[go: up one dir, main page]

JPH0682787A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH0682787A
JPH0682787A JP4236579A JP23657992A JPH0682787A JP H0682787 A JPH0682787 A JP H0682787A JP 4236579 A JP4236579 A JP 4236579A JP 23657992 A JP23657992 A JP 23657992A JP H0682787 A JPH0682787 A JP H0682787A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
layer
alignment layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4236579A
Other languages
Japanese (ja)
Inventor
Tomiaki Yamamoto
富章 山本
Hitoshi Hado
仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4236579A priority Critical patent/JPH0682787A/en
Publication of JPH0682787A publication Critical patent/JPH0682787A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide two kinds or more of liquid crystal orienting layers differed in orienting direction of liquid crystal molecule by one orienting treatment, and moderate the limitation of visual angle. CONSTITUTION:A liquid crystal composite 17 is nipped between two bases 1, 2. On the bases, two kinds or more of liquid crystal orienting layers 4, 5, 14, 15 different in liquid crystal molecule arrangement direction which are induced by rubbing orienting treatment are formed adjacent to the liquid crystal composite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示素子、とくにそ
の液晶配向層に関する。
FIELD OF THE INVENTION The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal alignment layer thereof.

【0002】[0002]

【従来の技術】薄形、軽量、低消費電力の利点から液晶
表示素子は、ワードプロセッサーやパーソナルコンピュ
ータなどのOA機器、テレビジョンなどの表示装置とし
ての利用度が拡大している。これらに用いられる液晶表
示素子はねじれネマチック形液晶であり、旋光モードと
複屈折モードのいずれかで動作する。
2. Description of the Related Art Liquid crystal display devices have been widely used as display devices such as OA equipment such as word processors and personal computers and televisions because of their advantages of thinness, light weight and low power consumption. The liquid crystal display element used for these is a twisted nematic liquid crystal and operates in either an optical rotation mode or a birefringence mode.

【0003】旋光モード素子は、例えば90°ねじれた
分子配列をもつツイステッドネマチック(TN)形液晶
であり、原理的にモノカラー表示で、高いコントラスト
比と良好な階調表示性を示し、また応答速度が数十ミリ
秒と速く、時計、電卓、単純マトリクス駆動やスイッチ
ング素子を各画素ごとに備えたアクティブマトリクス駆
動で、またカラーフィルターと組み合わせたカラー液晶
テレビに応用されている。
The optical rotation mode element is, for example, a twisted nematic (TN) type liquid crystal having a molecular arrangement twisted by 90 °, and is a monocolor display in principle, and exhibits a high contrast ratio and a good gradation display property, and also has a response. The speed is as high as several tens of milliseconds, and it is applied to clocks, calculators, simple matrix drives, active matrix drives with switching elements for each pixel, and color LCD televisions combined with color filters.

【0004】一方、複屈折モードの表示方式の素子は、
一般に90°以上ねじれた分子配列をもつスーパーツイ
スト(ST)形液晶で、急峻な電気的特性をもつため、
各画素ごとに薄膜トランジスタでなるスイッチング素子
を配置しなくても単純なマトリクス状電極構造による時
分割駆動で容易に大容量表示が得られる。
On the other hand, the element of the birefringence mode display system is
In general, it is a super twist (ST) type liquid crystal having a molecular arrangement twisted by 90 ° or more and has steep electrical characteristics,
Large-capacity display can be easily obtained by time-division driving with a simple matrix electrode structure without disposing a switching element made of a thin film transistor for each pixel.

【0005】しかしながら、これらの液晶表示素子は表
示が見る方向によってコントラスト比や表示色が変化す
る視角依存性をもつ。この液晶表示素子の視角依存性を
改善する一つの方法として、1画素内または画素単位で
液晶分子の起き上がる方向を180°変えた領域を設け
た技術がある(K.H.Yang、1991,IRD
C,p68)、(特開昭63−106642号公報)。
However, these liquid crystal display elements have a viewing angle dependency in which the contrast ratio and the display color change depending on the viewing direction of the display. As one method of improving the viewing angle dependency of the liquid crystal display element, there is a technique of providing a region in which the rising direction of liquid crystal molecules is changed by 180 ° in one pixel or in a pixel unit (KH Yang, 1991, IRD).
C, p68), (JP-A-63-106642).

