[go: up one dir, main page]

JPH0679268A - Production of ultra-pure water - Google Patents

Production of ultra-pure water

Info

Publication number
JPH0679268A
JPH0679268A JP4235642A JP23564292A JPH0679268A JP H0679268 A JPH0679268 A JP H0679268A JP 4235642 A JP4235642 A JP 4235642A JP 23564292 A JP23564292 A JP 23564292A JP H0679268 A JPH0679268 A JP H0679268A
Authority
JP
Japan
Prior art keywords
water
ion
fiber
exchange
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4235642A
Other languages
Japanese (ja)
Other versions
JP3232466B2 (en
Inventor
Masaru Noyori
賢 野寄
Nami Hirata
奈美 平田
Toshio Yoshioka
敏雄 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP23564292A priority Critical patent/JP3232466B2/en
Publication of JPH0679268A publication Critical patent/JPH0679268A/en
Application granted granted Critical
Publication of JP3232466B2 publication Critical patent/JP3232466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To stably and continuously obtain ultra-pure water for a long time by an electric deionizing method using a fibrous ion exchanger. CONSTITUTION:High purity water is continuously obtd. by an electric deionizing method using a fibrous ion exchanger. The ion exchanger is in a conjugate fiber state consisting of an ion exchanging polymer and a reinforcing polymer. It is preferable that the ion exchange polymer is a polystyrene-type, and the reinforcing polymer is polyethylene. Further, it is preferable that the fibrous ion exchanger is a sheet-type one.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維状イオン交換体を
用いて電気脱イオン化により連続的に超純水を得る超純
水製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrapure water which continuously obtains ultrapure water by electric deionization using a fibrous ion exchanger.

【0002】[0002]

【従来の技術及びその課題】従来、水中のイオン又は分
子の濃度を減少させる方法としては、蒸留、電気透析、
逆浸透、液体クロマトグラフィ、膜ろ過、イオン交換等
がある。中でも、イオン交換法が手軽に脱イオンできる
ことから最も一般的に採用されている。近年、使用済み
イオン交換樹脂を電気的に再生する方法(特開昭61−
247998)、電気的作用を利用することによってイ
オン交換樹脂を再生しながら連続的に超純水を得る方法
(特開平3−207487)、イオン交換繊維を用いた
電気脱イオン化方法(特開平3−186400)等が提
案されている。これらはいずれも、使用済みイオン交換
体を再生剤を用いることなしに再生・再利用できる技術
である。
2. Description of the Related Art Conventional methods for reducing the concentration of ions or molecules in water include distillation, electrodialysis,
Reverse osmosis, liquid chromatography, membrane filtration, ion exchange, etc. Among them, the ion exchange method is most commonly adopted because it can be easily deionized. In recent years, a method for electrically regenerating used ion-exchange resin (Japanese Patent Laid-Open No. 61-
247998), a method of continuously obtaining ultrapure water while regenerating an ion exchange resin by utilizing an electric action (JP-A-3-207487), and an electrodeionization method using ion exchange fibers (JP-A-3-207487). 186400) and the like have been proposed. All of these are technologies that can regenerate and reuse a used ion exchanger without using a regenerant.

【0003】しかしながら、イオン交換体としてイオン
交換樹脂を使用する場合は、繊維状のものを使用する場
合に比べて表面積が小さい。このため、イオン交換樹脂
の洗浄が不十分となり、該樹脂からの溶出物が多くなっ
て、得られる水の純度は低くならざるをえない。この欠
点を解消するために、洗浄の強化、あるいは均一寸法の
樹脂の使用が提案されているが、本質的な改善にはなっ
ていない。また、樹脂の場合は、脱塩室内で樹脂が流動
するため、カチオン交換樹脂とアニオン交換樹脂の混合
体が分離し、純度の低い水しか得られない。
However, when an ion exchange resin is used as the ion exchanger, the surface area is smaller than when a fibrous one is used. Therefore, the ion exchange resin is insufficiently washed, the amount of elution from the resin is increased, and the purity of the obtained water is inevitably low. In order to eliminate this drawback, it has been proposed to enhance cleaning or use a resin having a uniform size, but it is not an essential improvement. Further, in the case of resin, since the resin flows in the desalting chamber, the mixture of the cation exchange resin and the anion exchange resin is separated, and only water of low purity can be obtained.

