[go: up one dir, main page]

JPH0682316A - Non-contact temperature detector - Google Patents

Non-contact temperature detector

Info

Publication number
JPH0682316A
JPH0682316A JP23216392A JP23216392A JPH0682316A JP H0682316 A JPH0682316 A JP H0682316A JP 23216392 A JP23216392 A JP 23216392A JP 23216392 A JP23216392 A JP 23216392A JP H0682316 A JPH0682316 A JP H0682316A
Authority
JP
Japan
Prior art keywords
magnet
output
temperature
magnetic sensor
relative position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23216392A
Other languages
Japanese (ja)
Inventor
Ichiro Morita
伊知朗 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP23216392A priority Critical patent/JPH0682316A/en
Publication of JPH0682316A publication Critical patent/JPH0682316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To exactly measure temperature even if the first member and second member relatively move while changing their reference positions. CONSTITUTION:A first magnet 21 and a second magnet 22 are provided on a wheel part 12 and a magnetism sensitive body 30 is set on a member of a car body side 13. An electric circuit part 40 serves to calculate the real shortest distance X1 in accordance with known relation between a previously obtained integral ratio and the relation between the shortest distance on the basis of the integral ratio I1/I2 of electromotive force of each magnet 21, 22 detected at the time when the first magnet 21 and the second magnet 22 are moved in the neighborhood of the magnetism sensitive body 30, and an integral value I1 deg. at the time of the shortest distance X1 at a reference temperature of T0 is calculated on the basis of the relation between the shortest distance and the integral value at a reference temperature of T0. In addition, the temperature T is calculated on the basis of a ratio I1/I1 deg. of the real detected integral value I1 to the integral value I1 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転等の相対運動を生
じる物体の温度あるいはその周辺の雰囲気温度などを被
検体に接触することなく検出する非接触温度検出装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact temperature detecting device for detecting the temperature of an object which causes a relative motion such as rotation or the ambient temperature around the object without coming into contact with a subject.

【0002】[0002]

【従来の技術】回転体等の被検体の温度を検出する場
合、例えば特開昭62-104453 号公報に示されるように、
永久磁石の発生磁束密度が温度に応じて変化するという
性質を利用して、回転体の温度を非接触で検出するよう
にしたものが提案されている。この従来例は、回転体に
永久磁石を熱伝導可能な状態で固着し、この永久磁石の
一極との間に所定の空隙を存した状態で磁性体を配置す
るとともに、永久磁石の他極を磁性体に固着している。
そして、これら永久磁石と空隙および磁性体を含む磁気
回路を形成し、上記空隙の磁束をホール素子によって検
出し、その出力変化に基づいて回転体の温度を検出する
ようにしている。
2. Description of the Related Art When detecting the temperature of an object such as a rotating body, for example, as disclosed in Japanese Patent Laid-Open No. 62-104453,
It has been proposed to detect the temperature of a rotating body in a non-contact manner by utilizing the property that the magnetic flux density generated by a permanent magnet changes according to the temperature. In this conventional example, a permanent magnet is fixed to a rotating body in a heat conductive state, a magnetic body is arranged with a predetermined gap between the permanent magnet and one pole of the permanent magnet, and the other pole of the permanent magnet is arranged. Is fixed to the magnetic body.
Then, a magnetic circuit including these permanent magnets, air gaps and magnetic bodies is formed, the magnetic flux in the air gaps is detected by a Hall element, and the temperature of the rotating body is detected based on the output change.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ように永久磁石の発生磁束密度をホール素子によって検
出するものでは、何らかの原因によってホール素子の位
置が基準となる位置から移動してしまうと磁場の強さが
変化するため、温度とは無関係にホール素子の出力が変
化してしまう。このため精度良く温度を検出することが
できない。
However, in the case where the magnetic flux density generated by the permanent magnet is detected by the Hall element as described above, if the position of the Hall element is moved from the reference position for some reason, the magnetic field of the magnetic field is changed. Since the strength changes, the output of the Hall element changes regardless of the temperature. Therefore, the temperature cannot be detected accurately.

【0004】従って本発明の目的は、相対運動する2つ
の部材の位置関係が変化しても温度を精度良く検出でき
るような非接触温度検出装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a non-contact temperature detecting device which can detect temperature accurately even if the positional relationship between two members that move relative to each other changes.

