[go: up one dir, main page]

JPH0681086A - Alloy having ultrafine crystalline-grained structure excellent in corrosion resistance - Google Patents

Alloy having ultrafine crystalline-grained structure excellent in corrosion resistance

Info

Publication number
JPH0681086A
JPH0681086A JP23546792A JP23546792A JPH0681086A JP H0681086 A JPH0681086 A JP H0681086A JP 23546792 A JP23546792 A JP 23546792A JP 23546792 A JP23546792 A JP 23546792A JP H0681086 A JPH0681086 A JP H0681086A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
ultrafine
component
surface film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23546792A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Shunsuke Arakawa
俊介 荒川
Katsuhisa Sugimoto
克久 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23546792A priority Critical patent/JPH0681086A/en
Priority to CN 93117351 priority patent/CN1037534C/en
Priority to DE1993619513 priority patent/DE69319513T2/en
Priority to EP19930114142 priority patent/EP0585940B1/en
Publication of JPH0681086A publication Critical patent/JPH0681086A/en
Priority to US08/628,444 priority patent/US5658398A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain an alloy having an ultrafine crystalline-grained structure excellent in corrosion resistance by incorporating components in a combining state of a specified amt. of hydroxides into a surface film. CONSTITUTION:This ultrafine crystalline alloy is the one in which at least 50% of the structure is constituted of fine crystalline grains and having a surface film in which the components in a combining state of hydroxides are present in a ratio of >=65% to oxide components. In this way, the alloy with an ultrafine crystalline-grained structure remarkably excellent in corrosion resistance can be obtd. In the case it is constituted of the ultrafine crystalline grains having <=500Angstrom grain size, its corrosion resistance is improved as well as its magnetic properties and mechanical properties are improved to preferably obtain the result as the practical material. In particular, the grain size of 20 to 200Angstrom is preferable because the structure is refined and the allay is homogenized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超微細結晶組織を有する
合金に係わり、特に耐蝕性の良好な超微細結晶粒組織を
有する合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy having an ultrafine grain structure, and more particularly to an alloy having an ultrafine grain structure having good corrosion resistance.

【0002】[0002]

【従来の技術】軟磁性材料には、珪素鋼、Fe-Al-Si合
金、アモルファス合金等が知られており、比透磁率μ、
飽和磁束密度Bsが大きいこと等が重要な特性である。
2. Description of the Related Art Silicon steel, Fe-Al-Si alloys, amorphous alloys, etc. are known as soft magnetic materials.
An important characteristic is that the saturation magnetic flux density Bs is large.

【0003】しかし、これらの磁性材料は、いろいろな
環境で使用される可能性があり、磁気特性と共に耐蝕性
も重要な特性の一つである。
However, these magnetic materials may be used in various environments, and in addition to magnetic properties, corrosion resistance is one of the important properties.

【0004】ところで、従来から高Bsと高透磁率を同時
に満足することは、難しいと考えられており、たとえ
ば、Fe基のアモルファス合金は飽和磁束密度は大きいが
軟磁気特性の点ではCo基アモルファス合金に劣ってお
り、Co基アモルファス合金は軟磁気特性は優れるが飽和
磁束密度は十分ではない。
By the way, it has been conventionally considered difficult to simultaneously satisfy high Bs and high magnetic permeability. For example, an Fe-based amorphous alloy has a large saturation magnetic flux density but a Co-based amorphous alloy in terms of soft magnetic characteristics. Inferior to alloys, Co-based amorphous alloys have excellent soft magnetic properties, but their saturation magnetic flux density is not sufficient.

【0005】従来、このように高Bsと高透磁率は両立し
ないと考えられていたが、最近特開平1ー7934号に記載さ
れているように超微細結晶粒からなる合金が高飽和磁束
密度で高透磁率の特性を示すことが明かとなった。この
合金は、超急冷法により一旦アモルファス化した後熱処
理により結晶化することにより製造され、粒径が500オ
ングストロ−ム以下と微細である。
Conventionally, it has been considered that high Bs and high permeability are not compatible with each other, but recently, as described in JP-A-1-7934, an alloy composed of ultrafine crystal grains has a high saturation magnetic flux density. It has become clear that the material exhibits high magnetic permeability. This alloy is manufactured by once being made amorphous by the ultra-quenching method and then crystallized by heat treatment, and has a fine grain size of 500 angstroms or less.

【0006】[0006]

【発明が解決しようとする課題】この超微細結晶粒組織
からなる合金はNb等を含むためある程度の耐蝕性を示
す。しかしながら、この超微細結晶粒組織を有する合金
は、表面に形成する皮膜の状態により耐蝕性が著しくこ
となり通常の状態では腐食感受性が十分でない問題点が
ある。
Since the alloy having the ultrafine crystal grain structure contains Nb and the like, it exhibits a certain degree of corrosion resistance. However, the alloy having this ultrafine grain structure has a problem that the corrosion resistance is remarkably different depending on the state of the film formed on the surface, and the corrosion sensitivity is not sufficient in a normal state.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに鋭意検討の結果本発明者らは、超微細結晶粒組織を
有する合金の中で表面皮膜中に水酸化物の結合状態の成
分が含まれ、かつある割合以上含まれているものが耐蝕
性に著しく優れていることを見いだし本発明に想到し
た。
As a result of intensive studies to solve the above problems, the inventors of the present invention have found that, in an alloy having an ultrafine grain structure, a component of a bonded state of hydroxide in a surface film. The present invention has been accomplished by discovering that the alloys containing γ and containing a certain amount or more have remarkably excellent corrosion resistance.

