JPH0681710A - Local reinforcing method for cylinder head made of aluminum - Google Patents
Local reinforcing method for cylinder head made of aluminumInfo
- Publication number
- JPH0681710A JPH0681710A JP23233892A JP23233892A JPH0681710A JP H0681710 A JPH0681710 A JP H0681710A JP 23233892 A JP23233892 A JP 23233892A JP 23233892 A JP23233892 A JP 23233892A JP H0681710 A JPH0681710 A JP H0681710A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder head
- aluminum
- heat
- thermal
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は内燃機関等のアルミ製シ
リンダヘッドの局部強化方法に係り、特に強化肉盛によ
るアルミ製シリンダヘッドの局部強化方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for locally strengthening an aluminum cylinder head of an internal combustion engine or the like, and more particularly to a method for locally strengthening an aluminum cylinder head by means of reinforced overlay.
【0002】[0002]
【従来の技術】近年、エンジンの高出力化に伴い、アル
ミ製シリンダヘッドに対する温度上昇による熱負荷の増
大や、機械的負荷の増大が問題となっている。2. Description of the Related Art In recent years, with the increase in engine output, there has been a problem that an increase in heat load due to a temperature rise on an aluminum cylinder head and an increase in mechanical load.
【0003】即ち、図6に示すように、この負荷増大に
より、アルミ製シリンダヘッド1の下面、特に他の部位
より比較的肉薄な部分である吸気ポート2と排気ポート
3との間(弁間部)、及びこれらポート2,3とホット
プラグ孔4との間の部分に、熱亀裂5が生じてしまう。That is, as shown in FIG. 6, due to this increase in load, the lower surface of the aluminum cylinder head 1, especially between the intake port 2 and the exhaust port 3 which is a relatively thinner portion than other portions (intervalve). Portion) and a portion between these ports 2 and 3 and the hot plug hole 4 will have thermal cracks 5.
【0004】この熱亀裂を防止する対策として従来採用
されている局部強化方法には、次のような技術があっ
た。まず第1の手段は合金化による局部強化方法であ
り、耐熱成分(Cr,Mo,Cu,Ni等)を適量添加
し、耐熱強度を向上させるものであった。The local strengthening method conventionally adopted as a measure to prevent this thermal cracking has the following techniques. First, the first means is a local strengthening method by alloying, in which an appropriate amount of heat resistant components (Cr, Mo, Cu, Ni, etc.) is added to improve heat resistant strength.
【0005】また第2の手段は鋳包みによる局部強化方
法であり、熱亀裂発生部位に鉄鋼材料,耐熱金属材料を
鋳包むものであった。The second means is a local strengthening method by casting, in which a steel material or a refractory metal material is cast in a thermal cracking site.
【0006】さらに第3の手段は改良処理による局部強
化方法であり、ストロンチウムやチタンを適量添加し、
析出する結晶粒を微細化し、引張強度を高めると同時
に、伸び特性を向上させ、耐熱亀裂性を向上させるもの
であった。Further, the third means is a local strengthening method by an improved treatment, in which an appropriate amount of strontium or titanium is added,
The crystal grains to be precipitated were made finer, the tensile strength was increased, and at the same time, the elongation property was improved and the heat crack resistance was improved.
【0007】そして第4の手段は硬質アルマイト処理に
よる局部強化方法であり、硬質アルマイト処理被膜を 1
00μm程度の厚さに形成させることで耐熱性を向上させ
るものであった。And, the fourth means is a local strengthening method by a hard alumite treatment.
The heat resistance was improved by forming it to a thickness of about 00 μm.
【0008】加えて第5の手段は再溶融処理による局部
強化方法であり、レーザ,電子ビーム,TIG等の高密
度エネルギ源によりアルミ母材を溶融、急冷凝固させる
ことで、結晶粒の微細化を図り耐熱強度を高めるもので
あった。In addition, the fifth means is a local strengthening method by remelting treatment, in which the aluminum base material is melted and rapidly cooled and solidified by a high-density energy source such as laser, electron beam, TIG, etc., whereby the crystal grains are miniaturized. It was intended to improve heat resistance.
【0009】[0009]
【発明が解決しようとする課題】ところで、従来のアル
ミ製シリンダヘッドの局部強化方法にあっては、次のよ
うな問題があった。The conventional local strengthening method for an aluminum cylinder head has the following problems.