【0004】さらに、イオン交換樹脂はイオンを減少さ
せる速度が遅い。この性質は、電気脱イオン化方法によ
り液体を精製する場合のように、素早く再生とイオン交
換を行うことが必要となる場合では極めて不利となり、
イオン交換−再生が効率的に行えないという欠点とな
る。また、イオン交換樹脂は、決められた充填幅に収め
なくてはならないため自由度が小さく、操作性が悪い。
Furthermore, ion exchange resins have a slow rate of depleting ions. This property is extremely disadvantageous when rapid regeneration and ion exchange are required as in the case of purifying a liquid by an electric deionization method,
The disadvantage is that ion exchange-regeneration cannot be performed efficiently. Further, since the ion exchange resin has to be contained within a predetermined filling width, the degree of freedom is small and the operability is poor.

【0005】一方、繊維状のイオン交換体であっても、
従来用いられているような単一繊維からなるものでは機
械的強度が低く、イオン交換−再生(負荷型−再生型)
を繰り返すうちに破砕してしまうという欠点がある。ま
た、比較的高い機械的強度を有するものもあるが、その
場合にはイオン交換容量が小さく、しかも耐薬品性に劣
る欠点を持ち、いずれもカチオン交換体とアニオン交換
体とで良好な混合体を形成することができない。さら
に、繊維の柔軟性の無さから充填密度が上げられないと
いう欠点も存在する。しかも、繊維内部にまで交換基が
あるため、繊維状であるにもかかわらずイオンの吸着・
除去がスムースに行われない。
On the other hand, even with a fibrous ion exchanger,
A single fiber that has been conventionally used has low mechanical strength, and ion exchange-regeneration (load-regeneration)
There is a drawback that it will be crushed while repeating. Some have relatively high mechanical strength, but in that case, they have the drawbacks of low ion exchange capacity and poor chemical resistance, and both are good mixtures of cation exchangers and anion exchangers. Cannot be formed. Further, there is a drawback that the packing density cannot be increased due to the lack of flexibility of the fiber. Moreover, since there is an exchange group even inside the fiber, it absorbs ions even though it is fibrous.
Removal is not smooth.

【0006】本発明の目的は、繊維状イオン交換体を用
いて電気脱イオン化により連続的に超純水を得る際に、
長期間安定して極めて高純度の水を得ることができるよ
うにすることにある。
An object of the present invention is to obtain ultrapure water continuously by electric deionization using a fibrous ion exchanger,
It is to be able to stably obtain extremely high-purity water for a long period of time.

【0007】[0007]

【課題を解決するための手段】本発明の第1の見地に係
る超純水製造方法は、繊維状イオン交換体を用いて電気
脱イオン化により連続的に超純水を得る超純水製造方法
であり、前記イオン交換体がイオン交換ポリマと補強材
ポリマとからなる複合繊維形態であることを特徴として
いる。なお、前記イオン交換ポリマがポリスチレンで、
前記補強材ポリマがポリエチレンであることが好まし
い。また、前記繊維状イオン交換体が、シート状である
ことが好ましい。
The method for producing ultrapure water according to the first aspect of the present invention is a method for producing ultrapure water in which ultrapure water is continuously obtained by electrical deionization using a fibrous ion exchanger. And the ion exchanger is in the form of a composite fiber composed of an ion exchange polymer and a reinforcing material polymer. The ion exchange polymer is polystyrene,
It is preferred that the reinforcement polymer is polyethylene. Moreover, it is preferable that the fibrous ion exchanger is in the form of a sheet.