【0005】[0005]

【課題を解決するための手段】上記目的を果たすために
開発された本発明装置は、互いに相対運動をする第1部
材および第2部材の一方に、少なくとも1個の永久磁石
を設けるとともに他方に2個以上の磁気感知体を設ける
か、あるいは一方に2個以上の永久磁石を設けるととも
に他方に少なくとも1個の磁気感知体を設けるようにし
ている。上記磁気感知体に接続される電気回路部は、予
め求めておいた各磁石ごとの出力と上記磁石と磁気感知
体の相対位置との既知の関係に基づいて、実際に検出さ
れた出力により、上記磁石と磁気感知体との相対位置を
求めたのち、予め求めておいた基準温度における上記磁
石と磁気感知体の相対位置と上記磁気感知体の出力との
関係に基づいて、求められた相対位置での基準温度にお
ける基準出力を算出するとともに、算出された上記基準
出力と磁気感知体によって検出された実際の出力に基づ
いて温度を算出するようにしている。
The device of the present invention developed to achieve the above object is provided with at least one permanent magnet on one of the first member and the second member which move relative to each other and on the other. Two or more magnetic sensors are provided, or one or more permanent magnets are provided on one side and at least one magnetic sensor is provided on the other side. The electric circuit unit connected to the magnetic sensor, based on a known relationship between the output of each magnet and the relative position of the magnet and the magnetic sensor obtained in advance, by the actually detected output, After the relative position between the magnet and the magnetic sensor is determined, the relative position determined based on the relationship between the relative position of the magnet and the magnetic sensor and the output of the magnetic sensor at a reference temperature that is determined in advance. The reference output at the reference temperature at the position is calculated, and the temperature is calculated based on the calculated reference output and the actual output detected by the magnetic sensor.

【0006】第1部材と第2部材が相対運動中に磁気感
知体の出力は磁石と磁気感知体の相対位置によって変化
するが、この明細書では相対運動中の出力の最大値を単
に出力と呼び、この出力をとる時の磁石と磁気感知体と
の相対位置を単に相対位置と呼ぶ。この出力と相対位置
は相対運動の軌跡が定まれば一意的に決定されるもので
ある。
While the output of the magnetic sensor changes depending on the relative position of the magnet and the magnetic sensor during the relative movement of the first member and the second member, in this specification, the maximum value of the output during the relative motion is simply referred to as the output. The relative position between the magnet and the magnetic sensor when taking this output is simply referred to as the relative position. This output and the relative position are uniquely determined if the trajectory of the relative motion is determined.

【0007】[0007]

【作用】第1部材に設けられている永久磁石の磁場によ
り、第2部材に設けられている磁気感知体と上記磁石と
の相対位置に応じた出力が上記磁気感知体に発生する。
例えば磁石を2個、磁気感知体を1個用いた場合、一方
の磁石による出力I1 と他方の磁石による出力I2 が磁
気感知体によって検出される。この出力比は温度に依存
しない値であり、磁石と磁気感知体との相対位置のみに
依存する。
By the magnetic field of the permanent magnet provided in the first member, an output corresponding to the relative position of the magnet and the magnet provided in the second member is generated in the magnetic sensor.
For example, when two magnets and one magnetic sensor are used, the output I 1 from one magnet and the output I 2 from the other magnet are detected by the magnetic sensor. This output ratio is a value that does not depend on the temperature, and depends only on the relative position between the magnet and the magnetic sensor.

【0008】本発明においては、上記のように温度に左
右されない出力の比と相対位置との関係を予め実測等に
よって求めておくことにより、磁気感知体によって実際
に検出された出力の比に基づいて相対位置を求める。
In the present invention, the relationship between the output ratio not affected by temperature and the relative position is previously obtained by actual measurement or the like as described above, so that the output ratio actually detected by the magnetic sensor can be used. To find the relative position.

【0009】上記磁石の発生磁束密度は温度によって変
化するから、磁気感知体によって検出される出力は温度
に応じて一定の割合で変化する。本発明では、基準温度
における相対位置と磁気感知体の出力との関係を予め求
めておくことにより、相対位置が求まった時に、基準温
度における基準出力を算出できるようにしておく。そし
て実際に検出された出力と、求めた相対位置における基
準温度での基準出力との比に基づいて、温度が算出され
る。
Since the magnetic flux density generated by the magnet changes depending on the temperature, the output detected by the magnetic sensor changes at a constant rate according to the temperature. In the present invention, the relation between the relative position at the reference temperature and the output of the magnetic sensor is obtained in advance so that the reference output at the reference temperature can be calculated when the relative position is obtained. Then, the temperature is calculated based on the ratio between the actually detected output and the reference output at the reference temperature at the obtained relative position.