【0010】まず第1の手段としての合金化による局部
強化方法は、コスト高となるほか、合金添加により鋳造
性が悪くなり、“引け巣”等の鋳造欠陥の発生により、
生産性、歩留りの悪化を伴うという問題があった。ま
た、鋳造性の悪化により、耐熱強度に大きな影響を及ぼ
すミクロシュリンケージが多くなり、合金化によってか
えって耐熱強度を悪化させることになるという問題があ
った。First, the local strengthening method by alloying as the first means increases the cost and deteriorates the castability due to the addition of the alloy, and causes casting defects such as "shrinkage cavities".
There was a problem that productivity and yield were deteriorated. In addition, there is a problem that due to the deterioration of the castability, the amount of micro-shrinkage that has a great influence on the heat resistance increases, and the alloying rather deteriorates the heat resistance.
【0011】また第2の手段としての鋳包みによる局部
強化方法は、鋳包み性の確保のため、鋳包み鉄鋼材料の
前処理としてアルミナイズ処理を必要とするほか、酸化
防止、鋳包み温度の徹底管理、及び鋳包み後の非破壊検
査が必要となり、大幅な工数増大になるという問題があ
った。In addition, the local strengthening method by casting as a second means requires aluminizing treatment as a pretreatment of the cast-in steel material in order to secure the cast-in property, as well as the oxidation prevention and the casting temperature. Thorough management and non-destructive inspection after casting have been required, resulting in a significant increase in man-hours.
【0012】さらに第3の手段としての改良処理による
局部強化方法は、簡便な改良方法であるが、強化効果が
小さいという問題があった。Further, the local strengthening method by the improving process as the third means is a simple improving method, but there is a problem that the strengthening effect is small.
【0013】そして第4の手段としての硬質アルマイト
処理による局部強化方法は、耐熱性向上効果は上記合金
化や改良処理と比べ大きいが、亀裂発生部位のみを処理
するためには、他の部位のマスキングによるアルマイト
除去処理が必要となり、手間がかかる高価な処理となる
という問題があった。The local strengthening method by the hard alumite treatment as the fourth means has a larger heat resistance improving effect than the above alloying or improving treatment, but in order to treat only the cracked portion, the other portion is treated. There has been a problem that an alumite removing process by masking is required, which is a laborious and expensive process.
【0014】加えて第5の手段としての再溶融処理によ
る局部強化方法は、処理方法が簡便で耐熱性向上効果が
大きい処理であるが、現在求められている耐熱性向上目
標に対して不充分であるという問題があった。In addition, the local strengthening method by remelting treatment as the fifth means is a treatment having a simple treatment method and a large effect of improving heat resistance, but it is insufficient for the heat resistance improvement target currently required. There was a problem that was.
【0015】本発明の目的は、上記課題に鑑み、簡便か
つ安価に亀裂発生予想部位の耐熱性を充分に向上させ
て、熱亀裂の発生を防止することができるアルミ製シリ
ンダヘッドの局部強化方法を提供することにある。In view of the above-mentioned problems, an object of the present invention is to simply and inexpensively sufficiently improve the heat resistance of a portion where cracks are expected to occur and prevent the occurrence of thermal cracks. To provide.
【0016】[0016]
【課題を解決するための手段】上記目的を達成すべく本
発明に係るアルミ製シリンダヘッドの局部強化方法は、
アルミ製シリンダヘッドの非肉盛時における亀裂発生予
想部位を耐熱成分で肉盛強化した後、この非肉盛時にお
ける亀裂発生予想部位と上記強化肉盛後における亀裂発
生予想部位との中間位置に、上記耐熱成分肉盛部を除去
後、熱膨脹緩衝材を再肉盛するようにしたものである。In order to achieve the above-mentioned object, a method for locally strengthening an aluminum cylinder head according to the present invention comprises:
After strengthening the predicted crack occurrence part of the aluminum cylinder head during non-build-up with a heat resistant component, it is located at an intermediate position between this predicted crack occurrence part during non-build-up and the crack occurrence predicted part after the above-mentioned strengthened build-up. After removing the heat-resistant component build-up portion, the thermal expansion cushioning material is built up again.
