JPH0680865B2 - Semiconductor superlattice - Google Patents
Semiconductor superlatticeInfo
- Publication number
- JPH0680865B2 JPH0680865B2 JP62075353A JP7535387A JPH0680865B2 JP H0680865 B2 JPH0680865 B2 JP H0680865B2 JP 62075353 A JP62075353 A JP 62075353A JP 7535387 A JP7535387 A JP 7535387A JP H0680865 B2 JPH0680865 B2 JP H0680865B2
- Authority
- JP
- Japan
- Prior art keywords
- quantum well
- semiconductor
- quantum
- superlattice
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003362 semiconductor superlattice Substances 0.000 title claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 16
- 230000004888 barrier function Effects 0.000 claims description 7
- 238000005381 potential energy Methods 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 6
- 239000000969 carrier Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/341—Structures having reduced dimensionality, e.g. quantum wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4043—Edge-emitting structures with vertically stacked active layers
- H01S5/405—Two-dimensional arrays
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体超格子に関するものである。The present invention relates to a semiconductor superlattice.
従来提案された半導体超格子として第3図に示すように
量子井戸構造が広く知られている。すなわち、量子井戸
平面31とこれをとり囲む量子障壁領域32とから成り、量
子井戸平面31に閉じ込められた電子または正孔は擬2次
元状態となり、高性能な半導体レーザなどに用いられて
いる(アプライド・フィジックス・レーターズ[Appl.P
hys.Lett.]Vo139、(1981)pp786)。As a conventionally proposed semiconductor superlattice, a quantum well structure is widely known as shown in FIG. That is, it is composed of a quantum well plane 31 and a quantum barrier region 32 surrounding the quantum well plane 31, and electrons or holes confined in the quantum well plane 31 are in a pseudo two-dimensional state, which is used for a high-performance semiconductor laser or the like ( Applied Physics Raters [Appl.P
hys.Lett.] Vo139, (1981) pp786).
しかしながら、このような量子井戸構造では、量子障壁
の存在により複数の量子井戸平面31を一様なキャリア密
度にすることもむずかしく、半導体レーザに用いた場
合、発信閾値電流を十分小さくできないという欠点を有
していた。However, in such a quantum well structure, it is difficult to make the plurality of quantum well planes 31 have a uniform carrier density due to the existence of quantum barriers, and when used in a semiconductor laser, there is a drawback that the emission threshold current cannot be made sufficiently small. Had.
本発明の目的は、このような問題点を解決した半導体レ
ーザ等に適用可能な半導体超格子を提供することにあ
る。An object of the present invention is to provide a semiconductor superlattice applicable to a semiconductor laser or the like which solves the above problems.
本発明の半導体超格子は、厚さが電子のドブロイ波長程
度(数10nm)の半導体からなる量子井戸平面を複数有
し、これらの量子井戸平面が格子状に交叉し、量子井戸
平面のまわりに、量子井戸平面を構成する半導体よりポ
テンシャルエネルギーの高い半導体からなる量子障壁領
域を有することを特徴とする。The semiconductor superlattice of the present invention has a plurality of quantum well planes made of a semiconductor having a thickness of about a de Broglie wavelength of an electron (several tens of nm), and these quantum well planes intersect in a lattice shape, and around the quantum well planes. , A quantum barrier region made of a semiconductor having a higher potential energy than that of the semiconductor forming the quantum well plane.
(作用) 上述の構造の半導体超格子では、各量子井戸平面が格子
状に交叉しているため、量子井戸平面内に注入されたキ
ャリアは、この交差点を介して速やかに超格子全体に広
がる。このため量子井戸平面内のキャリア密度は場所に
よらずほぼ一定となる。格子状につながった量子井戸平
面内でのキャリアの状態は2次元に近い状態であり、キ
ャリアの低次元化による発光スペクトルの狭帯域化等の
効果は保存されている。このため、半導体レーザの活性
層として上述の半導体超格子を用いると、発振閾値電流
を少なくすることができる。(Operation) In the semiconductor superlattice having the above-described structure, since the quantum well planes intersect each other in a lattice shape, carriers injected into the quantum well planes spread quickly throughout the superlattice through the intersections. Therefore, the carrier density in the plane of the quantum well is almost constant regardless of the place. The state of carriers in the plane of quantum wells connected in a lattice is nearly two-dimensional, and the effect of narrowing the emission spectrum due to the reduction of the dimension of carriers is preserved. Therefore, when the above semiconductor superlattice is used as the active layer of the semiconductor laser, the oscillation threshold current can be reduced.