【0008】本発明は組織の少なくとも50%が粒微細な
結晶粒からなる超微結晶合金において水酸化物の結合状
態の成分が酸化物成分の65%以上の割合で存在する表面
皮膜を有することを特徴とする耐蝕性に優れた超微細結
晶粒組織を有する合金である。水酸化物成分が酸化物成
分の65%以上の割合で含有する表面皮膜が形成している
と著しく耐蝕性が向上する。このような表面皮膜が形成
した超微細結晶粒組織を有する合金は0.1kmol・m-3NaCl
水溶液中で1×10-8kg・m-2・s-1以下の腐食速度のものが
得られやすい。水酸化物はM(OH)xの状態で存在している
と考えられる。Mは遷移金属である。
[0008] The present invention has a surface coating in which a component in a bound state of a hydroxide is present in a proportion of 65% or more of an oxide component in an ultrafine crystalline alloy in which at least 50% of the structure is composed of fine crystal grains. Is an alloy having an ultrafine grain structure excellent in corrosion resistance. When a surface film containing a hydroxide component in a proportion of 65% or more of the oxide component is formed, the corrosion resistance is significantly improved. An alloy with an ultra-fine grain structure formed by such a surface film is 0.1 kmol ・ m -3 NaCl.
It is easy to obtain a corrosion rate of 1 × 10 -8 kg · m -2 · s -1 or less in aqueous solution. The hydroxide is considered to exist in the state of M (OH) x. M is a transition metal.

【0009】主成分がFeからなる合金の場合は表面皮膜
中にFe2+,Fe3+の結合状態の物質を同時に含有する場合
が多い。
In the case of an alloy whose main component is Fe, the surface coating often contains a substance in the bound state of Fe 2 + and Fe 3 + at the same time.

【0010】更にSiを含有する合金の場合は表面皮膜中
にSi4+(SiO2)の結合状態の物質を含有する場合に優れた
耐蝕性を示す。特に耐蝕性が良好な場合はほとんどがSi
O2の状態で存在する。
Further, in the case of an alloy containing Si, excellent corrosion resistance is exhibited when the surface film contains a substance in a bonded state of Si 4 + (SiO 2 ). Especially when the corrosion resistance is good, most of the
Exists in the O2 state.

【0011】表面皮膜中にTa,Nb,Crから選ばれた少なく
とも一つの酸化物を含有する場合には特に優れた耐蝕性
を示す。結合状態は完全な酸化物の状態とは限らず金属
状態との中間的な結合状態で存在している場合が多い。
Zr,Hf,Wから選ばれた少なくとも1つの元素を含有する場
合はアルカリ環境下の耐蝕性が改善される。
When the surface film contains at least one oxide selected from Ta, Nb, and Cr, particularly excellent corrosion resistance is exhibited. The bonded state is not limited to the perfect oxide state, and often exists in an intermediate bonded state with the metallic state.
When it contains at least one element selected from Zr, Hf and W, the corrosion resistance in an alkaline environment is improved.

【0012】粒径が500 以下の超微細結晶粒からなる
場合は耐蝕性がより改善される。また、磁気特性や機械
的性質が向上し、実用材料としてより好ましい結果が得
られる。特に好ましくは20 から200 である。これは
組織が微細化され合金が均質化されるためであると考え
られる。
The corrosion resistance is further improved when the grains are made of ultrafine crystal grains having a grain size of 500 or less. Further, magnetic properties and mechanical properties are improved, and more preferable results as a practical material can be obtained. Particularly preferred is 20 to 200. It is considered that this is because the structure is refined and the alloy is homogenized.

【0013】本発明に係わるの合金組成は、たとえば 組成式: M100-x-y-z-αーβーγAxSiyBzM'αM''βXγ(at%) (但し、MはFe,Co及びNiからなる群から選ばれた少なく
とも一種の元素、AはCu、Ag、Auからなる群から選ばれ
た少なくとも一種の元素、M'はNb,Mo,Ta,Ti,Zr,Hf,Zr,
V,Cr及びWからなる群から選ばれた少なくとも1種の元
素、M''はMn,Al,白金族元素,Sc,Y,希土類元素,Zn,Sn及
びReからなる群から選ばれた少なくとも1種の元素、Xは
C,Ge,P,Ga,Sb,In,Be及びAsからなる群から選ばれた少な
くとも1種の元素であり、x,y,z,α,β及びγはそれぞれ
0≦x≦10,0≦y≦30,0≦z≦25,0≦y+z≦30,1≦α≦20,0
≦β≦20,0≦γ≦20を満たす。)により表される組成が
挙げられる。
The alloy composition according to the present invention has, for example, a composition formula: M100-xyz-α-β-γAxSiyBzM'αM''βXγ (at%) (where M is selected from the group consisting of Fe, Co and Ni). At least one element, A is at least one element selected from the group consisting of Cu, Ag, Au, M'is Nb, Mo, Ta, Ti, Zr, Hf, Zr,
At least one element selected from the group consisting of V, Cr and W, M '' is Mn, Al, platinum group element, Sc, Y, rare earth element, Zn, at least selected from the group consisting of Sn and Re One element, X is
C, Ge, P, Ga, Sb, In, Be and As are at least one element selected from the group consisting of, x, y, z, α, β and γ are respectively
0≤x≤10,0≤y≤30,0≤z≤25,0≤y + z≤30,1≤α≤20,0
≦ β ≦ 20, 0 ≦ γ ≦ 20 are satisfied. ).