【0017】好ましくは、上記熱膨脹緩衝材が上記シリ
ンダヘッドの母材としてのアルミ鋳物より熱亀裂に強
く、且つ上記母材と同等の熱膨脹係数を有するアルミ系
合金からなるものである。Preferably, the thermal expansion cushioning material is made of an aluminum-based alloy that is more resistant to thermal cracking than an aluminum casting as a base material of the cylinder head and has a thermal expansion coefficient equivalent to that of the base material.
【0018】[0018]
【作用】上記構成によれば、アルミ製シリンダヘッドの
非肉盛時における亀裂発生予想部位が耐熱成分で肉盛強
化される。従って、この強化肉盛によって非肉盛時にお
ける亀裂発生予想部位の耐熱性が向上され、当該部位に
おける熱亀裂の発生が防止されることになる。According to the above-mentioned structure, the portion where cracks are expected to occur when the aluminum cylinder head is not overlaid is reinforced with the heat resistant component. Therefore, this reinforced overlay improves the heat resistance of the portion where cracks are expected to occur when the overlay is not built up, and prevents the occurrence of thermal cracks in that portion.
【0019】しかし、この強化肉盛によって非肉盛時に
おける亀裂発生予想部位の耐熱性が向上された結果、こ
の強化肉盛後に熱亀裂の発生する部位が、当該強化肉盛
部以外の位置に変化する。このように熱亀裂の発生する
部位が変化する原因は、肉盛材質としての耐熱成分と母
材としてのアルミ鋳物との熱膨脹係数の違いにあると考
えられる。However, as a result of improving the heat resistance of the predicted cracking site during non-build-up by this reinforced build-up, the site where thermal cracking occurs after this reinforced build-up is located at a position other than the reinforced build-up part. Change. It is considered that the cause of the change of the site where the thermal crack occurs is due to the difference in the thermal expansion coefficient between the heat-resistant component as the overlay material and the aluminum casting as the base material.
【0020】そこで、この非肉盛時における亀裂発生予
想部位と上記強化肉盛後における亀裂発生予想部位との
中間位置に、上記耐熱成分肉盛部を除去後、熱膨脹緩衝
材が再肉盛される。この再肉盛に使用される熱膨脹緩衝
材は、シリンダヘッドの母材としてのアルミ鋳物より熱
亀裂に強く、且つ上記母材と同等の熱膨脹係数を有する
アルミ系合金である。すなわち、アルミ製シリンダヘッ
ドの最弱部位のみに耐熱成分による肉盛強化を行い、上
記中間位置については熱膨張差による熱応力の緩和を図
ったものである。この中間位置には上記非肉盛時におけ
る亀裂発生予想部位程の耐熱性は不要である。Therefore, after removing the heat resistant component build-up portion, the thermal expansion cushioning material is re-build-up at an intermediate position between the site where the crack is expected to occur during the non-buildup and the site where the crack is expected to be produced after the reinforced buildup. It The thermal expansion cushioning material used for the re-buildup is an aluminum-based alloy that is more resistant to thermal cracking than the aluminum casting used as the base material of the cylinder head and has a thermal expansion coefficient equivalent to that of the base material. That is, the buildup is strengthened by the heat-resistant component only in the weakest part of the aluminum cylinder head, and the thermal stress due to the difference in thermal expansion is alleviated at the intermediate position. This intermediate position does not need to have the heat resistance as much as the predicted crack initiation site during non-buildup.
【0021】[0021]
【実施例】以下、本発明に係るアルミ製シリンダヘッド
の局部強化方法の好適一実施例を添付図面に基づいて詳
述する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a method for locally strengthening an aluminum cylinder head according to the present invention will be described in detail below with reference to the accompanying drawings.