次に、図面を参照して本発明の実施例について説明す
る。Next, an embodiment of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例を示す斜視図である。本実施
例は、GaAsからなる半導体基板10上にGaAsからなる量子
井戸平面(厚さ20nm)11とAl0.5Ga0.5Asからなる量子障
壁領域12を作成した。結晶成長は分子線エピタキシー法
によって行なった。半導体基板10上に厚さ50nmのAl0.5G
a0.5As及び厚さ50nmのGaAsの結晶を成長したのち、イオ
ンビームエッチング法により、GaAsをエッチングし、量
子井戸平面11を形成した。この状態を第2図に示す。さ
らにAl0.5Ga0.5Asを結晶成長し、量子障壁領域12を作成
し、これをくり返すことにより、超格子構造を形成し
た。FIG. 1 is a perspective view showing an embodiment of the present invention. In this example, a quantum well plane (20 nm in thickness) 11 made of GaAs and a quantum barrier region 12 made of Al 0.5 Ga 0.5 As were formed on a semiconductor substrate 10 made of GaAs. Crystal growth was performed by the molecular beam epitaxy method. 50 nm thick Al 0.5 G on semiconductor substrate 10
After growing a GaAs crystal with a 0.5 As and a thickness of 50 nm, GaAs was etched by an ion beam etching method to form a quantum well plane 11. This state is shown in FIG. Further, Al 0.5 Ga 0.5 As was crystal-grown to form a quantum barrier region 12, and this was repeated to form a superlattice structure.
GaAsのポテンシャルエネルギーはAl0.5Ga0.5Asのポテン
シャルエネルギーより低いため、電子と正孔はGaAsから
なる量子井戸平面11に閉じ込められる。量子井戸平面11
は20nmの厚さであるため、量子力学的効果により擬2次
元的なバンド状態となる。また、量子井戸平面11は全体
につながっているため、キャリアは全体に一様に分布し
ようとする。Since the potential energy of GaAs is lower than that of Al 0.5 Ga 0.5 As, electrons and holes are confined in the quantum well plane 11 made of GaAs. Quantum well plane 11
Has a thickness of 20 nm, so it becomes a pseudo-two-dimensional band state due to quantum mechanical effects. Further, since the quantum well plane 11 is connected to the whole, carriers try to be uniformly distributed throughout.
このため、この超格子構造に外部から電子及び正孔を注
入すると、それぞれ量子井戸平面11全体に速やかに広が
り、電子と正孔が再結合する時の発光スペクトルは非常
に狭いものとなる。このような超格子を半導体レーザの
活性層として用いると発振閾値電流の小さな半導体レー
ザを得ることができる。Therefore, when electrons and holes are injected into the superlattice structure from the outside, they quickly spread over the entire quantum well plane 11, and the emission spectrum when electrons and holes are recombined becomes very narrow. When such a superlattice is used as an active layer of a semiconductor laser, a semiconductor laser having a small oscillation threshold current can be obtained.
本実施例ではAlGaAs系混晶を用いたが、これに限らず外
の半導体混晶を用いてもよい。In this embodiment, the AlGaAs type mixed crystal is used, but the present invention is not limited to this, and other semiconductor mixed crystal may be used.
このように、本発明によれば、有効なキャリア注入が可
能な半導体超格子が得られる。Thus, according to the present invention, a semiconductor superlattice capable of effective carrier injection can be obtained.