【0014】Mは強磁性元素であるFe,Co,Niから選ばれ
た少なくとも一種の元素である。AはCu、Ag、Auからな
る群から選ばれた少なくとも一種の元素であり、M'との
効果により組織を著しく微細化する効果を有する。
M is at least one element selected from the ferromagnetic elements Fe, Co and Ni. A is at least one element selected from the group consisting of Cu, Ag and Au, and has the effect of significantly refining the structure by the effect of M '.

【0015】M'はNb,Mo,Ta,Ti,Zr,Hf,Zr,V,Cr及びWから
なる群から選ばれた少なくとも1種の元素である。Aとの
複合効果により組織を著しく微細化する効果を有する。
これらの中でも特にNb,Ta,Crから選ばれた少なくとも1
種の元素が表面皮膜の状態を変えることが容易となり耐
蝕性改善に有効である。
M'is at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, Zr, V, Cr and W. Due to the combined effect with A, it has the effect of significantly refining the structure.
Of these, at least 1 selected from Nb, Ta, and Cr
It is easy for the elements of the species to change the state of the surface coating, which is effective in improving the corrosion resistance.

【0016】Si,Bはアモルファス化に有用な元素であ
り、磁気特性改善や組織の微細化に効果がある。またSi
は耐蝕性改善に効果があり、表面皮膜にSiO2の状態で存
在する場合に著しく耐蝕性を改善する。
Si and B are elements useful for amorphization, and are effective in improving magnetic characteristics and making the structure finer. Also Si
Has the effect of improving the corrosion resistance, and significantly improves the corrosion resistance when it exists in the state of SiO 2 in the surface film.

【0017】M''はMn,Al,白金族元素,Sc,Y,希土類元素,
Zn,Sn及びReからなる群から選ばれた少なくとも1種の元
素であり、耐蝕性あるいは、磁気特性調整に効果があ
る。XはC,Ge,P,Ga,Sb,In,Be,N及びAsからなる群から選
ばれた少なくとも1種の元素であり、アモルファス形成
を助けたり、磁気特性を調整する効果を有する。
M '' is Mn, Al, platinum group element, Sc, Y, rare earth element,
It is at least one element selected from the group consisting of Zn, Sn, and Re, and is effective in adjusting corrosion resistance or magnetic properties. X is at least one element selected from the group consisting of C, Ge, P, Ga, Sb, In, Be, N and As, and has an effect of assisting amorphous formation and adjusting magnetic properties.

【0018】本発明の表面皮膜は酸素が存在する雰囲気
で熱処理を行うあるいは、アノ−ド酸化により形成する
ことができる。熱処理の際の酸素は多量に存在する必要
はない。
The surface film of the present invention can be formed by heat treatment in an atmosphere containing oxygen or by anodic oxidation. Oxygen need not be present in a large amount during the heat treatment.

【0019】本発明の合金は通常単ロ−ル法、双ロ−ル
法、回転液中紡糸法等の液体急冷法、スパッタ−法、蒸
着法等の気相急冷法等によりアモルファス合金を作製後
これを熱処理により結晶化し、組織の少なくとも50%を
微細な結晶粒からなる組織とすることにより製造され
る。組織の残部は主にアモルファスであるが、実質的に
結晶相だけであっても本発明の範囲に含まれる。またレ
ーザーにより合金表面を照射し合金表面にアモルファス
合金を製造後熱処理したり、アトマイズ法により粉末状
アモルファス合金を製造後熱処理により粉末状の本発明
合金を製造することも可能である。
The alloy of the present invention is usually prepared as an amorphous alloy by a liquid quenching method such as a single roll method, a twin roll method, a rotating submerged spinning method, a vapor phase quenching method such as a sputtering method and a vapor deposition method. Then, this is crystallized by heat treatment, and at least 50% of the structure is made into a structure composed of fine crystal grains. The balance of the structure is mainly amorphous, but even a substantially crystalline phase is included in the scope of the present invention. It is also possible to irradiate the alloy surface with a laser to produce an amorphous alloy on the alloy surface and then heat-treat it, or to produce a powdery amorphous alloy by an atomizing method and then heat-treat it to produce the powdery alloy of the present invention.

【0020】更にはアモルファス状態を経ず冷却条件を
制御し直接微細結晶粒組織からなる本発明合金を製造す
ることもできる。熱処理は通常酸素がわずかに存在する
不活性ガス中で行われるが場合によっては、大気中で行
っても良い。
Furthermore, the alloy of the present invention having a fine grain structure can be directly produced by controlling the cooling conditions without passing through the amorphous state. The heat treatment is usually carried out in an inert gas containing a slight amount of oxygen, but in some cases it may be carried out in the atmosphere.

【0021】本発明の合金は酸素の存在する雰囲気で熱
処理したり、熱処理後の合金をアノ−ド酸化し得ること
ができる。また、意図的にスパッタや蒸着、CVD等に
より表面に前記状態の皮膜を形成したものも本発明に含
まれる。
The alloy of the present invention can be heat-treated in an atmosphere containing oxygen, or the alloy after the heat-treatment can be subjected to anodic oxidation. Further, the present invention also includes a film on which a film in the above state is intentionally formed by sputtering, vapor deposition, CVD or the like.