【0022】図1は、本実施例のアルミ製シリンダヘッ
ドの局部強化方法を示す概略図である。図示されている
ように、まずアルミ製シリンダヘッド10の非肉盛時に
おける亀裂発生予想部位11に耐熱成分を肉盛12して
局部強化する。この非肉盛時における亀裂発生予想部位
11とは、アルミ製シリンダヘッド10の下面、特に他
の部位より比較的肉薄な部分である吸気ポート13と排
気ポート14との間(弁間部)、及びこれらポート1
3,14とホットプラグ孔15との間の部分である。具
体的には、図2に示すように、D−C−Eの三角形で囲
まれた部分であり、特に、発生する熱亀裂の頻度が大き
く、その大きさが大きい部位は、斜線部X,Yで示した
部位である。上記耐熱成分は、例えば、Ni,Co,M
o,Cu,W等からなり、当該耐熱成分により形成した
カプセル粉末を充填した溶接ワイヤを用いて、TIG溶
接とMIG溶接との複合溶接により肉盛12を行う。FIG. 1 is a schematic view showing a method of locally strengthening an aluminum cylinder head of this embodiment. As shown in the drawing, first, a heat-resistant component is overlaid 12 on the predicted crack occurrence site 11 when the aluminum cylinder head 10 is not overlaid to locally strengthen it. The crack occurrence predicted portion 11 at the time of non-buildup is the lower surface of the aluminum cylinder head 10, especially between the intake port 13 and the exhaust port 14 (interval valve portion), which is a portion relatively thinner than other portions, And these ports 1
It is a portion between 3, 14 and the hot plug hole 15. Specifically, as shown in FIG. 2, it is a portion surrounded by a triangle D-C-E, and in particular, the frequency of thermal cracks that occur is large, and the portion having a large size is a shaded portion X, This is the part indicated by Y. The heat-resistant component is, for example, Ni, Co, M
The overlay 12 is performed by composite welding of TIG welding and MIG welding using a welding wire made of o, Cu, W or the like and filled with a capsule powder formed of the heat resistant component.
【0023】次に、上記非肉盛時における亀裂発生予想
部位11(斜線部X,Y)と上記強化肉盛後における亀
裂発生予想部位16との中間位置17に、上記耐熱成分
肉盛部12を除去後、熱膨脹緩衝材18を再肉盛19す
る。この強化肉盛後における亀裂発生予想部位16と
は、図3に示すように、上記斜線部X,Yの近傍部x,
yである。従って、これら斜線部X,Yとその近傍部
x,yとの中央が上記中間位置17となり、当該中間位
置17にTIG溶接により再肉盛19する。この再肉盛
溶接を行う場合、予め形成した耐熱成分肉盛部12の上
を機械加工にて幅3〜5mm,深さ3〜5mmのV字溝
状に削り取り、そのV字溝に再度肉盛溶接を行う。この
再肉盛19の材料としての熱膨脹緩衝材18は、上記シ
リンダヘッド10の母材としてのアルミ鋳物より熱亀裂
に強く、且つ上記母材と同等の熱膨脹係数を有するアル
ミ系合金からなる。具体的には、JISA1100番系
の純アルミ系の溶接ワイヤ及び低合金のJISA500
0番系の溶接ワイヤ等を使用して再肉盛18を行うもの
である。Next, the heat-resistant component build-up portion 12 is located at an intermediate position 17 between the crack occurrence predicted portion 11 (shaded portions X and Y) during the non-buildup and the crack occurrence predicted portion 16 after the reinforced buildup. After removing, the thermal expansion cushioning material 18 is overlaid 19 again. As shown in FIG. 3, the predicted crack initiation site 16 after the reinforced overlay is a portion x, near the diagonal line portions X, Y, as shown in FIG.
It is y. Therefore, the center between the shaded portions X and Y and the neighboring portions x and y becomes the intermediate position 17, and the overlaying 19 is performed on the intermediate position 17 by TIG welding. When this overlay welding is performed, the heat-resistant component overlay 12 that has been formed in advance is machined into a V-shaped groove having a width of 3 to 5 mm and a depth of 3 to 5 mm, and the V-shaped groove is re-coated. Welding is performed. The thermal expansion cushioning material 18 as a material for the re-buildup 19 is made of an aluminum alloy having a higher thermal expansion coefficient than an aluminum casting as a base material of the cylinder head 10 and having a thermal expansion coefficient equivalent to that of the base material. Specifically, JISA1100 series pure aluminum welding wire and low alloy JISA500
Re-buildup 18 is performed using a No. 0 welding wire or the like.
【0024】次に、上記実施例における作用を述べる。Next, the operation of the above embodiment will be described.