【0008】本発明の第2の見地に係る超純水製造方法
は、次の工程を含んでいる。 ・水をプレフィルターで処理するプレフィルター工程 ・前記プレフィルター工程で処理された水を逆浸透膜で
処理する逆浸透膜工程 ・前記逆浸透膜工程で処理された水を紫外線で処理する
紫外線工程 ・前記紫外線工程で処理された水を、イオン交換ポリマ
と補強材ポリマとからなる複合繊維形態であるイオン交
換体を有するイオン交換・電気脱イオン化装置で処理す
るイオン交換・電気脱イオン化工程 ・前記イオン交換・電気脱イオン化工程で処理された水
を超精密ろ過膜で処理する超精密ろ過膜工程 以下、本発明を詳細に説明する。
The method for producing ultrapure water according to the second aspect of the present invention includes the following steps. -Pre-filter step of treating water with a pre-filter-Reverse osmosis membrane step of treating water treated in the pre-filter step with a reverse osmosis membrane-Ultraviolet step of treating water treated in the reverse osmosis membrane step with ultraviolet rays An ion exchange / electric deionization step in which the water treated in the ultraviolet step is treated with an ion exchange / electric deionization apparatus having an ion exchanger in the form of a composite fiber composed of an ion exchange polymer and a reinforcing material polymer; Ultrafine filtration membrane step of treating water treated in the ion exchange / electrodeionization step with an ultrafine filtration membrane The present invention will be described in detail below.

【0009】本発明でいう電気脱イオン化とは、電気的
にイオン除去と再生を同時に行いながら、連続的に超純
水を得ることをいう。ここでは、例えば、少なくとも1
対の電極(陰極及び陽極)と、陰イオン交換膜と陽イオ
ン交換膜とその間に充填されたイオン交換繊維とからな
るイオン減少区画室とを備えた電気脱イオン化装置を用
いて、溶液中のイオンを効率良く除去して純水を得ると
ともに、イオン交換繊維を再生する。
The electric deionization referred to in the present invention means to obtain ultrapure water continuously while electrically performing ion removal and regeneration simultaneously. Here, for example, at least 1
Using an electrodeionization device equipped with a pair of electrodes (cathode and anode) and an ion depletion compartment consisting of an anion exchange membrane, a cation exchange membrane and ion exchange fibers packed between them, Ions are efficiently removed to obtain pure water, and ion exchange fibers are regenerated.

【0010】本発明で重要なことは、複合形態を有する
繊維からなるイオン交換体を使用するということであ
る。該イオン交換繊維は繊維の柔軟性により充填密度の
自由度が大きく、電気脱イオンに最適な通液性を得るこ
とが可能である。この結果、イオン交換・再生がスムー
ズに行われ効率良く純水が安定して得られるようにな
る。さらに、複合繊維形態をとる本発明のイオン交換繊
維は、樹脂や単独繊維からなるものに比べてイオン交換
基が表面に極在しているためイオンの拡散が速く、交換
−再生が素早く行われる 本発明の複合形態を形成しているイオン交換繊維とは、
イオン交換ポリマと補強材ポリマからなる複合繊維(好
ましくはイオン交換ポリマを海成分に、補強材ポリマを
島成分にした多芯海島型の複合繊維)を基材としたイオ
ン交換繊維であり、操作上十分な機械的強度ならびに形
態保持性を有している。
What is important in the present invention is the use of an ion exchanger consisting of fibers having a composite morphology. The ion exchange fiber has a large degree of freedom in packing density due to the flexibility of the fiber, and it is possible to obtain optimum liquid permeability for electric deionization. As a result, ion exchange / regeneration is performed smoothly, and pure water can be obtained efficiently and stably. Furthermore, the ion-exchange fiber of the present invention in the form of a composite fiber has ion-exchange groups extremely localized on the surface as compared with those made of a resin or a single fiber, so that diffusion of ions is faster and exchange-regeneration is performed quickly. Ion exchange fibers forming the composite form of the present invention,
An ion-exchange fiber based on a composite fiber composed of an ion-exchange polymer and a reinforcement polymer (preferably a multicore sea-island composite fiber containing the ion-exchange polymer as a sea component and the reinforcement polymer as an island component) It has sufficient mechanical strength and shape retention.

