JPH0681051A - Production of metal by reduction reaction of metal halide - Google Patents
Production of metal by reduction reaction of metal halideInfo
- Publication number
- JPH0681051A JPH0681051A JP31020491A JP31020491A JPH0681051A JP H0681051 A JPH0681051 A JP H0681051A JP 31020491 A JP31020491 A JP 31020491A JP 31020491 A JP31020491 A JP 31020491A JP H0681051 A JPH0681051 A JP H0681051A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- reducing agent
- reaction
- reaction vessel
- produced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はハロゲン化金属の還元反
応による金属の製造方法に関する。さらに詳しくは、反
応系内に還元剤に含まれる不純物を吸収する金属を挿入
することにより、還元剤を精製し、不純物の少ない金属
を製造する方法に関する。FIELD OF THE INVENTION The present invention relates to a method for producing a metal by a reduction reaction of a metal halide. More specifically, the present invention relates to a method for producing a metal containing few impurities by purifying the reducing agent by inserting a metal that absorbs impurities contained in the reducing agent into the reaction system.
【0002】[0002]
【従来技術】ハロゲン化金属の還元反応により製造され
る金属の代表的な例としては、金属チタンがある。ハロ
ゲン化チタンの還元反応により金属チタンを工業的に製
造する場合、所謂クロ−ル法が主として採用されてい
る。この方法では、不活性ガスを封入した反応容器1内
に還元剤としてのマグネシウムを溶融状態で注入した
後、四塩化チタンを反応容器1上部より滴下して還元反
応を開始し、生成した金属チタンを反応容器1内底部の
ロストル2上に堆積成長させ、金属チタン塊として捕集
するのが一般的である。2. Description of the Related Art Titanium metal is a typical example of a metal produced by a reduction reaction of a metal halide. When metallic titanium is industrially produced by a reduction reaction of titanium halide, the so-called chlor method is mainly adopted. In this method, magnesium as a reducing agent is injected in a molten state into a reaction vessel 1 in which an inert gas is sealed, and then titanium tetrachloride is dropped from the upper portion of the reaction vessel 1 to start a reduction reaction, and the produced titanium metal titanium is produced. Is generally deposited and grown on the rustle 2 at the bottom of the reaction vessel 1 and collected as a metallic titanium mass.
【0003】[0003]
【発明が解決しようとする課題】上記の方法で金属チタ
ンを製造する場合、還元剤として用いるマグネシウム中
に含まれる鉄、アルミニウム、酸素、窒素等の不純物
が、還元反応の初期に生成し溶融マグネシウム中を沈降
して反応容器1内底部のロストル2上に堆積成長した金
属チタン塊の底部側の金属チタンに含まれて凝集する。In the case of producing metallic titanium by the above method, impurities such as iron, aluminum, oxygen and nitrogen contained in magnesium used as a reducing agent are produced at the initial stage of the reduction reaction and molten magnesium is produced. It is contained in the titanium metal on the bottom side of the metal titanium lumps that have settled down and deposited and grown on the rustle 2 at the bottom of the inside of the reaction vessel 1 and aggregated.
【0004】その結果、得られた金属チタン塊の底部側
は不純物を多く含有するため、この金属チタン塊に含ま
れる未反応のマグネシウムや塩化マグネシウムを真空分
離精製により除去した後、切断、粉砕及び篩別処理して
特定の粒度の金属チタン(以下「スポンジチタン」と言
う。)とする際に、この塊の底部側の部分は展伸材や航
空機用部品の材料として使用できないことから、切断処
理の際にこの底部側の部分を予め切断用プレスで切断除
去した上、良品部のみを切断、粉砕及び篩別処理して製
品化していたため、製品の歩留を低下させていた。As a result, since the bottom side of the obtained metallic titanium ingot contains a large amount of impurities, unreacted magnesium and magnesium chloride contained in this metallic titanium ingot are removed by vacuum separation and purification, followed by cutting, crushing and crushing. When the metal titanium with a specific particle size (hereinafter referred to as “sponge titanium”) is subjected to sieving, the bottom part of this mass cannot be used as a material for wrought materials or aircraft parts, so cutting During the treatment, the bottom side portion was previously cut and removed by a cutting press, and only the non-defective portion was cut, pulverized, and sieved to produce a product, thus lowering the product yield.
【0005】本発明は上記のような問題点を解決し、生
成金属塊の品質を向上し、製品歩留の向上が可能である
ハロゲン化金属の還元反応による金属の製造方法の提供
を目的としている。The present invention is intended to solve the above problems and to provide a method for producing a metal by a reduction reaction of a metal halide capable of improving the quality of a produced metal lump and improving the product yield. There is.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明者等は鋭意研究を重ねた結果、反応容器1内
底部のロストル2上に予め特定の金属を層状に配置して
おくと、その金属がその後に挿入した還元剤に含まれる
不純物を吸収し、反応容器1内で還元剤を精製すること
を知見し、本発明を完成するに至った。In order to achieve the above object, the inventors of the present invention have conducted extensive studies and as a result, if a specific metal is arranged in layers on the rostrur 2 at the bottom of the reaction vessel 1 in advance. The inventors have found that the metal absorbs impurities contained in the reducing agent inserted thereafter and refines the reducing agent in the reaction vessel 1, and has completed the present invention.