【0025】図2に示したように、ベンチ加速耐久試験
によればアルミ製シリンダヘッド10において熱亀裂が
発生する部位は、D−C−Eの三角形で囲まれた部分で
あることが、従来より判明している。また、発生する熱
亀裂の頻度が大きく、その大きさが大きい部位は、上述
のように斜線部X,Yで示した部位であることも判って
いる。従って、溶接による耐熱成分の強化肉盛12が必
要な部位は斜線部X,Yで示した部位が中心になる。こ
の斜線部X,Yを耐熱成分で肉盛強化した場合、当該斜
線部X,Yは強化され熱亀裂を防止することができる
が、該強化肉盛12により熱亀裂に対して弱くなる位置
が変わってくる。その位置は上記斜線部X,Yの近傍部
x,yとなる。従って、肉盛強化する部位を近傍部x,
yまで延ばす必要がある。As shown in FIG. 2, according to the bench acceleration durability test, the area where the thermal crack occurs in the aluminum cylinder head 10 is the area surrounded by the triangle D-C-E. Better known. It is also known that the frequency of thermal cracks that occur is large and that the size of the size is large as indicated by the shaded portions X and Y as described above. Therefore, the portion where the heat-resistant component reinforcement overlay 12 by welding is required is centered on the portion indicated by the shaded portions X and Y. When the shaded portions X and Y are hardened by a heat-resistant component, the shaded portions X and Y can be strengthened to prevent thermal cracks, but the strengthened welded portions 12 make the positions weak against heat cracks. It will change. The position is the vicinity x, y of the shaded portions X, Y. Therefore, the portion for strengthening the build-up is located in the vicinity x,
Need to extend to y.
【0026】また、エンジン機種によっては、熱亀裂に
対して弱くなる近傍部x,yが図4に示すz部の位置に
来ることがある。従って、新型エンジンの開発の度に、
強化肉盛後にエンジンの加速耐久試験を行い、肉盛強化
部位を変更したのでは、開発に長期間を要し、開発に要
する費用が非常に大きくなる等の問題がある。Depending on the engine model, the neighboring parts x and y, which are weak against thermal cracks, may come to the position of the z part shown in FIG. Therefore, every time a new engine is developed,
If the engine is subjected to an accelerated durability test after the reinforced overlay and the overlay reinforced portion is changed, it takes a long time for development and there is a problem that the cost required for the development becomes very large.
【0027】そこで、このようにエンジン機種によって
肉盛強化を行うことにより亀裂発生位置が変わる原因を
解析した結果、肉盛材質としての耐熱成分と母材として
のアルミ鋳物との熱膨脹係数の違いによることが判明し
た。すなわち、本発明はアルミ製シリンダヘッド10の
最弱部位のみに強化肉盛12を行い、上記近傍部x,y
については主原因である熱膨張係数の違いの面からの解
決手段を図ったものである。Then, as a result of analyzing the cause of the change in the crack generation position by the overlay strengthening depending on the engine type as described above, it was found that the thermal expansion coefficient was different between the heat resistant component as the overlay material and the aluminum casting as the base material. It has been found. That is, according to the present invention, the strengthening overlay 12 is performed only on the weakest portion of the aluminum cylinder head 10, and the above-mentioned neighboring portions x and y are provided.
Is to solve the problem in terms of the difference in the coefficient of thermal expansion, which is the main cause.
【0028】即ち、上記斜線部X,Yとその近傍部x,
yとの中央である上記中間位置17に熱膨脹緩衝材18
を再肉盛19する方が得策である。なぜなら、この中間
位置17には上記斜線部X,Y程の耐熱性は不要だから
である。従って、図1中、斜線部X,Yの範囲で肉盛1
2し、A−B,C−Dにおける上記斜線部X,Yとその
近傍部x,yとの中間位置17に、母材としてのアルミ
鋳物より熱亀裂に強く、かつ熱膨脹係数は母材と略同等
の熱膨脹緩衝材18を再肉盛19すればよい。図2中、
D−E,F−Gの部分も同様である。このように本発明
は、肉盛溶接という簡便かつ安価な局部強化方法により
亀裂発生予想部位11の耐熱性を充分に向上させて、熱
亀裂の発生を防止することができるものである。That is, the shaded portions X and Y and their neighboring portions x and
At the intermediate position 17 which is the center of y, the thermal expansion cushioning material 18
It is better to re-build 19 above. This is because the intermediate position 17 does not require heat resistance as much as the shaded portions X and Y. Therefore, in FIG. 1, the overlay 1 is formed in the range of the shaded portions X and Y.