【0006】[0006]

【発明が解決しようとする課題】従来、これら液晶表示
素子の液晶の分子配向を行う手段として、以下の方法が
主流である。
Conventionally, the following methods have been mainstream as means for aligning the molecules of liquid crystals of these liquid crystal display devices.

【0007】a. ラビング法…基板上にポリイミドに
代表される有機高分子薄膜をスピンコートや印刷で形成
し、この膜を布などで軽く摩擦して液晶配向能力を付与
する。
A. Rubbing method: An organic polymer thin film typified by polyimide is formed on a substrate by spin coating or printing, and this film is lightly rubbed with a cloth or the like to impart liquid crystal alignment ability.

【0008】b. 斜方蒸着法…基板上に酸化けい素な
どの無機化合物を真空中で斜方蒸着し、酸化けい素の規
則正しい配列により液晶配向能力を付与する。
B. Oblique vapor deposition method: An inorganic compound such as silicon oxide is obliquely vapor-deposited in a vacuum on a substrate, and liquid crystal alignment ability is given by a regular arrangement of silicon oxide.

【0009】c. LB法…水面上にラングミュア・ブ
ロジェット(LB)膜を展開し、基板を水中から水面上
に引き上げて基板上に転写形成し、配向層とする。
C. LB method: A Langmuir-Blodgett (LB) film is developed on the water surface, the substrate is pulled up from the water to the water surface, and transferred onto the substrate to form an alignment layer.

【0010】d. フォトリソグラフィー法…基板上に
感光性樹脂を形成し、この感光性樹脂をマスクを介して
露光し、現像して樹脂表面に微細な凹凸を形成すること
により液晶配向能を付与する。
D. Photolithography method: A photosensitive resin is formed on a substrate, and the photosensitive resin is exposed through a mask and developed to form fine irregularities on the resin surface, thereby imparting liquid crystal aligning ability.

【0011】さて、このような方法を用いて同一基板内
で液晶分子の配列方向を変えるには、マスクを介して1
度目の配向処理(例えばラビング法)を行い、その後、
マスクを移動して第2回目の配向処理(例えば斜方蒸
着)を行う。しかし、このような手段を用いる場合は、
通常複数回の配向処理が必要になる。
Now, in order to change the alignment direction of liquid crystal molecules in the same substrate by using such a method, 1
Perform a second alignment treatment (eg rubbing method), then
The mask is moved to perform the second alignment treatment (for example, oblique vapor deposition). However, when using such means,
Usually, a plurality of alignment treatments are required.

【0012】本発明はこのような不都合を解消するもの
である。
The present invention eliminates such inconvenience.

【0013】[0013]

【課題を解決するための手段】本発明は、表面に電極お
よび配向層を有する2枚の基板を前記電極が相対向する
ように設置した間に液晶層が挟持されてなる液晶表示素
子において、ラビング配向処理によって誘起される液晶
分子配列方向が異なる2種類以上の液晶配向層がそれぞ
れ液晶層に接して前記基板上に形成されてなることを特
徴とする液晶表示素子を得るものである。
The present invention provides a liquid crystal display device comprising a liquid crystal layer sandwiched between two substrates each having an electrode and an alignment layer on the surface so that the electrodes face each other. A liquid crystal display device, characterized in that two or more kinds of liquid crystal alignment layers having different liquid crystal molecule alignment directions induced by a rubbing alignment treatment are respectively formed on the substrate in contact with the liquid crystal layer.