【0007】即ち、本発明はハロゲン化金属の還元反応
による金属の製造方法において、反応容器1内底部のロ
ストル2上に予め還元剤に含まれる不純物を吸収する金
属を層状に配置することを特徴としている。That is, according to the present invention, in the method for producing a metal by a reduction reaction of a metal halide, a metal for absorbing impurities contained in a reducing agent is previously arranged in layers on the roster 2 at the bottom of the reaction vessel 1. I am trying.
【0008】更に具体的には、反応容器を組み立てる際
に、反応容器1内底部のロストル2上に還元剤に含まれ
る不純物を吸収する金属を層状に配置しておき、その後
の反応開始前に反応に用いる液状の還元剤を反応容器1
内に注入し、ロストル2上に配置された金属と接触させ
る。この後に液状のハロゲン化金属を反応容器1上部よ
り滴下して還元反応を開始し、生成した金属をロストル
2上に配置された金属上に堆積成長させ、生成金属塊を
得る。More specifically, when assembling the reaction vessel, a metal for absorbing impurities contained in the reducing agent is arranged in layers on the rostr 2 at the bottom of the inside of the reaction vessel 1 and before starting the reaction thereafter. The liquid reducing agent used in the reaction is the reaction vessel 1
It is injected into the inside and brought into contact with the metal arranged on the rustle 2. After that, a liquid metal halide is dropped from the upper part of the reaction vessel 1 to start the reduction reaction, and the produced metal is deposited and grown on the metal arranged on the roster 2 to obtain a produced metal mass.
【0009】本発明において、還元剤に含まれる不純物
を吸収する金属の例としては、金属チタンや金属ジルコ
ニウムあるいはそれらの合金があげられる。In the present invention, examples of the metal that absorbs the impurities contained in the reducing agent include metallic titanium, metallic zirconium and alloys thereof.
【0010】これらの金属は、高純度である必要は無
く、当該金属の含有率が 50% 以上であれば還元剤に
含まれる不純物を吸収するのに充分であるため、従来の
方法で製造した金属チタン塊底部の不純物を多く含む部
分の粉砕品やステンレス鋼製の反応容器と還元反応中に
反応して生成する高鉄含有生成金属などのそのままでは
製品とならないものを繰り返して使用することが可能な
ため、製造コストを増加させない。また、合金線材など
の加工品のスクラップも使用できる。These metals do not need to be of high purity, and if the content of the metal is 50% or more, it is sufficient to absorb the impurities contained in the reducing agent, and thus they are produced by the conventional method. It is possible to repeatedly use crushed parts of the bottom of the titanium metal lump containing a large amount of impurities, stainless steel reaction vessels and high iron-containing produced metals that are produced by the reaction during the reduction reaction. Since it is possible, it does not increase the manufacturing cost. Also, scraps of processed products such as alloy wire rods can be used.
【0011】また、その形状はロストル2上に層状に配
置できるものであれば良いが、還元剤に含まれる不純物
を充分に吸収させるためには還元剤との接触する金属の
表面積を確保することが必要であり、スポンジ状のもの
であれば粒度が300mm以下、それ以外であれば比表面
積が0.5cm2/g以上であることが好ましい。The shape may be any as long as it can be arranged in a layered manner on the roster 2, but in order to sufficiently absorb the impurities contained in the reducing agent, the surface area of the metal in contact with the reducing agent should be secured. If it is sponge-like, the particle size is preferably 300 mm or less, and otherwise the specific surface area is preferably 0.5 cm 2 / g or more.
【0012】更に、ロストル2上に配置する金属の量
は、ロストル2上に層状に配置するのに必要な量であれ
ば差し支えなく、これが多量であると目的とする生成金
属の生産効率が大幅に低下することから、目的の生成金
属重量の0.5〜10%の範囲が好ましい。Further, the amount of the metal to be placed on the roster 2 may be any amount necessary for placing it on the rostrur 2 in a layered manner, and if the amount is large, the production efficiency of the target produced metal is greatly increased. Therefore, it is preferably in the range of 0.5 to 10% of the target weight of the produced metal.
【0013】なお、本発明では、還元剤に含まれる不純
物を吸収する金属と還元剤との接触による還元剤の精製
を反応系内で行っているが、両者の接触を予め反応系外
で行うことにより精製された還元剤を反応容器内に供給
する方法も、ハロゲン化金属の還元反応により不純物の
少ない金属を製造するために有効である。In the present invention, the reducing agent is purified by contacting the reducing agent with a metal that absorbs impurities contained in the reducing agent in the reaction system. However, contact between the two is performed in advance outside the reaction system. The method of supplying the reducing agent thus purified into the reaction vessel is also effective for producing a metal containing few impurities by the reduction reaction of the metal halide.