【0011】該イオン交換繊維は、通常直径が0.01
〜100μm(好ましくは1〜100μm)の公知のイ
オン交換繊維である。その具体例としては、ポリスチレ
ン系、ポリビニルアルコール系、ポリアクリル系、ポリ
アミド系、ポリフェノール系、ポリエチレン系、セルロ
ース系等のベースポリマに、カチオン交換基(例えばス
ルホン酸基、ホスホン酸基、カルボン酸基)と、アニオ
ン交換基(例えば1〜3級アミノ基もしくは4級アンモ
ニウム基)とを導入したイオン交換繊維がある。
The ion exchange fiber usually has a diameter of 0.01.
It is a known ion-exchange fiber having a size of -100 μm (preferably 1-100 μm). Specific examples thereof include polystyrene-based, polyvinyl alcohol-based, polyacrylic-based, polyamide-based, polyphenol-based, polyethylene-based, and cellulose-based base polymers, and cation exchange groups (for example, sulfonic acid groups, phosphonic acid groups, and carboxylic acid groups). ) And an anion exchange group (for example, a primary to tertiary amino group or a quaternary ammonium group) are introduced.

【0012】前記ベースポリマの中でも、ポリ(モノビ
ニル芳香族化合物)、特にポリスチレン系ポリマが化学
安定性に優れており好ましい。具体的には、ポリスチレ
ン、α−メチルスチレン、ビニルトルエン、ビニルキシ
レン又はクロロメチルスチレンからなるポリマが挙げら
れる。補強材ポリマとしては、ポリ−α−オレフィンが
耐薬品性に優れているので好ましく、特にポリプロピレ
ン及びポリエチレンが好ましい。
Among the above-mentioned base polymers, poly (monovinyl aromatic compound), particularly polystyrene polymer is preferable because it has excellent chemical stability. Specific examples thereof include polymers made of polystyrene, α-methylstyrene, vinyltoluene, vinylxylene or chloromethylstyrene. As the reinforcing polymer, poly-α-olefin is preferable because it has excellent chemical resistance, and polypropylene and polyethylene are particularly preferable.

【0013】補強材ポリマの割合は10〜90%の範
囲、好ましくは20〜80%の範囲である。補強材ポリ
マが少なすぎると機械的強度が弱くなり、逆に多すぎる
とイオン交換基量や吸着性能が低下する。本発明のイオ
ン交換繊維の中でも特に、ポリスチレン系のベースポリ
マにスルホン酸基を導入した強酸性カチオン交換繊維と
4級アンモニウム基を導入した強塩基性アニオン交換繊
維とを混合したものが、被処理水中のイオンを効率良く
減少させることができ、高純度の超純水が得られるので
好ましい。なお、強酸性カチオン交換繊維と強塩基性ア
ニオン交換繊維との混合比率は、80:20〜20:8
0が好ましく、60:40〜30:70がより好まし
い。
The proportion of reinforcing polymer is in the range 10 to 90%, preferably in the range 20 to 80%. If the amount of the reinforcing material polymer is too small, the mechanical strength will be weakened. On the contrary, if the amount of the reinforcing material polymer is too large, the amount of ion exchange groups and the adsorption performance will be decreased. Among the ion exchange fibers of the present invention, in particular, a mixture of a strongly acidic cation exchange fiber having a sulfonic acid group introduced into a polystyrene base polymer and a strongly basic anion exchange fiber having a quaternary ammonium group introduced is treated. Ions in water can be efficiently reduced, and highly pure ultrapure water can be obtained, which is preferable. The mixing ratio of the strongly acidic cation exchange fiber and the strongly basic anion exchange fiber is 80:20 to 20: 8.
0 is preferable, and 60:40 to 30:70 is more preferable.

【0014】かかるポリマにイオン交換基を導入してイ
オン交換繊維を製造する方法としては、たとえば、パラ
ホルムアルデヒドと硫酸との共存下で加熱処理するか、
あるいは無水硫酸により気相で処理することにより、ス
ルホン酸基が導入されたカチオン交換繊維を得る方法が
ある。また、クロルメチル化後に、ホスホン化,アミノ
化もしくは四級アンモニウム化することによって、それ
ぞれ中酸性カチオン交換基,弱塩基性アニオン交換基も
しくは強塩基性アニオン交換基が導入された各種イオン
交換繊維を得ることができる。
As a method for producing an ion exchange fiber by introducing an ion exchange group into such a polymer, for example, heat treatment in the coexistence of paraformaldehyde and sulfuric acid or
Alternatively, there is a method of obtaining a cation exchange fiber into which a sulfonic acid group has been introduced by treating with sulfuric acid in a gas phase. In addition, various ion exchange fibers having a medium acidic cation exchange group, a weakly basic anion exchange group, or a strongly basic anion exchange group are introduced by phosphonation, amination or quaternary ammonium conversion after chloromethylation. be able to.