【0014】さらに本発明は、表面に電極および配向層
を有する2枚の基板を前記電極が相対向するように設置
し、この間に前記配向層に接するように液晶層が挟持さ
れてなる液晶表示素子において、前記基板の配向層は少
なくとも2種類の液晶分子の配列方向を異ならしめた配
向層でなり、そのうちの少なくとも1つはラビング処理
方向と液晶分子配列方向が異なるものであることを特徴
とする液晶表示素子を得るものである。
Further, according to the present invention, a liquid crystal display is provided in which two substrates each having an electrode and an alignment layer on the surface are installed so that the electrodes face each other, and a liquid crystal layer is sandwiched between the two substrates so as to contact the alignment layer. In the device, the alignment layer of the substrate is an alignment layer in which at least two kinds of liquid crystal molecules are arranged in different alignment directions, and at least one of them is different in the rubbing treatment direction and the liquid crystal molecule alignment direction. To obtain a liquid crystal display device.

【0015】[0015]

【作用】本発明は上記目的を達成するものであり、その
達成原理、手段について説明する。
The present invention achieves the above object, and the principle and means for achieving the object will be described.

【0016】図4(a)のように、一般にポリイミド表
面をラビング配向処理すると、ラビングした方向に液晶
分子lが並び、液晶分子lはプレチルト角α0 を有する
ことが知られている。 しかしながら、高分子膜の一種
であるポリスチレンや牛血清アルブミンはラビング処理
すると液晶分子はラビング方向に配列せずラビング処理
方向とほぼ直交して並ぶ性質を持つ。すなわち配向層の
材料の選択により、ラビング方向に対して誘起される液
晶分子の配向方向、すなわち、基板面内での配列方向や
プレチルト角、起き上がる方向を自由に制御することが
できる。
As shown in FIG. 4A, it is generally known that when a polyimide surface is subjected to a rubbing orientation treatment, liquid crystal molecules 1 are aligned in the rubbing direction, and the liquid crystal molecules 1 have a pretilt angle α 0. However, when polystyrene or bovine serum albumin, which is a kind of polymer film, is subjected to a rubbing treatment, liquid crystal molecules are not aligned in the rubbing direction, but are aligned substantially perpendicular to the rubbing treatment direction. That is, by selecting the material of the alignment layer, the alignment direction of the liquid crystal molecules induced with respect to the rubbing direction, that is, the alignment direction in the substrate surface, the pretilt angle, and the rising direction can be freely controlled.

【0017】例えば図4(b)に示すように、基板表面
の一部にポリイミド配向層11を形成し、他の部分にポ
リスチレン配向層12を形成し、これらの層を矢印で示
すラビング方向にラビング配向処理する。このラビング
処理面にネマチック液晶を接触させると液晶分子lのダ
イレクター(長軸)は、ポリイミド配向層11上でラビ
ング方向に一致して配列し、ポリスチレン配向層12上
でラビング方向にほぼ直交するように配列する。
For example, as shown in FIG. 4B, a polyimide alignment layer 11 is formed on a part of the substrate surface, and a polystyrene alignment layer 12 is formed on the other part, and these layers are formed in the rubbing direction shown by the arrow. Rubbing alignment processing is performed. When a nematic liquid crystal is brought into contact with the rubbing-treated surface, the directors (long axes) of the liquid crystal molecules 1 are aligned on the polyimide alignment layer 11 in the rubbing direction and are substantially orthogonal to the rubbing direction on the polystyrene alignment layer 12. To arrange.