【0014】[0014]
【作用】反応容器1内底部のロストル2上に予め層状に
配置された還元剤に含まれる不純物を吸収する金属は、
反応容器1内に注入された液状の還元剤と接触し、還元
剤に含まれる鉄、アルミニウム、酸素、窒素等の不純物
を吸収し、反応容器1内で起こる還元反応のための不純
物の少ない還元剤を供給する。このため、生成する金属
は還元剤に起因する不純物を殆ど含まない状態で還元剤
中を沈降して、ロストル2上に予め層状に配置された還
元剤に含まれる不純物を吸収する金属の上に堆積し、塊
状に成長する。このため、得られた生成金属塊の底部に
おける不純物を多く含む部分の存在は大巾に減少する。The metal that absorbs the impurities contained in the reducing agent, which is arranged in layers in advance on the rostr 2 at the bottom of the reaction vessel 1, is
Contact with a liquid reducing agent injected into the reaction vessel 1 to absorb impurities such as iron, aluminum, oxygen, nitrogen contained in the reducing agent, and reduction with less impurities for the reduction reaction occurring in the reaction vessel 1. Supply the agent. For this reason, the produced metal settles in the reducing agent in a state in which the reducing agent hardly contains impurities, and is deposited on the metal that absorbs the impurities contained in the reducing agent that are arranged in layers on the rostr 2 in advance. It accumulates and grows in blocks. Therefore, the existence of a portion containing a large amount of impurities at the bottom of the obtained produced metal ingot is greatly reduced.
【0015】また、ロストル2上に予め層状に配置され
た還元剤に含まれる不純物を吸収する金属は、還元反応
の初期に生成した微細な金属をも容易に固定するため、
反応により副生し、適時系外に除去する還元剤のハロゲ
ン化物中にこの微細な金属を混入させない。Further, the metal that absorbs the impurities contained in the reducing agent, which are arranged in layers on the roster 2 in advance, easily fixes the fine metal generated in the initial stage of the reduction reaction.
This fine metal is not mixed in the halide of the reducing agent that is by-produced by the reaction and is removed to the outside of the system in a timely manner.
【0016】[0016]
【実施例】本発明の実施例を金属チタンの製造について
説明する。 実施例 図1に示す還元反応装置において、この還元反応装置を
組立てる際に、反応容器1の底部にあるロストル2の上
に、粒径が約50〜100mmで、Ti純分が約90wt.
%のスポンジ状金属チタン8を目的の金属チタンの生成
重量の3%となる量で、層状に敷いた。還元反応装置を
組立て後、反応容器1の内部をArガスで置換し、加熱
炉7を作動させた状態でMg注入口5から反応容器1内
に溶融Mgを注入する。EXAMPLES Examples of the present invention will be described for the production of metallic titanium. Example In the reduction reaction apparatus shown in FIG. 1, when the reduction reaction apparatus was assembled, the particle size was about 50 to 100 mm and the pure Ti content was about 90 wt.
% Spongy metallic titanium 8 was laid in layers in an amount of 3% of the weight of the target metallic titanium produced. After assembling the reduction reactor, the inside of the reaction vessel 1 is replaced with Ar gas, and molten Mg is injected into the reaction vessel 1 from the Mg inlet 5 while the heating furnace 7 is operating.
【0017】次にTiCl4滴下パイプ4からTiCl4
を滴下し、還元反応容器1内に金属チタンと副生成物で
あるMgCl2が生成する。副生成物であるMgCl2は
適時、MgCl2抜パイプ3から系外へ除去し、還元反
応終了後には還元反応容器1内に未反応のMgおよびM
gCl2を含む金属チタン塊が得られる。Next, from the TiCl 4 dropping pipe 4, TiCl 4
Is added dropwise, and metallic titanium and by-product MgCl 2 are produced in the reduction reaction container 1. The by-product MgCl 2 is removed from the system through the MgCl 2 vent pipe 3 at a suitable time, and after the reduction reaction is completed, unreacted Mg and M in the reduction reaction container 1 are removed.
A metallic titanium mass containing gCl 2 is obtained.
【0018】この金属チタン塊に含まれる未反応のMg
やMgCl2を真空分離精製により除去した後、反応容
器1から取り出す。その後この金属チタン塊から、先
ず、切断用プレスで塊底部の不純物を多く含む部分を切
断除去し、残りの部分を小さなブロックに切断した上で
破砕機及び篩別機を用いて処理することにより、0.8
3〜12.7mmのサイズとして得たスポンジチタンの不
純物含有量とブリネル硬さの調査結果を、当該方法で製
造した10バッチの平均値で、同じく従来方法で製造し
たスポンジチタンの10バッチの平均値と対比して表1
に示す。本発明の方法で製造したスポンジチタン中の
鉄、アルミニウム、酸素、窒素およびブリネル硬さは、
いずれも従来方法で製造したものより低く、品質が向上
している。Unreacted Mg contained in this metallic titanium mass
After removing MgCl 2 and MgCl 2 by vacuum separation and purification, they are taken out from the reaction vessel 1. Then, from this metal titanium lump, first, the portion containing a large amount of impurities at the bottom of the lump is cut and removed by a cutting press, and the remaining portion is cut into small blocks, which are then processed using a crusher and a sieving machine. , 0.8
The results of investigation of the impurity content and Brinell hardness of titanium sponge obtained as a size of 3 to 12.7 mm are the average values of 10 batches produced by the method, and the average of 10 batches of titanium sponge produced by the conventional method. Table 1 in comparison with the values
Shown in. Iron, aluminum, oxygen, nitrogen and Brinell hardness in titanium sponge produced by the method of the present invention,
Both are lower than those manufactured by the conventional method, and the quality is improved.