【0015】ポリマに導入するイオン交換基の量は、繊
維の乾燥重量に対して少なくとも0.1meq/g以
上、好ましくは0.5〜10meq/gの範囲である。
本発明におけるイオン交換繊維の含水度は、0.1〜1
0の範囲が好ましく、さらに1〜5の範囲が好ましい。
含水度が小さすぎると性能が低下し、逆に大きすぎる
と、反応工程あるいは使用時の圧損が上昇するなど取扱
い性が悪くなる。
The amount of ion-exchange groups introduced into the polymer is at least 0.1 meq / g or more, preferably 0.5 to 10 meq / g, based on the dry weight of the fiber.
The water content of the ion exchange fiber in the present invention is 0.1 to 1
The range of 0 is preferable, and the range of 1 to 5 is more preferable.
If the water content is too small, the performance will decrease, and conversely if it is too large, the handleability will be poor, such as an increase in the pressure loss during the reaction process or during use.

【0016】ここで含水度とは、Na型(Cl型)のカ
チオン(アニオン)交換繊維を蒸溜水に浸した後、家庭
用遠心脱水機で5分間遠心脱水して表面の水分を除去
し、ただちに重量(W)を測定し、さらに絶乾して重量
(Wo)測定し、次式より求めた値である。 含水度=(W−Wo)/Wo かかる交換基量あるいは含水度は処理条件や導入プロセ
ス等により制御できる。
Here, the water content means that the Na-type (Cl-type) cation (anion) exchange fiber is immersed in distilled water and then centrifugally dehydrated for 5 minutes by a home centrifugal dehydrator to remove surface water. The weight (W) was measured immediately, and the weight (Wo) was measured after the sample was dried to dryness. Moisture content = (W-Wo) / Wo The amount of the exchange group or the water content can be controlled by the treatment conditions and the introduction process.

【0017】該イオン交換繊維の形態としては、短繊
維、フィラメント,フェルト,織物,不織布,編物,繊
維束,ひも状物,電気植毛品等、公知の任意の形態、集
合体もしくはそれらの栽断物を挙げることができるが、
これらを適宜組合わせて混合物あるいは積層物として用
いても良い。さらに、バインダーや不織布・網物・織物
等を積層、混合しても良い。
As the form of the ion-exchange fiber, there are known publicly known forms such as short fibers, filaments, felts, woven fabrics, non-woven fabrics, knitted fabrics, fiber bundles, cords, electric hair transplants, etc. I can list things,
These may be appropriately combined and used as a mixture or a laminate. Further, a binder, a non-woven fabric, a net, a woven fabric or the like may be laminated and mixed.

【0018】イオン交換繊維は、フェルト等のシート状
であることが、最適な充填幅に収める必要性等から特に
好ましい。フェルト状のイオン交換体を製造する方法と
しては、例えば、前記繊維を適度な長さにカットし、フ
ェルト状に加工した後、イオン交換基を導入する方法が
ある。
It is particularly preferable that the ion-exchange fiber is in the form of a sheet such as felt because it is necessary to fit the ion-exchange fiber in an optimum packing width. As a method for producing a felt-like ion exchanger, for example, there is a method in which the fiber is cut into an appropriate length, processed into a felt shape, and then an ion exchange group is introduced.