2. At the intermediate position 17 between the shaded portions X and Y and the adjacent portions x and y in AB and CD, the aluminum casting as the base material is more resistant to thermal cracks and the coefficient of thermal expansion is different from that of the base material. It suffices to re-build 19 the thermal expansion cushioning material 18 that is substantially the same. In FIG.
The same applies to the portions D-E and F-G. As described above, the present invention is capable of sufficiently improving the heat resistance of the predicted crack initiation site 11 by the overlay welding, which is a simple and inexpensive local strengthening method, and prevents the occurrence of thermal cracks.
【0029】尚、図5に示すように、Vの範囲まで耐熱
成分を肉盛することで熱膨脹差に基づいく熱亀裂を防止
することが可能である。しかし、この方法は、溶接の際
の図4中、Wの幅を広くする必要があり、溶接時間が長
くなることによる予熱温度の管理が難しいこと、及び工
程時間が長くなるなどの問題がある。また、予熱温度管
理が難しくなることで、溶融金属の溶け落ちが生じるな
どの不具合がある。As shown in FIG. 5, it is possible to prevent thermal cracks based on the difference in thermal expansion by overlaying the heat-resistant component up to the range of V. However, in this method, it is necessary to widen the width of W in FIG. 4 at the time of welding, and there are problems that it is difficult to control the preheating temperature due to the long welding time, and the process time becomes long. . Further, it becomes difficult to control the preheating temperature, so that there is a problem that the molten metal is burned down.
【0030】[0030]
【発明の効果】以上述べたように本発明に係るアルミ製
シリンダヘッドの局部強化方法によれば、簡便かつ安価
に亀裂発生予想部位の耐熱性を充分に向上させて、熱亀
裂の発生を防止することができるという優れた効果を発
揮する。As described above, according to the method for locally strengthening the aluminum cylinder head according to the present invention, the heat resistance of the crack occurrence predicted portion can be sufficiently improved easily and inexpensively, and the occurrence of the heat crack can be prevented. The excellent effect of being able to do is exhibited.
【図1】本発明に係るアルミ製シリンダヘッドの局部強
化方法の一実施例を示す概略図である。FIG. 1 is a schematic view showing an embodiment of a method for locally strengthening an aluminum cylinder head according to the present invention.
【図2】本発明に係るアルミ製シリンダヘッドの非肉盛
時の熱亀裂発生予想部位を示す概略図である。FIG. 2 is a schematic diagram showing a predicted site of thermal cracking when the aluminum cylinder head according to the present invention is not overlaid.
【図3】本発明に係るアルミ製シリンダヘッドの強化肉
盛後の熱亀裂発生予想部位を示す概略図である。FIG. 3 is a schematic view showing a predicted site of occurrence of thermal cracks after the hardfacing of the aluminum cylinder head according to the present invention.
【図4】アルミ製シリンダヘッドの機種の違いによる熱
亀裂発生部位の変化を示す概略図である。FIG. 4 is a schematic view showing a change in a thermal crack occurrence site due to a difference in model of an aluminum cylinder head.
【図5】肉盛によるアルミ製シリンダヘッドの局部強化
方法の他の例を示す概略図である。FIG. 5 is a schematic view showing another example of a method for locally strengthening an aluminum cylinder head by overlaying.
【図6】従来のアルミ製シリンダヘッドの熱亀裂発生部
位を示す概略図である。FIG. 6 is a schematic view showing a site where a thermal crack occurs in a conventional aluminum cylinder head.