【0018】すなわち本発明はこれら2種類以上の配向
層を同一基板上に形成して、同一基板内で液晶層に異な
る配向方向をもたせるものである。しかも、1回のラビ
ング配向処理により液晶分子の配列方向が異なるように
液晶配向層を得ることができる。本発明は上記した配向
層の性質を利用して同一画素内に複数領域を設けまたは
隣接する画素ごとに液晶分子の配列方向を変化させる。
すなわち、画素間で液晶分子配向方向が例えば相互に9
0°ずれると、液晶層のツイスト方向も90°ずれるこ
とになり、この関係が表示面全面にモザイク状に分布す
るためにチルト角やツイスト方向により生じる視野の制
限が緩和される。
That is, according to the present invention, these two or more kinds of alignment layers are formed on the same substrate, and the liquid crystal layers have different alignment directions within the same substrate. Moreover, the liquid crystal alignment layer can be obtained such that the alignment directions of the liquid crystal molecules are different by one rubbing alignment treatment. The present invention utilizes the above-mentioned property of the alignment layer to provide a plurality of regions in the same pixel or change the alignment direction of liquid crystal molecules for each adjacent pixel.
That is, the liquid crystal molecule alignment directions between pixels are, for example, 9
When it is shifted by 0 °, the twist direction of the liquid crystal layer is also shifted by 90 °, and since this relationship is distributed in a mosaic pattern over the entire display surface, the limitation of the visual field caused by the tilt angle and the twist direction is relaxed.

【0019】これら配向層の形成はフォトリソグラフィ
ー法や印刷法を用いることができる。
The alignment layer can be formed by a photolithography method or a printing method.

【0020】[0020]

【実施例】以下本発明の実施例を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0021】(実施例1)図1および図2は本発明の一
実施例を示すもので、図1(a)は上下基板1、2の構
成、図1(b)は液晶分子配列状態を示しており、図2
は配向層を形成する工程a乃至工程fのプロセスチャー
ト(a〜f)である。
(Embodiment 1) FIGS. 1 and 2 show an embodiment of the present invention. FIG. 1 (a) shows the structure of upper and lower substrates 1 and 2, and FIG. 1 (b) shows the alignment state of liquid crystal molecules. Shown in FIG.
3A to 3F are process charts (a to f) of steps a to f for forming an alignment layer.

【0022】まず透明電極が形成されたガラス基板1
と、画素電極3aとTFT駆動素子3bとが画素10ご
とに形成されたガラス基板2とを用意する。すなわち各
TFT駆動素子3bには画素寸法110×330μmの
ITO電極3aが接続されている。
First, a glass substrate 1 on which transparent electrodes are formed
Then, the glass substrate 2 on which the pixel electrode 3a and the TFT drive element 3b are formed for each pixel 10 is prepared. That is, the ITO electrode 3a having a pixel size of 110 × 330 μm is connected to each TFT driving element 3b.

【0023】図2で配向層の形成工程を説明すると、 (工程a) 基板2にポリスチレン配向層4をスピンコ
ート法で1000オングストローム厚で形成する。
The process of forming the alignment layer will be described with reference to FIG. 2. (Step a) The polystyrene alignment layer 4 is formed on the substrate 2 by the spin coating method to a thickness of 1000 angstroms.

【0024】(工程b) その上にネガ型感光性ポリイ
ミド(プロビミド400シリーズ:チバガイギー社製)
を用いスピンコート法で850オングストローム厚の感
光性ポリイミド層5aを形成する。
(Process b) Negative photosensitive polyimide (Probimide 400 series: manufactured by Ciba Geigy)
Is used to form a photosensitive polyimide layer 5a having a thickness of 850 angstrom.

【0025】(工程c) このポリイミド層上に110
×165μmの長方形の多数の透過光部を有するマスク
を介してi線を露光すると、露光部分が感光硬化し現像
により非露光部が除去される。これにより露光部分にポ
リイミド配向層5が形成され、非露光部が除去された部
分に先に塗布したポリスチレン配向層4が露出する。
(Step c) 110 on this polyimide layer
When the i-line is exposed through a mask having a large number of transmitted light portions having a rectangular shape of × 165 μm, the exposed portion is photo-cured and the non-exposed portion is removed by development. As a result, the polyimide alignment layer 5 is formed in the exposed portion, and the polystyrene alignment layer 4 previously applied is exposed in the portion where the non-exposed portion is removed.

【0026】(工程d) その上にエポキシからなる黒
色光吸収層6aをスピンコートする。
(Step d) A black light absorbing layer 6a made of epoxy is spin-coated thereon.