【0019】カット長は任意であるが、数mm〜数百m
mの範囲が好ましく、10〜100mmがより好まし
く、30〜70mmの範囲がさらに好ましい。この長さ
を有した繊維が絡まっているため、フェルトは脱落や強
度低下をおこしにくく良好な性能を発揮できる。なお、
カット長が短かすぎるとフェルト化しても繊維の脱落が
起こ易く、また長すぎるとフェルト化しにくくなる。
The cut length is arbitrary, but is from several mm to several hundred m
The range of m is preferable, the range of 10 to 100 mm is more preferable, and the range of 30 to 70 mm is further preferable. Since the fibers having this length are entangled with each other, the felt is unlikely to drop off or decrease in strength, and can exhibit good performance. In addition,
If the cut length is too short, the fibers tend to fall off even if it is made into felt, and if it is too long, it becomes difficult to make it into felt.

【0020】フェルトに加工する方法は任意であり、一
般に広く用いられている方法を使用できる。例えば、一
定長にカットした前記複合繊維をカード機にかけてウェ
ブとし、ニードルパンチをかけて交絡してフェルト化す
る方法が挙げられる。フェルトの目付量は数十〜数千g
/m2 の範囲であるが、溶液の透過性の点から好ましく
は100〜1500g/m2 、特に好ましくは200〜
1000g/m2 の範囲である。
The method of processing into a felt is arbitrary, and a generally widely used method can be used. For example, there is a method in which the composite fiber cut into a certain length is subjected to a card machine to form a web, and needle punching is performed to entangle the web to form a felt. The felt weight is several tens to several thousand g.
Ranges / m 2, but preferably 100 to 1500 g / m 2 from the viewpoint of transparency of the solution, especially preferably 200 to
It is in the range of 1000 g / m 2 .

【0021】フェルトにイオン交換基を導入する方法も
任意である。例えば、強酸性カチオン交換繊維は、前述
したように酸触媒下でホルムアルデヒド源でポリスチレ
ン部を架橋不溶化し、次に公知の方法でイオン交換基を
導入して製造する液相での方法、又は無水硫酸を通気し
てスルホン化を行う気相での方法が挙げられる。ただ
し、フェルトの反応状態の均一性の観点から気相反応の
方がより好ましい。
The method of introducing an ion exchange group into the felt is also arbitrary. For example, the strongly acidic cation exchange fiber is a liquid phase method in which a polystyrene part is crosslinked and insolubilized with a formaldehyde source under an acid catalyst as described above, and then ion exchange groups are introduced by a known method, or an anhydrous method. A gas phase method in which sulfuric acid is aerated to carry out sulfonation can be mentioned. However, the gas phase reaction is more preferable from the viewpoint of the uniformity of the reaction state of the felt.

【0022】本発明では、電気脱イオン化をより効率良
く行うために、供給水として、逆浸透膜透過処理及び/
又は紫外線処理された水を使用することが好ましい。ま
た、市水や井戸水等の原水を活性炭フィルター等のプレ
フィルターで濾過し、次いで逆浸透膜・紫外線で処理
し、イオン交換・電気脱イオン化を行い、精密濾過膜等
のファイナルフィルターで濾過することにより純水を得
る方法が特に好ましい。
In the present invention, in order to carry out the electric deionization more efficiently, as the feed water, reverse osmosis membrane permeation treatment and / or
Alternatively, it is preferable to use UV-treated water. In addition, raw water such as city water or well water should be filtered with a prefilter such as an activated carbon filter, then treated with a reverse osmosis membrane / ultraviolet ray, subjected to ion exchange / electric deionization, and filtered with a final filter such as a microfiltration membrane. The method of obtaining pure water by means of is particularly preferable.

【0023】[0023]

【実施例】以下に実施例を示すが、本発明はこれらに限
定されるものではない。実施例1 カチオン交換繊維及びアニオン交換繊維を、次の方法で
製造した。多芯海島型複合繊維(未延伸糸)[海成分
(ポリスチレン)/島成分(ポリエチレン)=50/5
0(島数16、繊維直径34μm)]を長さ0.5mm
に切断してカットファイバ−を得た。該カットファイバ
−1重量部を市販の1級硫酸7.5重量部とパラホルム
アルデヒド0.15重量部とからなる架橋・スルホン化
液に加え、80℃で4時間反応処理した後、水洗した。
EXAMPLES Examples will be shown below, but the present invention is not limited thereto. Example 1 A cation exchange fiber and an anion exchange fiber were produced by the following method. Multicore sea-island composite fiber (undrawn yarn) [sea component (polystyrene) / island component (polyethylene) = 50/5
0 (16 islands, fiber diameter 34 μm)] length 0.5 mm
The cut fiber was obtained by cutting. 1 part by weight of the cut fiber was added to a cross-linking / sulfonation solution containing 7.5 parts by weight of commercially available primary sulfuric acid and 0.15 parts by weight of paraformaldehyde, followed by reaction treatment at 80 ° C. for 4 hours and then washing with water.