【0022】本発明に係わる表面皮膜はESCAによるX線
光電子分光法(XPS)により測定することができる。測定
試料を約4×4mmに切断し、導電性カ−ボン両面テ−プを
用いプロ−ブに固定し測定した。励起X線はMgKα線、X
線発生条件は5kV,30mA、動作真空度は2×10-7Torr以下
とした。各スペクトルの全積分強度に対する各結合状態
の割合を測定し表面皮膜中の結合状態の割合を求めた。
The surface film according to the present invention can be measured by X-ray photoelectron spectroscopy (XPS) by ESCA. The measurement sample was cut into about 4 × 4 mm, fixed on a probe using a conductive carbon double-sided tape, and measured. Excited X-ray is MgKα ray, X
The line generation conditions were 5 kV and 30 mA, and the operating vacuum was 2 × 10 -7 Torr or less. The ratio of each bonding state to the total integrated intensity of each spectrum was measured to determine the ratio of the bonding state in the surface film.

【0023】水酸化物成分が酸化物成分にくらべ多く存
在している場合に耐蝕性が良好である。またこの場合、
表面皮膜は薄くなりFeを含む場合は合金内部のFe0が強
く検出される。また、この場合はFe2-、Fe3-が観察さ
れ、表面皮膜中に存在している。
When the hydroxide component is present in a larger amount than the oxide component, the corrosion resistance is good. Also in this case,
When the surface film becomes thin and Fe is contained, Fe0 inside the alloy is strongly detected. Further, in this case, Fe 2− and Fe 3− were observed and existed in the surface film.

【0024】[0024]

【実施例】以下本発明を実施例に従って説明するが本発
明はこれらに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0025】(実施例1)単ロ−ル法によりFebal.Cu1S
i13.5B9,Febal.Cu1Nb5Si13.5B9およびFebal.Cu1Nb7Si16
B9の合金溶湯を急冷し、幅5mm、厚さ約18μmのアモルフ
ァス合金を作製した。次にこの合金薄帯を570゜Cで1h熱
処理を行った。熱処理後の合金は結晶化しており、超微
細な結晶粒が形成していた。
(Example 1) Fe bal .Cu 1 S by a single roll method
i 13.5 B 9 , Fe bal .Cu 1 Nb 5 Si 13.5 B 9 and Fe bal .Cu 1 Nb 7 Si 16
The molten alloy of B 9 was rapidly cooled to prepare an amorphous alloy having a width of 5 mm and a thickness of about 18 μm. Next, this alloy ribbon was heat-treated at 570 ° C for 1 hour. The alloy after the heat treatment was crystallized, and ultrafine crystal grains were formed.

【0026】次にこの合金の皮膜をX線光電子分光法
(XPS)により測定した。また0.1kmol・m-3NaCl水溶液中
に浸漬し腐食速度を測定した。腐食速度はそれぞれ2.02
×10-8kg・m-2・s-1、8.27×10-11kg・m-2・s-1、ほぼ0kg・m
-2・s-1である。
The coating of this alloy was then measured by X-ray photoelectron spectroscopy (XPS). In addition, the corrosion rate was measured by immersing in 0.1kmol · m -3 NaCl aqueous solution. Corrosion rate is 2.02 each
× 10 -8 kg ・ m -2・ s -1 , 8.27 × 10 -11 kg ・ m -2・ s -1 , almost 0 kg ・ m
-2 · s -1 .

【0027】図1に生成皮膜のO 1sスペクトルの変化を
示す。耐蝕性の良い合金の表面皮膜は水酸化物M(OH)yに
起因する成分が増加しており酸化物成分MOxに起因する
成分が減少している。水酸化物M(OH)yに起因する成分の
割合の増加が耐蝕性改善に有効であることが分かる。
FIG. 1 shows changes in the O 1s spectrum of the formed film. In the surface coating of the alloy having good corrosion resistance, the component derived from the hydroxide M (OH) y is increased and the component derived from the oxide component MOx is decreased. It can be seen that an increase in the proportion of components due to the hydroxide M (OH) y is effective in improving the corrosion resistance.

【0028】図2に生成皮膜のFe 2p3/2スペクトルの変
化を示す。耐蝕性の良好な合金はFe0のスペクトルが観
察される。これは皮膜が薄いために素地のFeが検出され
たためである。Fe3+、Fe2+のスペクトルが観察される。
Fe2O3等が形成していると推定される。また、FeOOHに相
当するスペクトルが観察される。
FIG. 2 shows changes in the Fe 2p 3/2 spectrum of the formed film. The Fe0 spectrum is observed for alloys with good corrosion resistance. This is because Fe of the base material was detected because the film was thin. Fe 3 + and Fe 2 + spectra are observed.
It is presumed that Fe 2 O 3 etc. are formed. Also, a spectrum corresponding to FeOOH is observed.

【0029】図3に生成皮膜のSi 2pスペクトルの変化
を示す。耐蝕性の良い合金はSi0とSi4+(SiO2)の中間の
酸化状態の成分が観測されず、Si4+(SiO2)結合が主に観
測される。Si4+(SiO2)結合状態の成分が多いと耐蝕性が
良好な傾向がある。
FIG. 3 shows changes in the Si 2p spectrum of the formed film. In alloys with good corrosion resistance, the component in the oxidation state intermediate between Si 0 and Si 4 + (SiO 2 ) is not observed, and Si 4 + (SiO 2 ) bond is mainly observed. If there are many Si 4 + (SiO 2 ) bonded components, the corrosion resistance tends to be good.