【0027】(工程e) この感光性光吸収層をフォト
リソグラフィー法によりマスク露光を行い、ポリスチレ
ン配向層4とポリイミド配向層5の境界にブラックマト
リクス層6を形成する。 すなわち、図1(b)に示す
ように基板2上にポリスチレン配向層4とポリイミド配
向層5とが1画素10の領域を2分して、しかも相隣る
画素領域とは異なる配向層が接するように交互に格子モ
ザイク状に配置され、各配向層間の境界にブラックマト
リクス6が形成される。
(Step e) This photosensitive light absorbing layer is subjected to mask exposure by photolithography to form a black matrix layer 6 at the boundary between the polystyrene alignment layer 4 and the polyimide alignment layer 5. That is, as shown in FIG. 1B, the polystyrene alignment layer 4 and the polyimide alignment layer 5 bisect the area of one pixel 10 on the substrate 2, and an alignment layer different from the adjacent pixel area is in contact therewith. Thus, the black matrix 6 is formed at the boundaries between the alignment layers, which are alternately arranged in a grid mosaic pattern.

【0028】(工程f) このようにして得られた基板
2に一定の矢印方向にラビング配向処理を施す。すなわ
ち、1画素10を示す図2(g)において、基板表示面
の水平方向に対して45°傾けた矢印方向rにラビング
処理をする。この結果、液晶分子lはポリスチレン配向
層4上でラビング処理方向と直交する方向に、ポリイミ
ド配向層5上でラビング処理方向にダイレクターが配列
される。
(Step f) The substrate 2 thus obtained is subjected to rubbing orientation treatment in the direction of a constant arrow. That is, in FIG. 2G showing one pixel 10, the rubbing process is performed in the arrow direction r inclined by 45 ° with respect to the horizontal direction of the substrate display surface. As a result, the directors of the liquid crystal molecules 1 are arranged on the polystyrene alignment layer 4 in the direction orthogonal to the rubbing treatment direction and on the polyimide alignment layer 5 in the rubbing treatment direction.

【0029】一方、図1(a)に示すように基板1も基
板2と同様にして共通電極1a上に基板2の1画素に対
応してモザイク状のポリスチレン配向層14とポリイミ
ド配向層15を交互に形成する。この形成は基板2と配
向層を相対向させたときに各画素の領域ごとにこの間で
挟持される液晶が90°ねじれるように選択する。さら
に各領域の境界にブラックマトリクス層16を配置す
る。
On the other hand, as shown in FIG. 1A, the substrate 1 also has a mosaic oriented polystyrene alignment layer 14 and a polyimide alignment layer 15 corresponding to one pixel of the substrate 2 on the common electrode 1a in the same manner as the substrate 2. Form alternately. This formation is selected such that when the substrate 2 and the alignment layer are opposed to each other, the liquid crystal sandwiched between the regions of each pixel is twisted by 90 °. Further, the black matrix layer 16 is arranged at the boundary of each region.

【0030】次ぎに両基板1、2を配向層を内側にして
スペーサを介して配置し、シール剤により封止して液晶
セルを作製した。液晶セルに液晶組成物ZLI−113
2(E.メルク社製)17(図1(a))を注入し液晶
表示素子を完成した。
Next, both substrates 1 and 2 were arranged with the alignment layer inside and via a spacer, and sealed with a sealant to prepare a liquid crystal cell. Liquid crystal composition ZLI-113 for liquid crystal cell
2 (manufactured by E. Merck) 17 (FIG. 1A) was injected to complete a liquid crystal display device.