【0024】次に、アルカリで処理してから水洗するこ
とによって、スルホン酸基を有するカチオン交換繊維を
得た。このカチオン交換繊維の交換容量は3.0meq
/g−Naであり、含水度は1.2であった。一方、前
記カットファイバー1重量部を、市販の1級硫酸5重量
部と水0.5重量部とパラホルムアルデヒド0.2重量
部とからなる架橋液に加え、85℃で4時間架橋反応を
行い、架橋糸を得た。
Next, it was treated with alkali and washed with water to obtain a cation exchange fiber having a sulfonic acid group. The exchange capacity of this cation exchange fiber is 3.0 meq.
/ G-Na, the water content was 1.2. On the other hand, 1 part by weight of the cut fiber was added to a commercially available cross-linking solution consisting of 5 parts by weight of primary sulfuric acid, 0.5 part by weight of water and 0.2 part by weight of paraformaldehyde, and a crosslinking reaction was carried out at 85 ° C. for 4 hours. A crosslinked yarn was obtained.

【0025】次に、クロルメチルエーテル8.5容量部
と塩化第二スズ1.5容量部とからなる溶液に架橋糸を
加え、さらにそれを30%トリメチルアミン水溶液10
容量部に加え、30℃で1時間アミノ化し、水洗した。
さらに、塩酸で処理してから水洗することによって、ト
リメチルアンモニウムメチル基を有するアニオン交換繊
維を得た。このアニオン交換繊維の交換容量は2.8m
eq/g−Clであり、含水度は1.8であった。
Next, a cross-linked thread was added to a solution consisting of 8.5 parts by volume of chloromethyl ether and 1.5 parts by weight of stannic chloride, which was further added with a 30% aqueous trimethylamine solution 10%.
In addition to the capacity part, it was aminated at 30 ° C. for 1 hour and washed with water.
Furthermore, by treating with hydrochloric acid and then washing with water, an anion exchange fiber having a trimethylammoniummethyl group was obtained. The exchange capacity of this anion exchange fiber is 2.8 m.
eq / g-Cl and water content was 1.8.

【0026】得られたカチオン交換繊維及びアニオン交
換繊維を、それぞれ酸、アルカリで活性化した後、両者
を45/55の割合で攪拌混合して、混合状態のイオン
交換繊維を得た。そのイオン交換繊維を、イオン減少区
画室を3室、イオン濃縮区画室を2室設けた電気脱イオ
ン化装置に充填して超純水を製造した。電気脱イオン化
装置の概略を図1に示す。図1において、1は陽極板、
2は陰極板、3は陽極室、4は陰極室、5はアニオン交
換膜、6はカチオン交換膜、7はイオン減少区画室、8
はイオン濃縮区画室である。使用した電気脱イオン化装
置において、イオン減少区画室は、縦110mm、横1
10mm、幅4mmであり、各イオン減少区画室にイオ
ン交換繊維混合体をそれぞれ10gずつ充填した。一
方、イオン濃縮区画室は、縦110mm、横110m
m、幅2mmでなにも充填しなかった。
The cation exchange fiber and the anion exchange fiber thus obtained were respectively activated with acid and alkali, and then both were stirred and mixed at a ratio of 45/55 to obtain an ion exchange fiber in a mixed state. The ion-exchange fiber was filled in an electric deionization apparatus having three ion-decreasing compartments and two ion-concentrating compartments to produce ultrapure water. The outline of the electric deionization apparatus is shown in FIG. In FIG. 1, 1 is an anode plate,
2 is a cathode plate, 3 is an anode chamber, 4 is a cathode chamber, 5 is an anion exchange membrane, 6 is a cation exchange membrane, 7 is an ion depletion compartment, 8
Is an ion concentration compartment. In the used electric deionization device, the ion depletion compartment had a length of 110 mm and a width of 1
The width was 10 mm and the width was 4 mm, and 10 g of each ion-exchange fiber mixture was filled in each ion-reducing compartment. On the other hand, the ion concentration compartment is 110 mm long and 110 m wide.
m, width 2 mm, and nothing was filled.