【0019】[0019]
【表1】 従来方法 本発明方法 Fe(wt.%) 0.025 0.020 Al(wt.%) 0.004 0.002 O (wt.%) 0.030 0.025 N (wt.%) 0.004 0.002 硬さ(HB) 93 89Table 1 Conventional method Inventive method Fe (wt.%) 0.025 0.020 Al (wt.%) 0.004 0.002 O (wt.%) 0.030 0.025 N (wt.% ) 0.004 0.002 Hardness (HB) 93 89
【0020】また、金属チタン塊底部の不純物を多く含
む部分の除去量は、従来方法の約1/3にまで減少し
た。Further, the removal amount of the portion containing a large amount of impurities at the bottom of the metallic titanium ingot was reduced to about 1/3 of the conventional method.
【0021】[0021]
【発明の効果】本発明のハロゲン化金属の還元反応によ
る金属の製造方法を用いると、従来方法と比較して良好
な品質の生成金属塊を得、製品の歩留及び品質を向上す
ることが出来る。EFFECTS OF THE INVENTION By using the method for producing a metal by the reduction reaction of a metal halide of the present invention, it is possible to obtain a produced metal lump of good quality and improve the yield and quality of the product as compared with the conventional method. I can.
【0022】また、還元反応の際に副生する還元剤のハ
ロゲン化物を再生し、これを還元剤としてリサイクルす
るために行う溶融塩電解のための原料として、微細な生
成金属を含まないハロゲン化物を供給できるため、溶融
塩電解における電解効率も向上できる。Further, as a raw material for molten salt electrolysis for regenerating the halide of a reducing agent produced as a by-product during the reduction reaction and recycling this as a reducing agent, a halide containing no finely formed metal is used. As a result, the electrolysis efficiency in the molten salt electrolysis can be improved.
【図1】本発明を実施した金属チタン製造用還元反応装
置の1例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a reduction reaction apparatus for producing metallic titanium according to the present invention.
1 反応容器 2 ロストル 3 MgCl2抜パイプ 4 TiCl4滴下パイプ 5 Mg注入口 7 加熱炉 8 スポンジ状金属チタン1 Reaction Vessel 2 Rostor 3 MgCl 2 Drain Pipe 4 TiCl 4 Drip Pipe 5 Mg Inlet 7 Heating Furnace 8 Sponge Metal Titanium
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年9月9日[Submission date] September 9, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【特許請求の範囲】[Claims]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明はハロゲン化金属の還元反
応による金属の製造方法に関する。さらに詳しくは、反
応系内に還元剤に含まれる不純物を吸収する金属を挿入
することにより、還元剤を精製し、不純物の少ない金属
を製造する方法に関する。FIELD OF THE INVENTION The present invention relates to a method for producing a metal by a reduction reaction of a metal halide. More specifically, the present invention relates to a method for producing a metal containing few impurities by purifying the reducing agent by inserting a metal that absorbs impurities contained in the reducing agent into the reaction system.
【0002】[0002]
【従来技術】ハロゲン化金属の還元反応により製造され
る金属の代表的な例としては、金属チタンがある。ハロ
ゲン化チタンの還元反応により金属チタンを工業的に製
造する場合、所謂クロ−ル法が主として採用されてい
る。この方法では、不活性ガスを封入した反応容器1内
に還元剤としてのマグネシウムを溶融状態で注入した
後、四塩化チタンを反応容器1上部より滴下して還元反
応を開始し、生成した金属チタンを反応容器1内底部の
ロストル2上に堆積成長させ、金属チタン塊として捕集
するのが一般的である。2. Description of the Related Art Titanium metal is a typical example of a metal produced by a reduction reaction of a metal halide. When metallic titanium is industrially produced by a reduction reaction of titanium halide, the so-called chlor method is mainly adopted. In this method, magnesium as a reducing agent is injected in a molten state into a reaction vessel 1 in which an inert gas is sealed, and then titanium tetrachloride is dropped from the upper portion of the reaction vessel 1 to start a reduction reaction, and the produced titanium metal titanium is produced. Is generally deposited and grown on the rustle 2 at the bottom of the reaction vessel 1 and collected as a metallic titanium mass.