【0030】(実施例2)単ロ−ル法によりFebal.Cu1S
i13.5B9,Febal.Cu1Nb5Si13.5B9、Febal.Cu1Ta5Si13.5B9
およびFebal.Cu1Ti5Si13.5B9の合金溶湯を急冷し、幅5m
m、厚さ約18μmのアモルファス合金を作製した。次にこ
の合金薄帯を590゜Cで1h熱処理を行った。熱処理後の合
金は結晶化しており、超微細な結晶粒が形成していた。
(Embodiment 2) Fe bal .Cu 1 S by a single roll method
i 13.5 B 9 , Fe bal .Cu 1 Nb 5 Si 13.5 B 9 , Fe bal .Cu 1 Ta 5 Si 13.5 B 9
And Fe bal .Cu 1 Ti 5 Si 13.5 B 9 alloy melt is quenched, width 5m
An amorphous alloy having a thickness of m and a thickness of about 18 μm was prepared. Next, this alloy ribbon was heat-treated at 590 ° C for 1 hour. The alloy after the heat treatment was crystallized, and ultrafine crystal grains were formed.

【0031】次にこの合金の皮膜をX線光電子分光法
(XPS)により測定した。また0.1kmol・m-3NaCl水溶液中
に浸漬し腐食速度を測定した。腐食速度はそれぞれ2.02
×10-8kg・m-2・s-1、8.27×10-11kg・m-2・s-1、8.24×10
-11kg・m-2・s-1である。
The coating of this alloy was then measured by X-ray photoelectron spectroscopy (XPS). In addition, the corrosion rate was measured by immersing in 0.1kmol · m -3 NaCl aqueous solution. Corrosion rate is 2.02 each
× 10 -8 kg ・ m -2・ s -1 , 8.27 × 10 -11 kg ・ m -2・ s -1 , 8.24 × 10
-11 kg ・ m -2・ s -1 .

【0032】図4に生成皮膜のO 1sスペクトルの変化を
示す。耐蝕性の良い合金の表面皮膜は水酸化物M(OH)yに
起因する成分が増加しており酸化物成分MOxに起因する
成分が減少している。水酸化物M(OH)yに起因する成分の
割合の増加が耐蝕性改善に有効であることが分かる。
FIG. 4 shows changes in the O 1s spectrum of the formed film. In the surface coating of the alloy having good corrosion resistance, the component derived from the hydroxide M (OH) y is increased and the component derived from the oxide component MOx is decreased. It can be seen that an increase in the proportion of components due to the hydroxide M (OH) y is effective in improving the corrosion resistance.

【0033】図5に生成皮膜のFe 2p3/2スペクトルの変
化を示す。耐蝕性の良好な合金はFe0のスペクトルが観
察される。これは皮膜が薄いために素地のFeが検出され
たためである。Fe3+、Fe2+のスペクトルが観察される。
Fe2O3等が形成していると推定される。また、FeOOHに相
当するスペクトルが観察される。
FIG. 5 shows changes in the Fe 2p 3/2 spectrum of the formed film. The Fe0 spectrum is observed for alloys with good corrosion resistance. This is because Fe of the base material was detected because the film was thin. Fe 3 + and Fe 2 + spectra are observed.
It is presumed that Fe 2 O 3 etc. are formed. Also, a spectrum corresponding to FeOOH is observed.

【0034】図6に生成皮膜のSi 2pスペクトルの変化
を示す。耐蝕性の良い合金はSi0とSi4+(SiO2)の中間の
酸化状態の成分が観測されず、Si4+(SiO2)結合が主に観
測される。Si4+(SiO2)結合状態の成分が多いと耐蝕性が
良好な傾向がある。
FIG. 6 shows changes in the Si 2p spectrum of the formed film. In alloys with good corrosion resistance, the component in the oxidation state intermediate between Si 0 and Si 4 + (SiO 2 ) is not observed, and Si 4 + (SiO 2 ) bond is mainly observed. If there are many Si 4 + (SiO 2 ) bonded components, the corrosion resistance tends to be good.

【0035】(実施例3)単ロ−ル法によりFebal.Cu1N
b5Si13.5B9、Febal.Cu1Ta5Si13.5B9およびFebal.Cu1Ti5
Si13.5B9の合金溶湯を急冷し、幅5mm、厚さ約18μmのア
モルファス合金を作製した。次にこの合金薄帯を590゜C
で1h熱処理を行った。熱処理後の合金は結晶化してお
り、超微細な結晶粒が形成していた。次にこの合金を図
7中に示す条件でアノ−ド分極し、酸化皮膜を形成し
た。
(Embodiment 3) Fe bal .Cu 1 N by the single roll method
b 5 Si 13.5 B 9 , Fe bal .Cu 1 Ta 5 Si 13.5 B 9 and Fe bal. Cu 1 Ti 5
The molten alloy of Si 13.5 B 9 was rapidly cooled to prepare an amorphous alloy with a width of 5 mm and a thickness of about 18 μm. Next, apply this alloy ribbon to 590 ° C.
Heat treatment was performed for 1 h. The alloy after the heat treatment was crystallized, and ultrafine crystal grains were formed. Next, this alloy was subjected to anodic polarization under the conditions shown in FIG. 7 to form an oxide film.