【0031】本実施例では、図1(b)に示すように画
素内で配向方向が異なっているため、境界にディスクリ
ネーションが発生するが、ディスクリネーション発生位
置にブラックマトリクス6が位置していてこの発生を避
けることができる。以上の構成においてポリスチレン配
向層部、ポリイミド配向層部ともに90°ツイストの均
一な配向が得られ、この液晶表示素子を駆動したとこ
ろ、視角依存性が改善されコントラストも高く良好な表
示が得られた。
In this embodiment, as shown in FIG. 1B, since the orientation directions are different within the pixel, disclination occurs at the boundary, but the black matrix 6 is located at the disclination generation position. However, this can be avoided. With the above structure, uniform alignment of 90 ° twist was obtained in both the polystyrene alignment layer portion and the polyimide alignment layer portion, and when this liquid crystal display device was driven, the viewing angle dependency was improved and the contrast was high and good display was obtained. .

【0032】(実施例2)実施例1において、ガラス基
板上にX方向に480本の透明電極が形成された基板1
と、ガラス基板上にY方向に640本の透明電極が形成
された基板2を用い、両基板ともラビング方向を基板端
面に対して30°になるようにラビング処理した。その
後、実施例1と同様な方法でポリスチレンとポリイミド
の液晶配向層を形成し、液晶分子が左240°にねじれ
るように両基板1、2を封止し液晶表示素子を作製す
る。
(Embodiment 2) In Embodiment 1, a substrate 1 in which 480 transparent electrodes are formed in the X direction on a glass substrate
Then, using the substrate 2 in which 640 transparent electrodes were formed on the glass substrate in the Y direction, both substrates were rubbed so that the rubbing direction was 30 ° with respect to the end face of the substrate. After that, a liquid crystal alignment layer of polystyrene and polyimide is formed in the same manner as in Example 1, and both substrates 1 and 2 are sealed so that the liquid crystal molecules are twisted to the left by 240 °, and a liquid crystal display element is manufactured.

【0033】この液晶表示素子について液晶の配向を調
べると、ポリイミド配向層上、ポリスチレン配向層上と
もに240°ツイストの均一な配向が得られ、この液晶
表示素子を駆動したところ、良好な表示が得られた。
When the liquid crystal orientation of this liquid crystal display element was examined, a uniform orientation of 240 ° twist was obtained on both the polyimide orientation layer and the polystyrene orientation layer, and when this liquid crystal display element was driven, good display was obtained. Was given.

【0034】(実施例3)本実施例の配向層はポリイミ
ド層と牛血清アルブミン層で構成する。図3に配向層形
成プロセスフローチャートを示す。
Example 3 The orientation layer of this example is composed of a polyimide layer and a bovine serum albumin layer. FIG. 3 shows a flowchart of the alignment layer forming process.

【0035】基板1、2として実施例1と同構造のガラ
ス基板を用いる。
As the substrates 1 and 2, glass substrates having the same structure as in Example 1 are used.

【0036】(工程a)ブラックマトリクス層20を形
成した基板1、2にまずポリイミド配向層21(AL−
1051(日本合成ゴム社製))を110×165μm
の領域を印刷し、180℃で1時間焼成する。
(Step a) First, a polyimide alignment layer 21 (AL-) is formed on the substrates 1 and 2 on which the black matrix layer 20 is formed.
1051 (manufactured by Japan Synthetic Rubber Co., Ltd.)) 110 × 165 μm
Area is printed and baked at 180 ° C. for 1 hour.

【0037】(工程b)次ぎに牛血清アルブミンをポリ
イミド配向層21の印刷されていない領域に印刷して牛
血清アルブミン配向層22を形成する。
(Step b) Next, bovine serum albumin is printed on the unprinted area of the polyimide alignment layer 21 to form the bovine serum albumin alignment layer 22.