【0003】[0003]
【発明が解決しようとする課題】上記の方法で金属チタ
ンを製造する場合、還元剤として用いるマグネシウム中
に含まれる鉄、アルミニウム、酸素、窒素等の不純物
が、還元反応の初期に生成し溶融マグネシウム中を沈降
して反応容器1内底部のロストル2上に堆積成長した金
属チタン塊の底部側の金属チタンに含まれて凝集する。In the case of producing metallic titanium by the above method, impurities such as iron, aluminum, oxygen and nitrogen contained in magnesium used as a reducing agent are produced at the initial stage of the reduction reaction and molten magnesium is produced. It is contained in the titanium metal on the bottom side of the metal titanium lumps that have settled down and deposited and grown on the rustle 2 at the bottom of the inside of the reaction vessel 1 and aggregated.
【0004】その結果、得られた金属チタン塊の底部側
は不純物を多く含有するため、この金属チタン塊に含ま
れる未反応のマグネシウムや塩化マグネシウムを真空分
離精製により除去した後、切断、粉砕及び篩別処理して
特定の粒度の金属チタン(以下「スポンジチタン」と言
う。)とする際に、この塊の底部側の部分は展伸材や航
空機用部品の材料として使用できないことから、切断処
理の際にこの底部側の部分を予め切断用プレスで切断除
去した上、良品部のみを切断、粉砕及び篩別処理して製
品化していたため、製品の歩留を低下させていた。As a result, since the bottom side of the obtained metallic titanium ingot contains a large amount of impurities, unreacted magnesium and magnesium chloride contained in this metallic titanium ingot are removed by vacuum separation and purification, followed by cutting, crushing and crushing. When the metal titanium with a specific particle size (hereinafter referred to as “sponge titanium”) is subjected to sieving, the bottom part of this mass cannot be used as a material for wrought materials or aircraft parts, so cutting During the treatment, the bottom side portion was previously cut and removed by a cutting press, and only the non-defective portion was cut, pulverized, and sieved to produce a product, thus lowering the product yield.
【0005】本発明は上記のような問題点を解決し、生
成金属塊の品質を向上し、製品歩留の向上が可能である
ハロゲン化金属の還元反応による金属の製造方法の提供
を目的としている。The present invention is intended to solve the above problems and to provide a method for producing a metal by a reduction reaction of a metal halide capable of improving the quality of a produced metal lump and improving the product yield. There is.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明者等は鋭意研究を重ねた結果、反応容器1内
底部のロストル2上に予め特定の金属を層状に配置して
おくと、その金属がその後に挿入した還元剤に含まれる
不純物を吸収し、反応容器1内で還元剤を精製すること
を知見し、本発明を完成するに至った。In order to achieve the above object, the inventors of the present invention have conducted extensive studies and as a result, if a specific metal is arranged in layers on the rostrur 2 at the bottom of the reaction vessel 1 in advance. The inventors have found that the metal absorbs impurities contained in the reducing agent inserted thereafter and refines the reducing agent in the reaction vessel 1, and has completed the present invention.
【0007】即ち、本発明はハロゲン化金属の還元反応
による金属の製造方法において、反応容器1内底部のロ
ストル2上に予め還元剤に含まれる不純物を吸収する金
属を層状に配置することを特徴としている。That is, according to the present invention, in the method for producing a metal by a reduction reaction of a metal halide, a metal for absorbing impurities contained in a reducing agent is previously arranged in layers on the roster 2 at the bottom of the reaction vessel 1. I am trying.
【0008】更に具体的には、反応容器を組み立てる際
に、反応容器1内底部のロストル2上に還元剤に含まれ
る不純物を吸収する金属を層状に配置しておき、その後
の反応開始前に反応に用いる液状の還元剤を反応容器1
内に注入し、ロストル2上に配置された金属と接触させ
る。この後に液状のハロゲン化金属を反応容器1上部よ
り滴下して還元反応を開始し、生成した金属をロストル
2上に配置された金属上に堆積成長させ、生成金属塊を
得る。More specifically, when assembling the reaction vessel, a metal for absorbing impurities contained in the reducing agent is arranged in layers on the rostr 2 at the bottom of the inside of the reaction vessel 1 and before starting the reaction thereafter. The liquid reducing agent used in the reaction is the reaction vessel 1
It is injected into the inside and brought into contact with the metal arranged on the rustle 2. After that, a liquid metal halide is dropped from the upper part of the reaction vessel 1 to start the reduction reaction, and the produced metal is deposited and grown on the metal arranged on the roster 2 to obtain a produced metal mass.
【0009】本発明において、還元剤に含まれる不純物
を吸収する金属の例としては、金属チタンや金属ジルコ
ニウムあるいはそれらの合金があげられる。In the present invention, examples of the metal that absorbs the impurities contained in the reducing agent include metallic titanium, metallic zirconium and alloys thereof.
