 to 40 ° C. can be used, and specifically,
Acetone, methanol, ethanol, etc. can be mentioned,
Methanol is particularly preferred. In the present invention, the crystal growth is performed especially at an ambient temperature of 10 to 25 ° C.
Keeping the temperature fluctuation range within ± 0.5 ° C, 3 in 1 minute
It is preferable to carry out at an evaporation rate of -10 mm 3 .

【0008】[0008]

【作用】上記のようにして製造されたシクロブテンジオ
ン誘導体の単結晶は、通常、1〜30mm3 の大きさを
有するものであり、そのd定数(d33)は約400pm
/V程度の値を有し、高い非線形光学定数を持ってい
る。また、X線解析によれば、この単結晶は、3斜晶系
で空間群がP1であり、分子が平行に並んだ結晶である
ことが確認される。この単結晶は、屈折率によりタイプ
IとタイプIIの角度位相整合が可能であり、そして、こ
の単結晶を位相整合方向にカットするとバルクの状態で
光波長変換素子を組み立てることができる。したがっ
て、この単結晶は、3斜晶系で空間群がP1であり、分
子が平行に並んだ結晶であるため、導波路として用いる
ことができ、d33を十分に利用した光波長変換素子とし
て高い変換効率を示す。
The single crystal of the cyclobutenedione derivative produced as described above usually has a size of 1 to 30 mm 3 , and its d constant (d 33 ) is about 400 pm.
It has a value of about / V and a high nonlinear optical constant. Further, according to X-ray analysis, it is confirmed that this single crystal is a triclinic system, a space group is P1, and molecules are arranged in parallel. This single crystal is capable of type I and type II angular phase matching due to the refractive index, and when this single crystal is cut in the phase matching direction, the optical wavelength conversion element can be assembled in a bulk state. Therefore, this single crystal can be used as a waveguide because it is a crystal in which the space group is P1 in the triclinic system and the molecules are arranged in parallel, and it can be used as an optical wavelength conversion element that sufficiently utilizes d 33. Shows high conversion efficiency.

【0009】[0009]

【実施例】【Example】

実施例1 前記式(I)で示されるシクロブテンジオン誘導体(D
AD)のメタノール溶液を用い、22℃で温度変動幅を
±0.1℃以内に保った室内で、溶媒の蒸発速度を所定
の値に設定し、三角フラスコの中で種結晶を育成させ
た。その結果、3〜5mm3 /minの蒸発速度のと
き、0.5〜1mm角の形のよい結晶を得ることができ
た。その後、DADの飽和メタノール溶液を三角フラス
コに入れ、その三角フラスコを温度が一定に保たれた囲
いの中に入れた。そして、この三角フラスコの中に上記
のようにして得られた種結晶を入れ、22℃の温度で、
温度変動幅を±0.1℃以内に保って、3〜5mm3
minの蒸発速度で育成させた。その結果、最大で1×
4×4mm3 の大きさのDAD結晶を得ることができ
た。ジオキサンを溶媒として、ソルバトクロミック法で
測定したDADの超分子分極率(β)は171×10
-30 esuであるため、DADのd定数はかなり高い値
であることが予想される。
Example 1 A cyclobutenedione derivative represented by the above formula (I) (D
Using a methanol solution of (AD), the evaporation rate of the solvent was set to a predetermined value in a room in which the temperature fluctuation range was kept within ± 0.1 ° C at 22 ° C, and seed crystals were grown in an Erlenmeyer flask. . As a result, when the evaporation rate was 3 to 5 mm 3 / min, it was possible to obtain a crystal with a good shape of 0.5 to 1 mm square. Then, a saturated methanol solution of DAD was placed in an Erlenmeyer flask, and the Erlenmeyer flask was placed in an enclosure in which the temperature was kept constant. Then, the seed crystal obtained as described above was put into this Erlenmeyer flask, and at a temperature of 22 ° C.,
Keeping the temperature fluctuation range within ± 0.1 ° C, 3-5 mm 3 /
It was grown at an evaporation rate of min. As a result, up to 1x
A DAD crystal having a size of 4 × 4 mm 3 could be obtained. The supramolecular polarizability (β) of DAD measured by the solvatochromic method using dioxane is 171 × 10 7.
Since it is -30 esu, the d constant of DAD is expected to be a considerably high value.