【0038】得られた基板を実施例1と同様にして液晶
表示阻止を作製した。この液晶表示素子について液晶の
配向を調べたところ、ポリイミド配向層部21および牛
血清アルブミン配向層部22ともに90°ツイストの均
一な配向が得られ、液晶分子のダイレクターの向きは、
ポリイミド配向層部はラビング方向に、牛血清アルブミ
ン配向層部はラビング方向に垂直になっていた。この液
晶表示素子を駆動したところ、視角特性のほかコントラ
ストも高く良好な表示が得られた。
A liquid crystal display block was produced on the obtained substrate in the same manner as in Example 1. When the orientation of the liquid crystal was examined for this liquid crystal display element, a uniform orientation of 90 ° twist was obtained in both the polyimide orientation layer portion 21 and the bovine serum albumin orientation layer portion 22, and the orientation of the director of liquid crystal molecules was
The polyimide alignment layer was in the rubbing direction, and the bovine serum albumin alignment layer was in the rubbing direction. When this liquid crystal display device was driven, good display was obtained with high contrast as well as viewing angle characteristics.

【0039】以上実施例で1画素内の配向方向が異なる
場合について示したが、隣り合う画素で配向を変える
(1画素単位)構造でも同様な効果を得ることができ
る。
Although the case where the orientation directions in one pixel are different has been described in the above embodiment, the same effect can be obtained even in a structure in which the orientation is changed between adjacent pixels (in units of one pixel).

【0040】[0040]

【発明の効果】本発明によれば、従来の配向処理では得
られなかった液晶分子の配列方向の異なる2種以上の液
晶配向層を得ることができ、高品位表示の液晶表示素子
を提供することができる。また、本発明をMIMなどの
2端子素子に用いてアクティブマトリクス液晶表示素
子、強誘電性液晶表示素子に応用しても優れた効果が得
られることはいうまでもない。
According to the present invention, two or more kinds of liquid crystal alignment layers having different alignment directions of liquid crystal molecules, which cannot be obtained by the conventional alignment treatment, can be obtained, and a liquid crystal display device of high quality display is provided. be able to. Needless to say, even if the present invention is applied to a two-terminal element such as MIM and applied to an active matrix liquid crystal display element and a ferroelectric liquid crystal display element, excellent effects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例を示す一部拡大断面
図、(b)は同じく一部斜視図
1A is a partially enlarged sectional view showing an embodiment of the present invention, and FIG. 1B is a partially perspective view of the same.

【図2】(a)乃至(f)は本発明の一実施例の製造工
程を説明する一部拡大断面図、(g)は配向層の液晶分
子配向方向を説明する略図。
2A to 2F are partially enlarged cross-sectional views illustrating a manufacturing process of an embodiment of the present invention, and FIG. 2G is a schematic view illustrating an alignment direction of liquid crystal molecules in an alignment layer.

【図3】(a)、(b)は本発明の他の実施例の製造工
程を説明する一部拡大断面図。
3A and 3B are partially enlarged cross-sectional views illustrating a manufacturing process of another embodiment of the present invention.

【図4】(a)、(b)は本発明の作用を説明する略図
である。
4 (a) and 4 (b) are schematic diagrams for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

1、2…基板 3a…画素電極 3b…TFT駆動素子 4、14…ポリスチレン配向層 5、15…ポリイミド配向層 6、16…ブラックマトリクス層 1, 2 ... Substrate 3a ... Pixel electrode 3b ... TFT driving element 4, 14 ... Polystyrene alignment layer 5, 15 ... Polyimide alignment layer 6, 16 ... Black matrix layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面に電極および配向層を有する2枚の
基板を前記電極が相対向するように設置した間に液晶層
が挟持されてなる液晶表示素子において、ラビング配向
処理によって誘起される液晶分子配列方向が異なる2種
類以上の液晶配向層がそれぞれ液晶層に接して前記基板
上に形成されてなることを特徴とする液晶表示素子。
1. A liquid crystal display device comprising a liquid crystal layer sandwiched between two substrates each having an electrode and an alignment layer on the surface so that the electrodes face each other, and a liquid crystal induced by a rubbing alignment treatment. A liquid crystal display device comprising: two or more kinds of liquid crystal alignment layers having different molecular alignment directions, each of which is formed on the substrate in contact with the liquid crystal layer.
【請求項2】 表面に電極および配向層を有する2枚の
基板を前記電極が相対向するように設置し、この間に前
記配向層に接するように液晶層が挟持されてなる液晶表
示素子において、前記基板の配向層は少なくとも2種類
の液晶分子の配列方向を異ならしめた配向層でなり、そ
のうちの少なくとも1つはラビング処理方向と液晶分子
配列方向が異なるものであることを特徴とする液晶表示
素子。
2. A liquid crystal display device comprising two substrates, each having an electrode and an alignment layer on its surface, arranged so that the electrodes face each other, and a liquid crystal layer is sandwiched between the substrates so as to be in contact with the alignment layer. The alignment layer of the substrate is an alignment layer in which at least two kinds of liquid crystal molecules have different alignment directions, and at least one of them has a rubbing treatment direction and a liquid crystal molecule alignment direction different from each other. element.
JP4236579A 1992-09-04 1992-09-04 Liquid crystal display element Pending JPH0682787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4236579A JPH0682787A (en) 1992-09-04 1992-09-04 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4236579A JPH0682787A (en) 1992-09-04 1992-09-04 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH0682787A true JPH0682787A (en) 1994-03-25