第1図は本発明の一実施例を示す斜視図、第2図はこの
実施例の製作方法を示す斜視図、第3図は従来の量子井
戸構造を示す斜視図である。 10……半導体基板、11,31……量子井戸平面、12,32……
量子障壁領域。FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a perspective view showing a manufacturing method of this embodiment, and FIG. 3 is a perspective view showing a conventional quantum well structure. 10 …… Semiconductor substrate, 11,31 …… Quantum well plane, 12,32 ……
Quantum barrier region.
Claims (1)
の半導体からなる量子井戸平面を複数有し、前記量子井
戸平面が格子状に交叉し、前記量子井戸平面のまわりに
前記量子井戸平面を構成する半導体よりポテンシャルエ
ネルギーの高い半導体からなる量子障壁領域を有するこ
とを特徴とする半導体超格子。1. The thickness is about the de Broglie wavelength of electrons (tens of nm).
A plurality of quantum well planes made of a semiconductor, the quantum well planes intersect in a lattice, and a quantum barrier region made of a semiconductor having a higher potential energy than the semiconductor forming the quantum well planes is formed around the quantum well planes. A semiconductor superlattice having.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62075353A JPH0680865B2 (en) | 1987-03-27 | 1987-03-27 | Semiconductor superlattice |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62075353A JPH0680865B2 (en) | 1987-03-27 | 1987-03-27 | Semiconductor superlattice |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63240090A JPS63240090A (en) | 1988-10-05 |
JPH0680865B2 true JPH0680865B2 (en) | 1994-10-12 |
Family
ID=13573787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62075353A Expired - Lifetime JPH0680865B2 (en) | 1987-03-27 | 1987-03-27 | Semiconductor superlattice |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0680865B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2720930B2 (en) * | 1988-07-06 | 1998-03-04 | 科学技術振興事業団 | Quantum thin film device with grid |
JP2575901B2 (en) * | 1989-11-13 | 1997-01-29 | 新技術事業団 | Quantum structure with grid |
GB0515635D0 (en) * | 2005-07-29 | 2005-09-07 | Harbron Stuart | Transistor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS607190A (en) * | 1983-06-24 | 1985-01-14 | Nippon Telegr & Teleph Corp <Ntt> | Multidimensional super lattice and manufacture thereof |
-
1987
- 1987-03-27 JP JP62075353A patent/JPH0680865B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63240090A (en) | 1988-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6751243B2 (en) | Semiconductor device with quantum dots having high carrier injection efficiency, its manufacture method, and semiconductor laser device | |
JPS6310517A (en) | Method of manufacturing semiconductor structures | |
JP2531655B2 (en) | Semiconductor device | |
JP4151042B2 (en) | Semiconductor laser | |
US5331656A (en) | Very short wavelength semiconductor laser | |
US4802181A (en) | Semiconductor superlattice light emitting sevice | |
JP3304903B2 (en) | Semiconductor quantum dot device and manufacturing method thereof | |
JPH0680865B2 (en) | Semiconductor superlattice | |
JP2947199B2 (en) | Semiconductor quantum dot device and method of manufacturing the semiconductor quantum dot device | |
JP3146710B2 (en) | Light emitting element | |
JPS60101989A (en) | Semiconductor laser and manufacture thereof | |
GB2137812A (en) | Semiconductor Device for Producing Electromagnetic Radiation | |
JPH0665237B2 (en) | Method for manufacturing two-dimensional quantization element | |
JPH0693531B2 (en) | Semiconductor superlattice | |
JP4075003B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH0632343B2 (en) | Semiconductor laser | |
JP2757258B2 (en) | Superlattice element manufacturing method | |
JPS61287288A (en) | Semiconductor laser device | |
JPH0752782B2 (en) | Semiconductor superlattice | |
JPH0693528B2 (en) | Semiconductor superlattice | |
KR100261248B1 (en) | Laser diode and its manufacturing method | |
JPH05110066A (en) | Manufacture of quantum fine wire structure | |
JP2754671B2 (en) | Semiconductor quantum wire structure and manufacturing method thereof | |
JPS60126880A (en) | Semiconductor laser device | |
KR100281287B1 (en) | Manufacturing Method of Compound Semiconductor Device |