【0010】[0010]

【実施例】以下にこの発明の一実施例について、図1な
いし図5を参照して説明する。図1に示された非接触温
度検出装置10は、空気入りタイヤの内部温度を検出す
るためのものであり、互いに相対運動を生じる第1部材
の一例としての車輪部12と第2部材の一例としての車
体側の部材13に設けられている。車輪部12は、ホィ
ール15とタイヤ16を備えており、車体側の部材13
に対してX軸回りに回転自在であるとともに、X軸方向
にある程度変位できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The non-contact temperature detecting device 10 shown in FIG. 1 is for detecting the internal temperature of a pneumatic tire, and is an example of a wheel portion 12 and an example of a second member that are examples of a first member that causes relative movement. Is provided on the member 13 on the vehicle body side. The wheel portion 12 includes a wheel 15 and a tire 16, and is a member 13 on the vehicle body side.
On the other hand, it is rotatable about the X-axis and can be displaced to some extent in the X-axis direction.

【0011】タイヤ16の内部に、第1磁石21と第2
磁石22を有する磁石部23が設けられている。第1磁
石21と第2磁石22には、それぞれ同等の磁束密度を
生じかつ同等の形状の永久磁石が用いられ、温度変化に
応じて一定の割合で発生磁束密度が変化するようになっ
ている。これらの磁石21,22はホィール15の軸線
方向(X軸方向)に互いに位置をδXだけずらした状態
で、断熱材25,26を介してホィール15に固定され
ている。
Inside the tire 16, the first magnet 21 and the second magnet 21
A magnet unit 23 having a magnet 22 is provided. For the first magnet 21 and the second magnet 22, permanent magnets having the same magnetic flux density and having the same shape are used, and the generated magnetic flux density changes at a constant rate according to the temperature change. . These magnets 21 and 22 are fixed to the wheel 15 via heat insulating materials 25 and 26 in a state in which their positions are displaced from each other by δX in the axial direction of the wheel 15 (X-axis direction).

【0012】図2に示されるように、第1磁石21と第
2磁石22は、互いに磁気の影響を受けないように、ホ
ィール15の周方向に位置をずらして設けられている。
各磁石21,22の磁化の方向はホィール15の軸線方
向(X軸方向)と一致させている。
As shown in FIG. 2, the first magnet 21 and the second magnet 22 are provided so as to be displaced in the circumferential direction of the wheel 15 so as not to be influenced by each other's magnetism.
The magnetizing directions of the magnets 21 and 22 are aligned with the axial direction of the wheel 15 (X-axis direction).

【0013】車体側の部材13に、感知手段としての磁
気感知体30が設けられている。磁気感知体30の一例
は電磁コイルであるが、ホール素子等の感磁部材が用い
られてもよい。本実施例では磁気感知体30に電磁コイ
ルを用いており、電磁コイルの中心軸をホィール15の
軸線方向に一致させてある。磁気感知体30は、ホィー
ル15が回転する際に第1磁石21と第2磁石22が描
く軌跡とほぼ同一の円周上に位置しており、第1磁石2
1と第2磁石22が磁気感知体30の近傍を通過する際
に、各磁石21,22と磁気感知体30との相対位置に
応じた大きさの電磁誘導による起電力を生じるようにな
っている。
A magnetic sensor 30 as a sensing means is provided on the member 13 on the vehicle body side. An example of the magnetic sensor 30 is an electromagnetic coil, but a magnetically sensitive member such as a Hall element may be used. In this embodiment, an electromagnetic coil is used as the magnetic sensor 30, and the central axis of the electromagnetic coil is aligned with the axial direction of the wheel 15. The magnetic sensor 30 is located on the circumference substantially the same as the locus drawn by the first magnet 21 and the second magnet 22 when the wheel 15 rotates.
When the first and second magnets 22 pass near the magnetic sensor 30, an electromotive force due to electromagnetic induction having a size corresponding to the relative position between the magnets 21 and 22 and the magnetic sensor 30 is generated. There is.