【0036】次にこの合金の皮膜をX線光電子分光法
(XPS)により測定した。また0.1kmol・m-3NaCl水溶液中
に浸漬し腐食速度を測定した。腐食速度はそれぞれ2.02
×10-8kg・m-2・s-1、8.27×10-11kg・m-2・s-1、8.24×10
-11kg・m-2・s-1である。
Next, the film of this alloy was measured by X-ray photoelectron spectroscopy (XPS). In addition, the corrosion rate was measured by immersing in 0.1kmol · m -3 NaCl aqueous solution. Corrosion rate is 2.02 each
× 10 -8 kg ・ m -2・ s -1 , 8.27 × 10 -11 kg ・ m -2・ s -1 , 8.24 × 10
-11 kg ・ m -2・ s -1 .

【0037】図7に生成皮膜のO 1sスペクトルの変化を
示す。耐蝕性の良い合金の表面皮膜は水酸化物M(OH)yに
起因する成分が増加しており酸化物成分MOxに起因する
成分が減少している。水酸化物M(OH)yに起因する成分の
割合の増加が耐蝕性改善に有効であることが分かる。
FIG. 7 shows changes in the O 1s spectrum of the formed film. In the surface coating of the alloy having good corrosion resistance, the component derived from the hydroxide M (OH) y is increased and the component derived from the oxide component MOx is decreased. It can be seen that an increase in the proportion of components due to the hydroxide M (OH) y is effective in improving the corrosion resistance.

【0038】(実施例4)単ロ−ル法により表1に示す
組成の合金溶湯を急冷し、幅5mm、厚さ約18μmのアモル
ファス合金を作製した。次にこの合金薄帯を570゜Cで1h
熱処理を行った。熱処理後の合金は結晶化しており、超
微細な結晶粒が形成していた。
Example 4 The molten alloy having the composition shown in Table 1 was rapidly cooled by the single roll method to prepare an amorphous alloy having a width of 5 mm and a thickness of about 18 μm. Next, this alloy ribbon was heated at 570 ° C for 1h.
Heat treatment was performed. The alloy after the heat treatment was crystallized, and ultrafine crystal grains were formed.

【0039】次にこの合金の皮膜をX線光電子分光法
(XPS)により測定した。また0.1kmol・m-3NaCl水溶液中
に浸漬し腐食速度を測定した。腐食速度、水酸化物成分
の酸化物成分に対する割合およびSi+4成分(SiO2)の割合
を表1、表2に示す。Feを含む合金の場合は表面皮膜中
にFe2+,Fe3+の結合状態の物質を含んでいた。
The coating of this alloy was then measured by X-ray photoelectron spectroscopy (XPS). In addition, the corrosion rate was measured by immersing in 0.1kmol · m -3 NaCl aqueous solution. Tables 1 and 2 show the corrosion rate, the ratio of the hydroxide component to the oxide component, and the ratio of the Si + 4 component (SiO 2 ). In the case of the alloy containing Fe, the surface film contained a substance in the bound state of Fe 2 + and Fe 3 +.

【0040】本発明の水酸化物の結合状態の成分が酸化
物成分の65%以上の割合で存在する表面皮膜を有する合
金が優れた耐蝕性を示すことが分かる。また、表面皮膜
中にSi4+(SiO2)の結合状態の物質を含有しかつSi 2pス
ペクトルの全積分強度に対する割合が55%を超えている
場合が特に腐食速度が小さく耐蝕性に優れている。ま
た、Ta,Nb,Crを含む合金は表面皮膜中にTa,Nb,Cr等の酸
化物を含有しており、耐蝕性も特に優れている。
It can be seen that the alloy having a surface coating in which the component in the bound state of the hydroxide of the present invention is present in a proportion of 65% or more of the oxide component exhibits excellent corrosion resistance. In addition, when the surface film contains a substance in the bonded state of Si 4 + (SiO 2 ) and the ratio to the total integrated intensity of the Si 2p spectrum exceeds 55%, the corrosion rate is particularly small and the corrosion resistance is excellent. There is. Further, the alloy containing Ta, Nb, Cr contains oxides of Ta, Nb, Cr, etc. in the surface film, and is particularly excellent in corrosion resistance.

【0041】[0041]

【表1】 [Table 1]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】本発明によれば、耐蝕性に著しく優れて
いる超微細結晶粒組織を有する合金を得ることができる
ためその効果は著しいものがある。
EFFECTS OF THE INVENTION According to the present invention, an alloy having an ultrafine grain structure which is remarkably excellent in corrosion resistance can be obtained, so that the effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる合金の生成皮膜のO 1sスペクト
ルの変化を示した図である。
FIG. 1 is a diagram showing changes in the O 1s spectrum of a formed film of an alloy according to the present invention.

【図2】本発明に係わる合金の生成皮膜のFe 2p3/2スペ
クトルの変化を示した図である。
FIG. 2 is a diagram showing changes in the Fe 2p 3/2 spectrum of the formed film of the alloy according to the present invention.

【図3】本発明に係わる合金の生成皮膜のSi 2pスペク
トルの変化を示した図である。
FIG. 3 is a diagram showing changes in the Si 2p spectrum of the formed film of the alloy according to the present invention.

【図4】本発明に係わる合金の生成皮膜のO 1sスペクト
ルの変化を示した図である。
FIG. 4 is a diagram showing changes in the O 1s spectrum of the formed film of the alloy according to the present invention.