【0010】これらの金属は、高純度である必要は無
く、当該金属の含有率が 50% 以上であれば還元剤に
含まれる不純物を吸収するのに充分であるため、従来の
方法で製造した金属チタン塊底部の不純物を多く含む部
分の粉砕品やステンレス鋼製の反応容器と還元反応中に
反応して生成する高鉄含有生成金属などのそのままでは
製品とならないものを繰り返して使用することが可能な
ため、製造コストを増加させない。また、合金線材など
の加工品のスクラップも使用できる。These metals do not need to be of high purity, and if the content of the metal is 50% or more, it is sufficient to absorb the impurities contained in the reducing agent, and thus they are produced by the conventional method. It is possible to repeatedly use crushed parts of the bottom of the titanium metal lump containing a large amount of impurities, stainless steel reaction vessels and high iron-containing produced metals that are produced by the reaction during the reduction reaction. Since it is possible, it does not increase the manufacturing cost. Also, scraps of processed products such as alloy wire rods can be used.
【0011】また、その形状はロストル2上に層状に配
置できるものであれば良いが、還元剤に含まれる不純物
を充分に吸収させるためには還元剤との接触する金属の
表面積を確保することが必要であり、スポンジ状のもの
であれば粒度が300mm以下、それ以外であれば比表面
積が0.5cm2/g以上であることが好ましい。The shape may be any as long as it can be arranged in a layered manner on the roster 2, but in order to sufficiently absorb the impurities contained in the reducing agent, the surface area of the metal in contact with the reducing agent should be secured. If it is sponge-like, the particle size is preferably 300 mm or less, and otherwise the specific surface area is preferably 0.5 cm 2 / g or more.
【0012】更に、ロストル2上に配置する金属の量
は、ロストル2上に層状に配置するのに必要な量であれ
ば差し支えなく、これが多量であると目的とする生成金
属の生産効率が大幅に低下することから、目的の生成金
属重量の0.5〜10%の範囲が好ましい。Further, the amount of the metal to be placed on the roster 2 may be any amount necessary for placing it on the rostrur 2 in a layered manner, and if the amount is large, the production efficiency of the target produced metal is greatly increased. Therefore, it is preferably in the range of 0.5 to 10% of the target weight of the produced metal.
【0013】なお、本発明では、還元剤に含まれる不純
物を吸収する金属と還元剤との接触による還元剤の精製
を反応系内で行っているが、両者の接触を予め反応系外
で行うことにより精製された還元剤を反応容器内に供給
する方法も、ハロゲン化金属の還元反応により不純物の
少ない金属を製造するために有効である。In the present invention, the reducing agent is purified by contacting the reducing agent with a metal that absorbs impurities contained in the reducing agent in the reaction system. However, contact between the two is performed in advance outside the reaction system. The method of supplying the reducing agent thus purified into the reaction vessel is also effective for producing a metal containing few impurities by the reduction reaction of the metal halide.
【0014】[0014]
【作用】反応容器1内底部のロストル2上に予め層状に
配置された還元剤に含まれる不純物を吸収する金属は、
反応容器1内に注入された液状の還元剤と接触し、還元
剤に含まれる鉄、アルミニウム、酸素、窒素等の不純物
を吸収し、反応容器1内で起こる還元反応のための不純
物の少ない還元剤を供給する。このため、生成する金属
は還元剤に起因する不純物を殆ど含まない状態で還元剤
中を沈降して、ロストル2上に予め層状に配置された還
元剤に含まれる不純物を吸収する金属の上に堆積し、塊
状に成長する。このため、得られた生成金属塊の底部に
おける不純物を多く含む部分の存在は大巾に減少する。The metal that absorbs the impurities contained in the reducing agent, which is arranged in layers in advance on the rostr 2 at the bottom of the reaction vessel 1, is
Contact with a liquid reducing agent injected into the reaction vessel 1 to absorb impurities such as iron, aluminum, oxygen, nitrogen contained in the reducing agent, and reduction with less impurities for the reduction reaction occurring in the reaction vessel 1. Supply the agent. For this reason, the produced metal settles in the reducing agent in a state in which the reducing agent hardly contains impurities, and is deposited on the metal that absorbs the impurities contained in the reducing agent that are arranged in layers on the rostr 2 in advance. It accumulates and grows in blocks. Therefore, the existence of a portion containing a large amount of impurities at the bottom of the obtained produced metal ingot is greatly reduced.
【0015】また、ロストル2上に予め層状に配置され
た還元剤に含まれる不純物を吸収する金属は、還元反応
の初期に生成した微細な金属をも容易に固定するため、
反応により副生し、適時系外に除去する還元剤のハロゲ
ン化物中にこの微細な金属を混入させない。Further, the metal that absorbs the impurities contained in the reducing agent, which are arranged in layers on the roster 2 in advance, easily fixes the fine metal generated in the initial stage of the reduction reaction.
This fine metal is not mixed in the halide of the reducing agent that is by-produced by the reaction and is removed to the outside of the system in a timely manner.
【0016】[0016]
【実施例】本発明の実施例を金属チタンの製造について
説明する。 実施例 図1に示す還元反応装置において、この還元反応装置を
組立てる際に、反応容器1の底部にあるロストル2の上
に、粒径が約50〜100mmで、Ti純分が約90wt.