【0014】本実施例では、ホィール15が回転する際
に、各磁石21,22から磁気感知体30までの距離が
それぞれ最小となる位置が、各磁石21,22と磁気感
知体30との相対位置である。また、本実施例において
は、各磁石21,22と磁気感知体30との相対位置に
おけるX軸方向の距離X1 ,X2 を、それぞれ各磁石2
1,22から磁気感知体30までの最短距離と呼ぶ。
In this embodiment, when the wheel 15 rotates, the positions where the distances from the magnets 21 and 22 to the magnetic sensing body 30 are the minimum are relative to the magnets 21 and 22 and the magnetic sensing body 30. The position. Further, in the present embodiment, the distances X 1 and X 2 in the X-axis direction at the relative positions of the magnets 21 and 22 and the magnetic sensing body 30 are respectively set to the respective magnets 2.
It is called the shortest distance from the magnetic sensor 30 to the magnetic sensor 30.

【0015】図1に示されるように、磁気感知体30に
電気回路部40が接続されている。電気回路部40は、
磁気感知体30に生じた出力を処理する信号処理回路4
1とA/D変換回路42とコントローラ43と表示器4
4などを備えている。
As shown in FIG. 1, an electric circuit section 40 is connected to the magnetic sensor 30. The electric circuit section 40 is
A signal processing circuit 4 for processing the output generated in the magnetic sensor 30.
1, A / D conversion circuit 42, controller 43, and display 4
4 and so on.

【0016】コントローラ43のCPU50は、後述す
るように、磁気感知体30によって検出される第1磁石
21と第2磁石22による起電力の積分値I1 ,I
2 と、予め求めておいたマップや計算式などに基づい
て、測定時の温度Tにおける第1磁石21から磁気感知
体30までの最短距離X1 を算出したのち、磁石21の
温度Tを算出し、更に必要に応じて表示器44に温度を
表示するようにしている。
The CPU 50 of the controller 43, as will be described later, integrates the electromotive forces I 1 and I of the first magnet 21 and the second magnet 22 detected by the magnetic sensor 30.
2, and the temperature T of the magnet 21 is calculated after calculating the shortest distance X 1 from the first magnet 21 to the magnetic sensor 30 at the temperature T at the time of measurement based on the map and the calculation formula obtained in advance. In addition, the temperature is displayed on the display 44 if necessary.

【0017】以下に、電気回路部40によって温度Tを
求めるプロセスについて説明する。ホィール15が回転
すると、第1磁石21と第2磁石22がホィール15と
一体に回転し、各磁石21,22が磁気感知体30の近
傍を通過する。そして磁石21,22が磁気感知体30
の近傍を通過するたびに磁場が経時的に変化することに
より、図3に示すような誘導起電力が生じる。
The process of obtaining the temperature T by the electric circuit section 40 will be described below. When the wheel 15 rotates, the first magnet 21 and the second magnet 22 rotate together with the wheel 15, so that the magnets 21 and 22 pass near the magnetic sensor 30. Then, the magnets 21 and 22 are the magnetic sensor 30.
The magnetic field changes with time each time it passes in the vicinity of, causing an induced electromotive force as shown in FIG.

【0018】誘導起電力はホィール15の回転角速度に
依存するが、電圧波形の時間積分の最大値I(第1磁石
21による時間積分の最大値はI1 ,第2磁石22によ
る時間積分の最大値はI2 )は、磁石21,22と磁気
感知体30との相対位置すなわちX軸方向の最短距離X
1 ,X2 と磁石21,22の温度Tで決定され、ホィー
ル15の回転角速度には依存しない。本実施例では、誘
導起電力の時間積分の最大値Iを出力とする。
The induced electromotive force depends on the rotational angular velocity of the wheel 15, but the maximum value I of the time integration of the voltage waveform (the maximum value of the time integration by the first magnet 21 is I 1 , the maximum of the time integration by the second magnet 22 is the maximum). The value I 2 ) is the relative position between the magnets 21 and 22 and the magnetic sensor 30, that is, the shortest distance X in the X-axis direction.
1 , X 2 and the temperature T of the magnets 21, 22 and are independent of the angular velocity of rotation of the wheel 15. In this embodiment, the maximum value I of the time integration of the induced electromotive force is output.

【0019】磁石21,22の発生磁束密度は温度Tに
応じて一定の割合で変化するから、上記積分値Iも温度
Tに応じて変化する。すなわち、温度Tの時の積分値I
と最短距離Xとの関係は次式で与えられる。
Since the magnetic flux density generated by the magnets 21 and 22 changes at a constant rate depending on the temperature T, the integrated value I also changes depending on the temperature T. That is, the integrated value I at the temperature T
And the shortest distance X is given by the following equation.