【図5】本発明に係わる合金の生成皮膜のFe 2p3/2スペ
クトルの変化を示した図である。
FIG. 5 is a diagram showing changes in the Fe 2p 3/2 spectrum of the formed film of the alloy according to the present invention.

【図6】本発明に係わる合金の生成皮膜のSi 2pスペク
トルの変化を示した図である。
FIG. 6 is a diagram showing changes in the Si 2p spectrum of the formed film of the alloy according to the present invention.

【図7】本発明に係わる合金のアノ−ド分極し生成した
皮膜のO 1sスペクトルの変化を示した図である。
FIG. 7 is a diagram showing changes in the O 1s spectrum of a film formed by anodic polarization of the alloy according to the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 組織の少なくとも50%が微細な結晶粒か
らなる超微結晶合金において水酸化物成分を含有し、か
つ水酸化物の結合状態の成分が酸化物成分の65%以上の
割合で存在する表面皮膜を有することを特徴とする耐蝕
性に優れた超微細結晶粒組織を有する合金。
1. An ultra-fine crystal alloy in which at least 50% of the structure is composed of fine crystal grains, contains a hydroxide component, and a component in a bound state of hydroxide is 65% or more of the oxide component. An alloy having an ultrafine grain structure excellent in corrosion resistance, characterized by having an existing surface film.
【請求項2】 0.1kmol・m-3NaCl水溶液中の腐食速度が1
×10-8kg・m-2・s-1以下である請求項1に記載の合金。
2. Corrosion rate in an aqueous solution of 0.1 kmol · m -3 NaCl is 1
The alloy according to claim 1, which has a content of not more than × 10 -8 kg · m −2 · s −1 .
【請求項3】 表面皮膜中にFe2+,Fe3+の結合状態の物
質を含有する請求項1に記載の合金。
3. The alloy according to claim 1, wherein the surface film contains a substance in a bound state of Fe 2+ and Fe 3+ .
【請求項4】 表面皮膜中にSi4+(SiO2)の結合状態の物
質を含有しかつSi 2pスペクトルの全積分強度に対する
割合が55%を超えている請求項1〜3のいずれかに記載
の合金。
4. The surface film contains a substance in a bonded state of Si 4+ (SiO 2 ) and the ratio of the Si 2p spectrum to the total integrated intensity exceeds 55%. The listed alloy.
【請求項5】 表面皮膜中にTa,Nb,Crから選ばれた少な
くとも一つの酸化物を含有することを特徴とする請求項
1〜4に記載の合金。
5. The alloy according to claim 1, wherein the surface coating contains at least one oxide selected from Ta, Nb and Cr.
【請求項6】 Zr,Hf,Wから選ばれた少なくとも1つの元
素を含有する請求項1〜5に記載の合金。
6. The alloy according to claim 1, which contains at least one element selected from Zr, Hf, and W.
【請求項7】 粒径が500 以下の超微細結晶粒からな
る請求項1〜6のいずれかに記載の合金。
7. The alloy according to claim 1, comprising ultrafine crystal grains having a grain size of 500 or less.
JP23546792A 1992-09-03 1992-09-03 Alloy having ultrafine crystalline-grained structure excellent in corrosion resistance Pending JPH0681086A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23546792A JPH0681086A (en) 1992-09-03 1992-09-03 Alloy having ultrafine crystalline-grained structure excellent in corrosion resistance
CN 93117351 CN1037534C (en) 1992-09-03 1993-09-03 Alloy with ultrafine crystal grains excellent in corrosion resistance
DE1993619513 DE69319513T2 (en) 1992-09-03 1993-09-03 Alloy with ultra-fine crystal grains and excellent corrosion resistance
EP19930114142 EP0585940B1 (en) 1992-09-03 1993-09-03 Alloy with ultrafine crystal grains excellent in corrosion resistance
US08/628,444 US5658398A (en) 1992-09-03 1996-04-05 Alloy with ultrafine crystal grains excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23546792A JPH0681086A (en) 1992-09-03 1992-09-03 Alloy having ultrafine crystalline-grained structure excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JPH0681086A true JPH0681086A (en) 1994-03-22

Family

ID=16986525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23546792A Pending JPH0681086A (en) 1992-09-03 1992-09-03 Alloy having ultrafine crystalline-grained structure excellent in corrosion resistance

Country Status (4)

Country Link
EP (1) EP0585940B1 (en)
JP (1) JPH0681086A (en)
CN (1) CN1037534C (en)
DE (1) DE69319513T2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2234193A (en) * 1988-03-08 1991-01-30 Secr Defence Growing semiconductor crystalline materials
US5349921A (en) * 1988-03-08 1994-09-27 Her Majesty The Queen In Right Of Canada, As Represented By The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Growing semiconductor crystalline materials
WO2005041278A2 (en) * 2003-10-23 2005-05-06 Crystal Growing Systems Gmbh Crystal growing unit
KR101503349B1 (en) * 2012-12-19 2015-03-18 알프스 그린 디바이스 가부시키가이샤 Fe based soft magnetic powder, composite magnetic powder using the fe based soft magnetic powder, and pressed powder magnetic core using the composite magnetic powder
JP6294533B1 (en) * 2017-04-03 2018-03-14 住友電気工業株式会社 Manufacturing method of iron boride material and iron boride thin film material