Family

ID=17002730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4236579A Pending JPH0682787A (en) 1992-09-04 1992-09-04 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0682787A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234408A (en) * 1994-02-24 1995-09-05 Nec Corp Transmission type liquid crystal display device
US6133974A (en) * 1996-08-16 2000-10-17 Nec Corporation Liquid crystal display with two areas of liquid crystal with orthogonal initial orientations
JP2008199456A (en) * 2007-02-15 2008-08-28 Funai Electric Co Ltd Program recording and reproducing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234408A (en) * 1994-02-24 1995-09-05 Nec Corp Transmission type liquid crystal display device
US6344890B1 (en) 1995-08-22 2002-02-05 Nec Corporation Ferroelectric liquid crystal display with a reduced light-transmittance dependency upon a visible angle
US6133974A (en) * 1996-08-16 2000-10-17 Nec Corporation Liquid crystal display with two areas of liquid crystal with orthogonal initial orientations
US6630981B2 (en) 1996-08-16 2003-10-07 Nec Corporation Ferroelectric liquid crystal display with a reduced light-transmittance dependency upon a visible angle
JP2008199456A (en) * 2007-02-15 2008-08-28 Funai Electric Co Ltd Program recording and reproducing device

Similar Documents

Publication Publication Date Title
JP3850002B2 (en) Liquid crystal electro-optical device
JPH09105941A (en) Liquid crystal display
GB2325751A (en) In-plane switched liquid crystal device
US5757454A (en) Liquid crystal display device with homeotropic alignment in which two liquid crystal regions on the same subtrate have different pretilt directions because of rubbing
JPH07318940A (en) Liquid crystal display device
JPH10512979A (en) Image display device
US6690440B1 (en) Liquid crystal element and manufacturing method thereof
US5847793A (en) Liquid crystal display apparatus and fabrication process thereof
JP4028633B2 (en) Liquid crystal display
JPH06194655A (en) Liquid crystal display element and its production
JP4031658B2 (en) Liquid crystal display
JPH0682787A (en) Liquid crystal display element
JPH07333634A (en) Liquid crystal display panel
JP2565061B2 (en) Liquid crystal display
JPH0829790A (en) Liquid crystal display device
JPH0961822A (en) Liquid crystal display device and manufacturing method thereof
JP2773794B2 (en) Manufacturing method of liquid crystal display element
JP3355591B2 (en) Liquid crystal display device and method of manufacturing the same
JP3989575B2 (en) LCD panel
JPH04331918A (en) Active matrix liquid crystal display device
US7679704B2 (en) Method of fabricating an in-plane switching mode liquid crystal display comprising rubbing and applying a beam to set pre-tilt angles
JP2001051277A (en) Liquid crystal device, production thereof, liquid crystal display device and method of driving the same
JP3522845B2 (en) LCD panel
JPH0253028A (en) Liquid crystal display device
JP3218780B2 (en) LCD panel