【0020】 I=J(T)f(X) …(1) f(X)は永久磁石の形状と磁化の方向および電磁コイ
ルの形状で決まる最短距離Xの関数、 J(T)は温度Tにおける磁力の大きさを示す量であ
り、 J(T)=J0 {1−k(T−T0 )} …(2) で表される。ここで T0 :基準温度 T :測定時の温度 J0 :基準温度T0 における永久磁石の磁力の大きさ k :温度が1℃上昇した時の磁力変化の割合 従って、第1磁石21による積分値I1 と第2磁石22
による積分値I2 は、それぞれの最短距離をX1 ,X2
(X2 =X1 +δX)としたとき、上記(1)式によ
り、 I1 =J(T)f(X1 ) …(3) I2 =J(T)f(X1 +δX) …(4) で表される。(4)式を(3)式で割ると、 I2 /I1 ={J(T)f(X1 +δX)}/{J(T)f(X1 )} =f(X1 +δX)/f(X1 ) …(5) となる。
I = J (T) f (X) (1) f (X) is a function of the shortest distance X determined by the shape of the permanent magnet and the direction of magnetization and the shape of the electromagnetic coil, and J (T) is the temperature T Is an amount indicating the magnitude of the magnetic force at, and is represented by J (T) = J 0 {1-k (T−T 0 )} (2). Here, T 0 : reference temperature T: temperature at the time of measurement J 0 : magnitude of magnetic force of the permanent magnet at the reference temperature T 0 k: rate of change in magnetic force when temperature rises by 1 ° C. Therefore, integration by the first magnet 21 Value I 1 and second magnet 22
Integral value I 2 of each of the shortest distances X 1 and X 2
When (X 2 = X 1 + δX), I 1 = J (T) f (X 1 ) (3) I 2 = J (T) f (X 1 + δX) ((3) 4) is represented by. When the equation (4) is divided by the equation (3), I 2 / I 1 = {J (T) f (X 1 + δX)} / {J (T) f (X 1 )} = f (X 1 + δX) / F (X 1 ) ... (5)

【0021】すなわち、積分比I2 /I1 は各磁石2
1,22の磁力とは無関係で温度変化に左右されない値
であり、図4に示されるように距離X(最短距離X1
のみに依存する。また、δXは予め決めた固定値であ
る。従って、I2 /I1 とX1 との関係を予め実測ある
いは計算等によって求めておくことにより、I2 /I1
を与えた時にX1 が得られるようにしておく。
That is, the integral ratio I 2 / I 1 is equal to each magnet 2
It is a value that is independent of the temperature change regardless of the magnetic forces of 1 and 22, and as shown in FIG. 4, the distance X (shortest distance X 1 )
Depends only on. Further, δX is a predetermined fixed value. Therefore, by previously obtaining the relationship between I 2 / I 1 and X 1 by actual measurement or calculation, I 2 / I 1
So that X 1 can be obtained when is given.

【0022】一方、基準温度T0 における積分値I1 °
と最短距離X1 との関係は、 I1 °=J(T0 )f(X1 ) で表される。ここで、J(T0 )は、前記(2)式によ
り、 J(T0 )=J0 {1−k(T0 −T0 )}で表される
から、 I1 °=J0 {1−k(T0 −T0 )}f(X1 ) =J0 f(X1 ) …(6) で表される。
On the other hand, the integrated value I 1 ° at the reference temperature T 0
And the shortest distance X 1 are represented by I 1 ° = J (T 0 ) f (X 1 ). Here, since J (T 0 ) is represented by J (T 0 ) = J 0 {1-k (T 0 −T 0 )} from the above equation (2), I 1 ° = J 0 { 1-k (T 0 −T 0 )} f (X 1 ) = J 0 f (X 1 ) ... (6)

【0023】すなわち、基準温度T0 における出力I1
°は、基準温度T0 における第1磁石21の磁力J0
定まれば、最短距離X1 のみによって決まる値であっ
て、図5に示されるような関係がある。この関係を予め
実測あるいは計算等によって求めておけば、X1 を与え
た時に、T0 における出力I1 °(基準出力)を求める
ことができる。
That is, the output I 1 at the reference temperature T 0
°, if the magnetic force J 0 of the first magnet 21 at the reference temperature T 0 is determined, a value determined only by the shortest distance X 1, related as shown in FIG. If this relationship is obtained in advance by actual measurement or calculation, the output I 1 ° (reference output) at T 0 can be obtained when X 1 is given.