【0010】得られた単結晶を、Maker frin
ge法で非線形光学定数d33を測定した結果、約200
pm/Vという高い値が得られた。また、散乱による補
正を加えると、400pm/V近い値が得られた。屈折
率から位相整合曲線を求めたところ、図1に示す結果が
得られた。この単結晶を図2に示すように位相整合角度
に合わせて、Nd3+:YAGレーザー(λ=1064n
m)を基本波光源として用いたところ、第2高調波(λ
=532nm)が高い変換効率で得られた。その結果を
図3に示す。なお、図2において、1は単結晶の結晶軸
X、YおよびZ向への移動およびθおよびψの回転を可
能にするコニオンメーターヘッドであって、シクロブテ
ンジオン誘導体単結晶2が載置されている。このシクロ
ブテンジオン誘導体単結晶2を回転し、所定の位置
(θ、ψ)に基本波3が投射されると、第2高調波4と
して取り出される。このようにして光波長変換素子を得
ることができる。
The single crystal thus obtained was subjected to Maker frin.
As a result of measuring the nonlinear optical constant d 33 by the ge method, about 200
A high value of pm / V was obtained. In addition, a value close to 400 pm / V was obtained when the correction by scattering was added. When the phase matching curve was obtained from the refractive index, the results shown in FIG. 1 were obtained. This single crystal is adjusted to the phase matching angle as shown in FIG. 2 and the Nd 3+ : YAG laser (λ = 1064n
m) as the fundamental wave light source, the second harmonic (λ
= 532 nm) was obtained with high conversion efficiency. The result is shown in FIG. In FIG. 2, reference numeral 1 is a conion meter head that enables movement of the single crystal in the X, Y and Z directions and rotation of θ and ψ, on which the cyclobutenedione derivative single crystal 2 is mounted. Has been done. When this cyclobutenedione derivative single crystal 2 is rotated and the fundamental wave 3 is projected at a predetermined position (θ, ψ), it is extracted as the second harmonic wave 4. In this way, the light wavelength conversion element can be obtained.

【0011】図4は、本発明の応用例であって、半導体
レーザー励起の緑色レーザーを示したものである。図4
において、5は波長810nm発振の半導体レーザー
(SONY:SLD304V)、6はf=4.5mmの
コリメーティングレンズ、7はf=80mmのシリンド
リカルレンズ、8はf=14.5mmのフォーカシング
レンズ、9は半導体レーザー5側に波長1060nmお
よび波長530nmの光に対して高反射でかつ波長81
0nmの光に対して無反射であるコート(例えば誘電体
多層膜)が施されたNd:YVO4 結晶、10は半導体
レーザー5と反対側の面に、波長1060nmの光に対
して高反射でかつ波長530nmの光に対して無反射で
あるコートが施された出力ミラーである。
FIG. 4 shows an application example of the present invention, showing a green laser excited by a semiconductor laser. Figure 4
In the figure, 5 is a semiconductor laser (SONY: SLD304V) having an oscillation wavelength of 810 nm, 6 is a collimating lens of f = 4.5 mm, 7 is a cylindrical lens of f = 80 mm, 8 is a focusing lens of f = 14.5 mm, and 9 Is highly reflective to the semiconductor laser 5 side with respect to light having a wavelength of 1060 nm and 530 nm, and has a wavelength of 81
A Nd: YVO 4 crystal 10 coated with a coating (for example, a dielectric multilayer film) that is non-reflective with respect to 0 nm light is highly reflective for light with a wavelength of 1060 nm on the surface opposite to the semiconductor laser 5. In addition, the output mirror is provided with a coating that is non-reflective with respect to light having a wavelength of 530 nm.