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845723A (en) * 1994-08-01 1996-02-16 Hitachi Metals Ltd Nano-crystalline alloy thin band of excellent insulating property and nano-crystalline alloy magnetic core as well as insulating film forming method of nano-crystalline alloy thin band
US8480864B2 (en) * 2005-11-14 2013-07-09 Joseph C. Farmer Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings
DE102006024358B4 (en) * 2006-05-17 2013-01-03 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. High-strength, at room temperature plastically deformable shaped body made of iron alloys
CN102610348B (en) * 2012-04-11 2015-04-29 安泰科技股份有限公司 Iron-based nanocrystalline soft magnetic alloy material and preparing method thereof
CN102867605A (en) * 2012-09-10 2013-01-09 任静儿 Magnetic alloy
CN102867604A (en) * 2012-09-10 2013-01-09 任静儿 Magnetically soft alloy
CN102856031A (en) * 2012-09-10 2013-01-02 任静儿 Magnetic powder alloy material
CN103123841A (en) * 2012-09-10 2013-05-29 顾建 Magnetic alloy material
CN103123842A (en) * 2012-10-22 2013-05-29 虞海香 Magnetic powdered alloy material
DE102013224989A1 (en) * 2013-12-05 2015-06-11 Siemens Aktiengesellschaft Gamma / Gamma hardened cobalt base superalloy, powder and component
CN105244132A (en) * 2015-11-03 2016-01-13 顾建 Weakly-magnetic alloy material
CN105401041A (en) * 2015-11-13 2016-03-16 太仓旺美模具有限公司 High-abrasion-resistance metal material
CN107620015A (en) * 2017-08-22 2018-01-23 宁波市鄞州亚大汽车管件有限公司 Oil filling pipe and its preparation technology

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151137A (en) * 1989-11-17 1992-09-29 Hitachi Metals Ltd. Soft magnetic alloy with ultrafine crystal grains and method of producing same
CA2030446C (en) * 1989-11-22 2001-01-23 Yoshihito Yoshizawa Magnetic alloy with ultrafine crystal grains and method of producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2234193A (en) * 1988-03-08 1991-01-30 Secr Defence Growing semiconductor crystalline materials
GB2234193B (en) * 1988-03-08 1991-11-13 Secr Defence Growing semiconductor crystalline materials
US5349921A (en) * 1988-03-08 1994-09-27 Her Majesty The Queen In Right Of Canada, As Represented By The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Growing semiconductor crystalline materials
WO2005041278A2 (en) * 2003-10-23 2005-05-06 Crystal Growing Systems Gmbh Crystal growing unit
WO2005041278A3 (en) * 2003-10-23 2005-07-07 Crystal Growing Systems Gmbh Crystal growing unit
US7179331B2 (en) 2003-10-23 2007-02-20 Crystal Growing Systems Gmbh Crystal growing equipment
JP2007509026A (en) * 2003-10-23 2007-04-12 クリスタル グロウイング システムズ ゲゼルシヤフト ミット ベシュレンクテル ハフツング Crystal growth equipment
JP4654193B2 (en) * 2003-10-23 2011-03-16 クリスタル グロウイング システムズ ゲゼルシヤフト ミット ベシュレンクテル ハフツング Crystal growth equipment
KR101503349B1 (en) * 2012-12-19 2015-03-18 알프스 그린 디바이스 가부시키가이샤 Fe based soft magnetic powder, composite magnetic powder using the fe based soft magnetic powder, and pressed powder magnetic core using the composite magnetic powder
JP6294533B1 (en) * 2017-04-03 2018-03-14 住友電気工業株式会社 Manufacturing method of iron boride material and iron boride thin film material

Also Published As

Publication number Publication date
EP0585940B1 (en) 1998-07-08
EP0585940A1 (en) 1994-03-09
DE69319513D1 (en) 1998-08-13
DE69319513T2 (en) 1999-01-14
CN1037534C (en) 1998-02-25
CN1092112A (en) 1994-09-14

Similar Documents

Publication Publication Date Title
JPH0681086A (en) Alloy having ultrafine crystalline-grained structure excellent in corrosion resistance
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
US5591276A (en) Magnetic alloy with ultrafine crystal grains and method of producing same
JPH044393B2 (en)
JPS6218620B2 (en)
US5151137A (en) Soft magnetic alloy with ultrafine crystal grains and method of producing same
EP1001437A1 (en) Fe-based soft magnetic alloy , magnetic core using the same, and method for making the same
JP3231149B2 (en) Noise filter
JPH062076A (en) Fe-based soft magnetic alloy and manufacturing method
JP2713364B2 (en) Ultra-microcrystalline soft magnetic alloy with excellent heat resistance
JPH05335129A (en) Fe-based soft magnetic alloy powder and method for producing the same
WO1992009714A1 (en) Iron-base soft magnetic alloy
JPH0711396A (en) Fe base soft magnetic alloy
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH0570901A (en) Fe base soft magnetic alloy
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JPH07145455A (en) Ferrous soft magnetic alloy
JPH0610105A (en) Fe base soft magnetic alloy
US5658398A (en) Alloy with ultrafine crystal grains excellent in corrosion resistance
JP2621151B2 (en) Magnetic material and method of manufacturing the same
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH0790515A (en) Iron-base amorphous alloy increased in magnetic flux density and reduced in iron loss
JPH0499253A (en) Iron-based soft magnetic alloy
JPH108224A (en) High saturation magnetic flux density and high perrmiability magnetic alloy, and magnetic core using the alloy