【0024】また、測定時の温度Tにおいて検出された
第1磁石21の積分値I1 は、最短距離X1 と温度Tの
時の磁力J(T)に依存し、 I1 =J(T)f(X1 ) …(7) で表される。
The integrated value I 1 of the first magnet 21 detected at the temperature T during measurement depends on the shortest distance X 1 and the magnetic force J (T) at the temperature T: I 1 = J (T ) F (X 1 ) ... (7)

【0025】上記(6)(7)式を辺々除すると、 I1 /I1 °={J(T)f(X1 )}/J0 f(X1 ) =J(T)/J0 前記(2)式により、 J(T)=J0 {1−k(T−T0 )} であるから、 I1 /I1 °=[J0 {1−k(T−T0 )}]/J0 =1−k(T−T0 ) ゆえに、T=T0 +(1−I1 /I1 °)/k …(8) ここで、T0 は基準温度(既知の値)、I1 は磁気感知
体30によって実際に検出される積分値(出力)、I1
°は最短距離X1 が求まった時に既知の関係から算出さ
れる値、kは温度が1℃上昇した時の磁力変化の割合
(既知の定数)である。従って、上記(8)式により、
温度Tが求まる。また、基準温度T0 からの温度変化量
は、(T−T0 )によって求まる。
When the above equations (6) and (7) are divided along each other, I 1 / I 1 ° = {J (T) f (X 1 )} / J 0 f (X 1 ) = J (T) / J 0 According to the equation (2), since J (T) = J 0 {1-k (T-T 0 )}, I 1 / I 1 ° = [J 0 {1-k (T-T 0 ) } / J 0 = 1−k (T−T 0 ), therefore T = T 0 + (1−I 1 / I 1 °) / k (8) where T 0 is the reference temperature (known value ), I 1 is an integral value (output) actually detected by the magnetic sensor 30, I 1
° is a value calculated from a known relationship when the shortest distance X 1 is obtained, and k is a rate of change in magnetic force when the temperature rises by 1 ° C. (known constant). Therefore, according to the above equation (8),
The temperature T is obtained. Further, the amount of temperature change from the reference temperature T 0 is obtained by (T−T 0 ).

【0026】上記実施例では、理解しやすいように、第
1磁石21から磁気感知体30までの最短距離X1 を基
準にして説明したが、第2磁石22からの最短距離X2
を基準にして前述の計算を行っても同様の結果が得られ
る。また、第1部材と第2部材はホィールと車体側の部
材に限ることなく、要するに互いに相対運動をする一対
の部材であればよく、回転運動以外の動きであってもよ
い。
In the above embodiment, for the sake of easy understanding, the shortest distance X 1 from the first magnet 21 to the magnetic sensing body 30 is used as a reference, but the shortest distance X 2 from the second magnet 22 is described.
The same result can be obtained by performing the above calculation with reference to. Further, the first member and the second member are not limited to the wheel and the member on the vehicle body side, but may be any pair of members that make relative movement with each other, and may be movements other than rotational movement.

【0027】また、上記実施例では永久磁石を2個用い
て1軸方向の相対位置と温度を求めたが、永久磁石を3
個用いれば、2軸方向の相対位置と温度を求めることが
可能である。更に、永久磁石を4個用いれば、3軸方向
の位置関係と温度を求めることができる。
In the above embodiment, two permanent magnets were used to determine the relative position and temperature in the uniaxial direction.
If used individually, it is possible to obtain the relative position in the biaxial directions and the temperature. Furthermore, if four permanent magnets are used, the positional relationship in the three axial directions and the temperature can be obtained.

【0028】なお、本発明の他の実施例として、図6に
示すように1個の永久磁石21と、X軸方向に互いに位
置をずらして配置した第1の磁気感知体30aおよび第
2の磁気感知体30bを含む感知手段を用い、前記実施
例と同様のプロセスを経て、磁石21から一方の磁気感
知体30aまでの最短距離X1 、あるいは磁石21から
他方の磁気感知体30bまでの最短距離X2 を求めたの
ち、温度Tを求めるようにすることもできる。この場
合、磁気感知体を3個用いれば、2軸方向の相対位置と
温度を求めることができ、磁気感知体を4個用いれば3
軸方向の相対位置と温度を求めることが可能となる。ま
た、磁石と磁気感知体をそれぞれ複数個ずつ組合わせて
使用してもよい。
As another embodiment of the present invention, as shown in FIG. 6, one permanent magnet 21, a first magnetic sensor 30a and a second magnetic sensor 30a which are arranged so as to be displaced from each other in the X-axis direction. The shortest distance X 1 from the magnet 21 to the one magnetic sensor 30a or the shortest distance from the magnet 21 to the other magnetic sensor 30b is obtained by using the sensing means including the magnetic sensor 30b, through the same process as the above embodiment. It is also possible to obtain the temperature T after obtaining the distance X 2 . In this case, if three magnetic sensors are used, the relative position and temperature in the biaxial directions can be obtained, and if four magnetic sensors are used, three can be obtained.
It is possible to obtain the relative position in the axial direction and the temperature. Also, a plurality of magnets and a plurality of magnetic sensors may be used in combination.