【0012】半導体レーザー5から発せられた波長81
0nmの単色光(励起光)は、コリメーティングレンズ
6、シリンドリカルレンズ7およびフォーカシングレン
ズ8の光学系により集光され、Nd:YVO4 結晶9に
投射される。Nd:YVO4結晶9と出力ミラー10と
は、キャビティ形成しており、Nd:YVO4 結晶9側
から投射された励起光によって、キャビティ内には波長
1060nmの基本波が発生する。キャビティ内に配置
され、位相整合角度にカットされたシクロブテンジオン
誘導体単結晶2は、波長1060nmの基本波により、
波長530nmの第2高調波を発生する。この第2高調
波は、出力ミラー10側から取り出すことができる。
The wavelength 81 emitted from the semiconductor laser 5
The monochromatic light (excitation light) of 0 nm is condensed by the optical system of the collimating lens 6, the cylindrical lens 7 and the focusing lens 8 and projected onto the Nd: YVO 4 crystal 9. The Nd: YVO 4 crystal 9 and the output mirror 10 form a cavity, and the excitation light projected from the Nd: YVO 4 crystal 9 side generates a fundamental wave having a wavelength of 1060 nm in the cavity. The cyclobutenedione derivative single crystal 2 placed in the cavity and cut to the phase matching angle is
A second harmonic wave having a wavelength of 530 nm is generated. This second harmonic can be extracted from the output mirror 10 side.

【0013】このように、本発明の応用例によれば、半
導体レーザー励起の緑色レーザーを提供することができ
る。なお、Nd:YVO4 結晶の代わりにNd3+:YA
G結晶を用いても同様な(ただし、第2高調波はは長5
32nm)半導体レーザー励起の緑色レーザーを提供す
ることができる。
As described above, according to the application example of the present invention, a green laser excited by a semiconductor laser can be provided. It should be noted that instead of the Nd: YVO 4 crystal, Nd 3+ : YA
The same is true with a G crystal (however, the second harmonic is long 5
(32 nm) A green laser excited by a semiconductor laser can be provided.

【0014】[0014]

【発明の効果】本発明のシクロブテンジオン誘導体単結
晶を用いた光波長変換素子は、高い変換効率を示し、例
えば、精密走査を行う光走査記録装置や、光走査読取り
装置等に使用することができる。
The optical wavelength conversion element using the cyclobutenedione derivative single crystal of the present invention exhibits a high conversion efficiency, and is used in, for example, an optical scanning recording device for performing precision scanning, an optical scanning reading device, and the like. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光波長変換素子の位相整合曲線を示
すグラフ。
FIG. 1 is a graph showing a phase matching curve of an optical wavelength conversion device of the present invention.

【図2】 本発明の光波長変換素子を載置した状態を示
す図。
FIG. 2 is a diagram showing a state in which an optical wavelength conversion element of the present invention is placed.

【図3】 本発明の光波長変換素子による位相整合のチ
ューニング曲線を示すグラフ。
FIG. 3 is a graph showing a tuning curve for phase matching by the optical wavelength conversion element of the present invention.

【図4】 本発明の応用例を示すものであって、半導体
レーザー励起の緑色レーザー装置の概略構成図。
FIG. 4 is a schematic configuration diagram of a semiconductor laser-excited green laser device, showing an application example of the present invention.