%のスポンジ状金属チタン8を目的の金属チタンの生成
重量の3%となる量で、層状に敷いた。還元反応装置を
組立て後、反応容器1の内部をArガスで置換し、加熱
炉7を作動させた状態でMg注入口5から反応容器1内
に溶融Mgを注入する。EXAMPLES Examples of the present invention will be described for the production of metallic titanium. Example In the reduction reaction apparatus shown in FIG. 1, when the reduction reaction apparatus was assembled, the particle size was about 50 to 100 mm and the pure Ti content was about 90 wt.
% Spongy metallic titanium 8 was laid in layers in an amount of 3% of the weight of the target metallic titanium produced. After assembling the reduction reactor, the inside of the reaction vessel 1 is replaced with Ar gas, and molten Mg is injected into the reaction vessel 1 from the Mg inlet 5 while the heating furnace 7 is operating.
【0017】次にTiCl4滴下パイプ4からTiCl4
を滴下し、還元反応容器1内に金属チタンと副生成物で
あるMgCl2が生成する。副生成物であるMgCl2は
適時、MgCl2抜パイプ3から系外へ除去し、還元反
応終了後には還元反応容器1内に未反応のMgおよびM
gCl2を含む金属チタン塊が得られる。Next, from the TiCl 4 dropping pipe 4, TiCl 4
Is added dropwise, and metallic titanium and by-product MgCl 2 are produced in the reduction reaction container 1. The by-product MgCl 2 is removed from the system through the MgCl 2 vent pipe 3 at a suitable time, and after the reduction reaction is completed, unreacted Mg and M in the reduction reaction container 1 are removed.
A metallic titanium mass containing gCl 2 is obtained.
【0018】この金属チタン塊に含まれる未反応のMg
やMgCl2を真空分離精製により除去した後、反応容
器1から取り出す。その後この金属チタン塊から、先
ず、切断用プレスで塊底部の不純物を多く含む部分を切
断除去し、残りの部分を小さなブロックに切断した上で
破砕機及び篩別機を用いて処理することにより、0.8
3〜12.7mmのサイズとして得たスポンジチタンの不
純物含有量とブリネル硬さの調査結果を、当該方法で製
造した10バッチの平均値で、同じく従来方法で製造し
たスポンジチタンの10バッチの平均値と対比して表1
に示す。本発明の方法で製造したスポンジチタン中の
鉄、アルミニウム、酸素、窒素およびブリネル硬さは、
いずれも従来方法で製造したものより低く、品質が向上
している。Unreacted Mg contained in this metallic titanium mass
After removing MgCl 2 and MgCl 2 by vacuum separation and purification, they are taken out from the reaction vessel 1. Then, from this metal titanium lump, first, the portion containing a large amount of impurities at the bottom of the lump is cut and removed by a cutting press, and the remaining portion is cut into small blocks, which are then processed using a crusher and a sieving machine. , 0.8
The results of investigation of the impurity content and Brinell hardness of titanium sponge obtained as a size of 3 to 12.7 mm are the average values of 10 batches produced by the method, and the average of 10 batches of titanium sponge produced by the conventional method. Table 1 in comparison with the values
Shown in. Iron, aluminum, oxygen, nitrogen and Brinell hardness in titanium sponge produced by the method of the present invention,
Both are lower than those manufactured by the conventional method, and the quality is improved.
【0019】[0019]
【表1】 従来方法 本発明方法 Fe(wt.%) 0.025 0.020 Al(wt.%) 0.004 0.002 O (wt.%) 0.030 0.025 N (wt.%) 0.004 0.002 硬さ(HB) 93 89Table 1 Conventional method Inventive method Fe (wt.%) 0.025 0.020 Al (wt.%) 0.004 0.002 O (wt.%) 0.030 0.025 N (wt.% ) 0.004 0.002 Hardness (HB) 93 89
【0020】また、金属チタン塊底部の不純物を多く含
む部分の除去量は、従来方法の約1/3にまで減少し
た。Further, the removal amount of the portion containing a large amount of impurities at the bottom of the metallic titanium ingot was reduced to about 1/3 of the conventional method.
【0021】[0021]
【発明の効果】本発明のハロゲン化金属の還元反応によ
る金属の製造方法を用いると、従来方法と比較して良好
な品質の生成金属塊を得、製品の歩留及び品質を向上す
ることが出来る。EFFECTS OF THE INVENTION By using the method for producing a metal by the reduction reaction of a metal halide of the present invention, it is possible to obtain a produced metal lump of good quality and improve the yield and quality of the product as compared with the conventional method. I can.
【0022】また、還元反応の際に副生する還元剤のハ
ロゲン化物を再生し、これを還元剤としてリサイクルす
るために行う溶融塩電解のための原料として、微細な生
成金属を含まないハロゲン化物を供給できるため、溶融
塩電解における電解効率も向上できる。Further, as a raw material for molten salt electrolysis for regenerating the halide of a reducing agent produced as a by-product during the reduction reaction and recycling this as a reducing agent, a halide containing no finely formed metal is used. As a result, the electrolysis efficiency in the molten salt electrolysis can be improved.