【0029】[0029]

【発明の効果】本発明によれば、互いに相対運動する第
1部材と第2部材との基準位置が変化しても、この変化
に影響されることなく温度を正確に検出することができ
る。
According to the present invention, even if the reference positions of the first member and the second member that move relative to each other change, the temperature can be accurately detected without being affected by this change.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す非接触温度検出装置を
備えた車輪部の断面と電気回路部のブロックを示す図。
FIG. 1 is a diagram showing a cross section of a wheel unit and a block of an electric circuit unit equipped with a non-contact temperature detecting device according to an embodiment of the present invention.

【図2】図1に示された温度検出装置の磁石と磁気感知
体との関係を示す図。
FIG. 2 is a diagram showing a relationship between a magnet and a magnetic sensor of the temperature detecting device shown in FIG.

【図3】図1に示された温度検出装置における磁気感知
体の出力を示す図。
FIG. 3 is a diagram showing an output of a magnetic sensor in the temperature detecting device shown in FIG.

【図4】最短距離Xと積分比(I2 /I1 )との関係を
示す図。
FIG. 4 is a diagram showing a relationship between the shortest distance X and an integration ratio (I 2 / I 1 ).

【図5】基準温度T0 における最短距離Xと積分値I°
との関係を示す図。
FIG. 5 is the shortest distance X at a reference temperature T 0 and an integrated value I °
FIG.

【図6】本発明の他の実施例を示す非接触温度検出装置
の一部の断面図。
FIG. 6 is a partial sectional view of a non-contact temperature detecting device according to another embodiment of the present invention.

【符号の説明】 10…温度検出装置、12…第1部材(車輪部)、13
…第2部材(車体側の部材)、21…第1磁石、22…
第2磁石、23…磁石部、30…磁気感知体、40…電
気回路部。
[Explanation of reference numerals] 10 ... Temperature detecting device, 12 ... First member (wheel portion), 13
... second member (body-side member), 21 ... first magnet, 22 ...
2nd magnet, 23 ... Magnet part, 30 ... Magnetic sensing body, 40 ... Electric circuit part.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】互いに相対運動する第1部材および第2部
材と、 上記第1部材に設けられた第1磁石および第2磁石を含
む複数の永久磁石からなる磁石部と、 上記第2部材に設けられかつ上記磁石との相対位置に応
じた大きさの出力を生じる少なくとも1つの磁気感知体
を備えた感知手段と、 予め求めておいた上記磁石ごとの出力と上記磁石と各磁
気感知体の相対位置との既知の関係に基づいて、実際に
検出された出力により、上記磁石と磁気感知体との相対
位置を算出したのち、予め求めておいた基準温度におけ
る上記磁石と磁気感知体との相対位置と上記磁気感知体
の出力との関係に基づいて、基準温度における基準出力
を算出し、算出された上記基準出力と実際に検出された
上記出力に基づいて温度を算出する電気回路部と、 を具備したことを特徴とする非接触温度検出装置。
1. A first member and a second member that move relative to each other, a magnet portion provided on the first member and composed of a plurality of permanent magnets including a first magnet and a second magnet, and the second member. A sensing means provided with at least one magnetic sensing body for producing an output of a magnitude corresponding to the relative position with the magnet; an output for each magnet previously obtained; Based on the known relationship with the relative position, the relative position between the magnet and the magnetic sensor is calculated by the actually detected output, and then the relative position between the magnet and the magnetic sensor at the reference temperature obtained in advance is calculated. An electric circuit unit that calculates a reference output at a reference temperature based on the relationship between the relative position and the output of the magnetic sensor, and calculates the temperature based on the calculated reference output and the actually detected output. Equipped with A non-contact temperature detection device characterized by the above.
【請求項2】互いに相対運動する第1部材および第2部
材と、 上記第1部材に設けられた少なくとも1個の永久磁石を
含む磁石部と、 上記第2部材に設けられかつ上記磁石との相対位置に応
じた大きさの出力を生じる第1磁気感知体および第2磁
気感知体を含む複数の磁気感知体を備えた感知手段と、 予め求めておいた上記磁石ごとの出力と上記磁石と各磁
気感知体の相対位置との既知の関係に基づいて、実際に
検出された出力により、上記磁石と磁気感知体との相対
位置を算出したのち、予め求めておいた基準温度におけ
る上記磁石と磁気感知体との相対位置と上記磁気感知体
の出力との関係に基づいて、基準温度における基準出力
を算出し、算出された上記基準出力と実際に検出された
上記出力に基づいて温度を算出する電気回路部と、 を具備したことを特徴とする非接触温度検出装置。
2. A first member and a second member which move relative to each other, a magnet portion including at least one permanent magnet provided in the first member, and a magnet provided in the second member and the magnet. Sensing means including a plurality of magnetic sensing bodies including a first magnetic sensing body and a second magnetic sensing body that generate an output having a magnitude corresponding to a relative position; an output for each magnet and a magnet that are obtained in advance; Based on the known relationship with the relative position of each magnetic sensor, the relative position between the magnet and the magnetic sensor is calculated from the actually detected output, and then the magnet at the reference temperature determined in advance A reference output at the reference temperature is calculated based on the relationship between the relative position with respect to the magnetic sensor and the output of the magnetic sensor, and the temperature is calculated based on the calculated reference output and the actually detected output. With the electric circuit section Non-contact temperature detecting apparatus characterized by comprising a.
JP23216392A 1992-08-31 1992-08-31 Non-contact temperature detector Pending JPH0682316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23216392A JPH0682316A (en) 1992-08-31 1992-08-31 Non-contact temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23216392A JPH0682316A (en) 1992-08-31 1992-08-31 Non-contact temperature detector