【符号の説明】[Explanation of symbols]

1…コニオンメーターヘッド、2…光波長変換素子、3
…基本波、4…第2高調波、5…は長810nm発振の
半導体レーザー、6…f=4.5mmのコリメーティン
グレンズ、7…f=80mmのシリンドリカルレンズ、
8…f=14.5mmのフォーカシングレンズ、9…N
d:YVO4 結晶、10…出力ミラー。
1 ... Conion meter head, 2 ... Optical wavelength conversion element, 3
... fundamental wave, 4 ... second harmonic, 5 ... semiconductor laser of 810 nm oscillation, 6 ... f = 4.5 mm collimating lens, 7 ... f = 80 mm cylindrical lens,
8 ... f = 14.5 mm focusing lens, 9 ... N
d: YVO 4 crystal, 10 ... Output mirror.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 敬介 東京都江戸川区南篠崎町五丁目4番9号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keisuke Sasaki 5-4-9 Minamishinozaki-cho, Edogawa-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記構造式(I) 【化1】 (式中、*は不整炭素原子を意味する。)で示されるシ
クロブテンジオン誘導体の単結晶を用いたことを特徴と
する光波長変換素子。
1. The following structural formula (I): (In the formula, * means an asymmetric carbon atom.) A light wavelength conversion element characterized by using a single crystal of a cyclobutenedione derivative.
JP26063592A 1992-09-04 1992-09-04 Optical wavelength conversion element Pending JPH0682857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26063592A JPH0682857A (en) 1992-09-04 1992-09-04 Optical wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26063592A JPH0682857A (en) 1992-09-04 1992-09-04 Optical wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH0682857A true JPH0682857A (en) 1994-03-25

Family

ID=17350661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26063592A Pending JPH0682857A (en) 1992-09-04 1992-09-04 Optical wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH0682857A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616802A (en) * 1994-10-19 1997-04-01 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
US5659085A (en) * 1994-05-20 1997-08-19 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
US5811552A (en) * 1994-05-20 1998-09-22 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659085A (en) * 1994-05-20 1997-08-19 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
US5811552A (en) * 1994-05-20 1998-09-22 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
US5872256A (en) * 1994-05-20 1999-02-16 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element
US5616802A (en) * 1994-10-19 1997-04-01 Fuji Xerox Co., Ltd. Cyclobutenedione derivative, process for preparing the same, and nonlinear optical element

Similar Documents

Publication Publication Date Title
US4199698A (en) 2-Methyl-4-nitro-aniline nonlinear optical devices
EP0767396B1 (en) Optical converting method and converter device using the single-crystal lithium tetraborate, and optical apparatus using the optical converter device
JPH0758378B2 (en) Non-linear optical device
US3965375A (en) Lithium perchlorate trihydrate nonlinear devices
Hewig et al. Frequency doubling in an organic waveguide
Rosker et al. Salt-based approach for frequency conversion materials
US5130844A (en) Optical wavelength converter system
JPH0682857A (en) Optical wavelength conversion element
US5229038A (en) Organic nonlinear optical material and method of converting the wavelength of light using said material
JPH08504966A (en) Doped KTP with high birefringence suitable for type-II phase matching and similar forms thereof
US3982136A (en) Ternary ferroelectric fluoride nonlinear devices
JP2972375B2 (en) Wavelength conversion by quasi-phase matching and production and use of optical articles therefor
JP3368753B2 (en) Wavelength conversion method
JPS6366543A (en) Optical recording method
Yamamoto et al. Linear and nonlinear optical properties of a new organic crystal, N-(4-aminobenzenesulfonyl) acetamide
US4985178A (en) Nonlinear optical device from 3-methyl-4-methoxy-4&#39;-nitrostilbene
US5397508A (en) 2-amino-5-nitropyridinium salts usable in non-linear optics and in electroptics and a process for preparing the same
JP2003114454A (en) Wavelength conversion element and wavelength conversion method and laser apparatus
JP3084964B2 (en) Method for producing cyclobutenedione derivative crystals
JPH0354117A (en) Potassium-lithium niobate crystal and preparation thereof
Sutter et al. Linear and nonlinear optical properties of 2-(N-prolinol)-5-nitropyridine (pnp
JPH06306027A (en) Cyclobutenedionyl derivative crystal and production thereof
JPH07181531A (en) Molecular crystal and wavelength conversion device using the same
JP2660576B2 (en) Laser diode pumped solid state laser
JP2724641B2 (en) Molecular crystal and method of converting light wavelength using the same