Claims (1)
製造方法であって、反応容器内底部のロストル上に予め
還元剤に含まれる不純物を吸収する金属を層状に配置す
ることを特徴とするハロゲン化金属の還元反応による金
属の製造方法。1. A method for producing a metal by a reduction reaction of a metal halide, characterized in that a metal for absorbing impurities contained in a reducing agent is arranged in layers on a rostrut at the bottom of the reaction vessel. A method for producing a metal by a reduction reaction of a metal fluoride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31020491A JPH0681051A (en) | 1991-10-30 | 1991-10-30 | Production of metal by reduction reaction of metal halide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31020491A JPH0681051A (en) | 1991-10-30 | 1991-10-30 | Production of metal by reduction reaction of metal halide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0681051A true JPH0681051A (en) | 1994-03-22 |
Family
ID=18002441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31020491A Pending JPH0681051A (en) | 1991-10-30 | 1991-10-30 | Production of metal by reduction reaction of metal halide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0681051A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007224368A (en) * | 2006-02-23 | 2007-09-06 | Toho Titanium Co Ltd | Metal refining method, and method for manufacturing active metal using it |
CN108291272A (en) * | 2015-08-14 | 2018-07-17 | 库吉钛私人有限公司 | Use the method for high surface area/volume reactive particle |
CN108350526A (en) * | 2015-08-14 | 2018-07-31 | 库吉钛私人有限公司 | The method that metal-containing material is recycled from composite material |
JP2018172755A (en) * | 2017-03-31 | 2018-11-08 | 東邦チタニウム株式会社 | Method of manufacturing sponge titanium |
CN110607446A (en) * | 2019-09-24 | 2019-12-24 | 新疆湘晟新材料科技有限公司 | Reduction distillation reactor barrel for producing high-efficiency titanium sponge |
US11078556B2 (en) | 2015-08-14 | 2021-08-03 | Coogee Titanium Pty Ltd | Method for production of a composite material using excess oxidant |
-
1991
- 1991-10-30 JP JP31020491A patent/JPH0681051A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007224368A (en) * | 2006-02-23 | 2007-09-06 | Toho Titanium Co Ltd | Metal refining method, and method for manufacturing active metal using it |
CN108291272A (en) * | 2015-08-14 | 2018-07-17 | 库吉钛私人有限公司 | Use the method for high surface area/volume reactive particle |
CN108350526A (en) * | 2015-08-14 | 2018-07-31 | 库吉钛私人有限公司 | The method that metal-containing material is recycled from composite material |
US10960469B2 (en) | 2015-08-14 | 2021-03-30 | Coogee Titanium Pty Ltd | Methods using high surface area per volume reactive particulate |
US11078556B2 (en) | 2015-08-14 | 2021-08-03 | Coogee Titanium Pty Ltd | Method for production of a composite material using excess oxidant |
US11162157B2 (en) | 2015-08-14 | 2021-11-02 | Coogee Titanium Pty Ltd | Method for recovery of metal-containing material from a composite material |
JP2018172755A (en) * | 2017-03-31 | 2018-11-08 | 東邦チタニウム株式会社 | Method of manufacturing sponge titanium |
CN110607446A (en) * | 2019-09-24 | 2019-12-24 | 新疆湘晟新材料科技有限公司 | Reduction distillation reactor barrel for producing high-efficiency titanium sponge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2618549A (en) | Method for the production of titanium | |
JPH04231406A (en) | Metal powder manufacturing method | |
JP2863469B2 (en) | Manufacturing method of high purity titanium material | |
JP4132526B2 (en) | Method for producing powdered titanium | |
US3746535A (en) | Direct reduction process for making titanium | |
JPH0681051A (en) | Production of metal by reduction reaction of metal halide | |
JP4904067B2 (en) | Method for purifying metal magnesium and method for producing metal tantalum using the same | |
JPH01149932A (en) | Production of zirconium alloy for liner of fuel element | |
JP3981601B2 (en) | Titanium metal refining method and refining apparatus | |
JP2921790B2 (en) | Method for producing low oxygen titanium material and low oxygen titanium dissolving material | |
JP4309675B2 (en) | Method for producing titanium alloy | |
JP2915779B2 (en) | Method for producing high purity titanium material for thin film formation | |
US2813019A (en) | Method of producing zirconium metal | |
JP2784324B2 (en) | Manufacturing method of titanium | |
JP2000327488A (en) | Production of silicon substrate for solar battery | |
JPH0288727A (en) | Manufacturing method of titanium metal | |
JPH0925522A (en) | Method for producing high-purity metallic material | |
JP3809514B2 (en) | Method for producing titanium metal by reducing lower chloride of titanium | |
CA1257069A (en) | Method of purificating titanium tetrachloride | |
EP0248396B1 (en) | Combined electron beam and vacuum arc melting for barrier tube shell material | |
JP7354393B1 (en) | Method for manufacturing titanium sponge and method for manufacturing titanium molded products | |
JPH01147028A (en) | Production of zirconium alloy for liner of fuel element | |
JPH01212726A (en) | Production of zirconium used in linear of nuclear fuel element | |
JPH09111361A (en) | High-purity titanium material manufacturing method | |
JP3701629B2 (en) | Sponge titanium manufacturing method |