Publications (1)

Publication Number Publication Date
JPH0682316A true JPH0682316A (en) 1994-03-22

Family

ID=16934988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23216392A Pending JPH0682316A (en) 1992-08-31 1992-08-31 Non-contact temperature detector

Country Status (1)

Country Link
JP (1) JPH0682316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032087A1 (en) * 1994-05-24 1995-11-30 Boschman Holding B.V. Method and installation for encasing articles
WO2021187865A1 (en) * 2020-03-16 2021-09-23 엘지전자 주식회사 Clothes treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032087A1 (en) * 1994-05-24 1995-11-30 Boschman Holding B.V. Method and installation for encasing articles
WO2021187865A1 (en) * 2020-03-16 2021-09-23 엘지전자 주식회사 Clothes treatment apparatus
US12173444B2 (en) 2020-03-16 2024-12-24 Lg Electronics Inc. Clothes treatment apparatus

Similar Documents

Publication Publication Date Title
Anandan et al. A wide-range capacitive sensor for linear and angular displacement measurement
US4668914A (en) Circular, amorphous metal, Hall effect magnetic field sensor with circumferentially spaced electrodes
US6448763B1 (en) System for magnetization to produce linear change in field angle
US5742160A (en) Apparatus for determining angular position and rotational speed using a rotating magnet and a directional magnetometer
CN203642873U (en) Magnetic sensor module with multiple sensors
JPH11513797A (en) Position detection encoder
JPH051914A (en) Compensating magnetized vector
JP2003215145A (en) Rotational frequency detector
EP3767241A1 (en) Magnetic field sensor with stray field immunity and large air gap performance
EP0716306A2 (en) Shaft rotation sensor with spaced directional magnetic sensors and method
JP2009053056A (en) Magnetic moving body speed detector
CN104374412A (en) Magnetic field structure for magnetic induction gear encoder
CN103376051A (en) Device and method for sensing angle position
JPH02201117A (en) Apparatus for detecting motion of member
JPH02206716A (en) Running azimuth detection device for vehicle
CN202836504U (en) Magnet device and position sensing system
JPH0682316A (en) Non-contact temperature detector
US20160349080A1 (en) Magnetic sensor for determining the relative position between a magnetized target and a measurement system
JPH0682206A (en) Non-contact position detector
CN202974183U (en) Sensor for sensing angle position scope of rotating shaft
JP2002090109A (en) Rotating angle detector, torque detector and steering device
TWI662255B (en) Magnetic encoder for measuring deflection of rotating shaft and device thereof
US9612135B2 (en) Device for determining motion parameters
JP2000502805A (en) Magnetic head deflection detection device
EP0606942A1 (en) Angular speed and position measuring device and method