10 アルミ製シリンダヘッド 11 非肉盛時における亀裂発生予想部位 12 強化肉盛 16 強化肉盛後における亀裂発生予想部位 17 中間位置 18 熱膨脹緩衝材 19 再肉盛 10 Cylinder head made of aluminum 11 Predicted site of crack generation when not built up 12 Reinforced buildup 16 Predicted site of crack generation after reinforced buildup 17 Intermediate position 18 Thermal expansion cushioning material 19 Rebuilding
───────────────────────────────────────────────────── フロントページの続き (72)発明者 肥田 健司 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 松並 裕司 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Hida 8 Tsutana, Fujisawa City Kanagawa Prefecture Isuzu Central Research Institute Co., Ltd. (72) Inventor Yuji Matsunami 8th Tsuna shelf, Fujisawa City Kanagawa Prefecture Isuzu Central Research Co., Ltd. In-house
Claims (2)
ける亀裂発生予想部位を耐熱成分で肉盛強化した後、該
非肉盛時における亀裂発生予想部位と上記強化肉盛後に
おける亀裂発生予想部位との中間位置に、上記耐熱成分
肉盛部を除去後、熱膨脹緩衝材を再肉盛するようにした
ことを特徴とするアルミ製シリンダヘッドの局部強化方
法。1. An aluminum cylinder head, which has a predicted crack generation portion during non-build-up, is strengthened with a heat-resistant component, and then a predicted crack generation area during non-build-up and a predicted crack generation area after the strengthened build-up. A method for locally strengthening an aluminum cylinder head, characterized in that the heat-expansion cushioning material is removed at the intermediate position, and then the thermal expansion cushioning material is re-laid up.
の母材としてのアルミ鋳物より熱亀裂に強く、且つ上記
母材と同等の熱膨脹係数を有するアルミ系合金からなる
請求項1に記載のアルミ製シリンダヘッドの局部強化方
法。2. The aluminum-made alloy according to claim 1, wherein the thermal expansion buffer material is made of an aluminum-based alloy that is more resistant to thermal cracking than an aluminum casting as a base material of the cylinder head and has a thermal expansion coefficient equivalent to that of the base material. Local strengthening method of cylinder head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23233892A JPH0681710A (en) | 1992-08-31 | 1992-08-31 | Local reinforcing method for cylinder head made of aluminum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23233892A JPH0681710A (en) | 1992-08-31 | 1992-08-31 | Local reinforcing method for cylinder head made of aluminum |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0681710A true JPH0681710A (en) | 1994-03-22 |
Family
ID=16937642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23233892A Pending JPH0681710A (en) | 1992-08-31 | 1992-08-31 | Local reinforcing method for cylinder head made of aluminum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0681710A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003011513A3 (en) * | 2001-08-01 | 2003-07-03 | Mazda Motor | Frictional stirring surface treatment method and apparatus |
-
1992
- 1992-08-31 JP JP23233892A patent/JPH0681710A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003011513A3 (en) * | 2001-08-01 | 2003-07-03 | Mazda Motor | Frictional stirring surface treatment method and apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7722330B2 (en) | Rotating apparatus disk | |
EP1775061B1 (en) | Hole repair technique | |
US6117564A (en) | Weld repair process and article repaired thereby | |
JPS61193773A (en) | Improvement processing method for cylinder head for internal combustion engine made of aluminum alloy casting | |
JPH044975A (en) | Part reinforcing method for aluminum cast part | |
JPS61270335A (en) | Build-up valve for internal combustion engine | |
US4483286A (en) | Piston | |
JPH0577042A (en) | Method for reforming surface of cast iron parts | |
Sjöberg et al. | Evaluation of the in 939 alloy for large aircraft engine structures | |
JPH0681710A (en) | Local reinforcing method for cylinder head made of aluminum | |
Reichstein et al. | High-performance cast aluminum pistons for highly efficient diesel engines | |
JPH025705A (en) | Method for repairing exhaust valve for internal combustion engine | |
US3469305A (en) | Method for preventing cracking of machine parts | |
JP2940988B2 (en) | Remelt treatment method for cylinder head | |
JP3419107B2 (en) | Local strengthening method of aluminum alloy cylinder head | |
JP3164137B2 (en) | Manufacturing method of aluminum cylinder head | |
JP3487021B2 (en) | How to locally strengthen aluminum | |
JPH051622A (en) | Al alloy piston for internal combustion engine and its manufacture | |
JP3191362B2 (en) | Local reinforcement method of aluminum casting parts | |
JP3182245B2 (en) | Manufacturing method of aluminum cylinder head | |
JP3052544B2 (en) | Strengthening method of aluminum alloy cast cylinder head | |
JPH01177440A (en) | Cylinder head of aluminum alloy make | |
JP2775885B2 (en) | Cylinder head and method of manufacturing the same | |
JPH04228253A (en) | Method for reinforce-treating interval between valves in cylinder head | |
JPH01218A (en) | Metal surface remelting treatment method |