【0027】純水の製造は、図2に示すような純水製造
装置を用いて、次の方法で行った。なお、図2におい
て、11はプレフィルタ−、12は逆浸透膜、13は紫
外線照射器、14は電気脱イオン化装置、15は精密ろ
過膜である。ここでは、まず市水を、プレフィルター1
1、逆浸透膜12、紫外線照射器13の順に通過させて
処理した。そして、処理後の水を原水として、本発明の
イオン交換繊維を充填した電気脱イオン化装置14に通
水し、最後に精密ろ過膜15で濾過して純水を得た。
The pure water was manufactured by the following method using a pure water manufacturing apparatus as shown in FIG. In FIG. 2, 11 is a pre-filter, 12 is a reverse osmosis membrane, 13 is an ultraviolet irradiator, 14 is an electric deionization device, and 15 is a microfiltration membrane. Here, first, city water, pre-filter 1
1, the reverse osmosis membrane 12, and the ultraviolet irradiator 13 were passed in this order for processing. Then, the treated water was passed through an electric deionization device 14 filled with the ion exchange fiber of the present invention as raw water, and finally filtered by a microfiltration membrane 15 to obtain pure water.

【0028】通水量は70l/hとし、純水製造量が1
5l/hであった。得られた水の電気比抵抗は5MΩ・
cmであった。実施例2 製糸した多芯海島型複合繊維[海成分ポリスチレン/島
成分ポリエチレン=50/50(島数16,繊維直径4
0μm)]を1.7倍に延伸した後、クリンパーにかけ
てけん縮を付与した。この繊維を長さ2インチに切断し
てカットファイバーを得た。
The water flow rate is 70 l / h, and the pure water production rate is 1
It was 5 l / h. The electrical resistivity of the obtained water is 5 MΩ ・
It was cm. Example 2 Yarn-manufactured multi-core sea-island composite fiber [sea component polystyrene / island component polyethylene = 50/50 (16 islands, fiber diameter 4
0 μm)] was stretched 1.7 times and then crimped by applying a crimper. This fiber was cut into a length of 2 inches to obtain a cut fiber.

【0029】該カットファイバ−1重量部を市販の1級
硫酸22.5重量部とパラホルムアルデヒド0.15重
量部とからなる架橋・スルホン化液に加え、85℃で5
時間反応処理した後、水洗した。次に、アルカリで処理
してから水洗することによってスルホン酸基を有するカ
チオン交換繊維を得た。カチオン交換繊維の交換容量は
2.9meq/g−Na、含水度は1.2であった。
1 part by weight of the cut fiber was added to a commercially available crosslinking / sulfonation solution containing 22.5 parts by weight of primary sulfuric acid and 0.15 part by weight of paraformaldehyde, and the mixture was heated at 85 ° C. for 5 hours.
After reacting for a time, it was washed with water. Next, it was treated with alkali and washed with water to obtain a cation exchange fiber having a sulfonic acid group. The cation exchange fiber had an exchange capacity of 2.9 meq / g-Na and a water content of 1.2.

【0030】一方、前記カットファイバー1重量部を市
販の1級硫酸5重量部と水0.5重量部とパラホルムア
ルデヒド0.2重量部とからなる架橋液に加え、85℃
で4時間架橋反応を行い、架橋糸を得た。次に、クロル
メチルエーテル8.5容量部と塩化第二スズ1.5容量
部とからなる溶液に架橋糸を加え、それを30%トリメ
チルアミン水溶液10容量部に加え、30℃で1時間ア
ミノ化し、水洗した。さらに、塩酸で処理してから水洗
することによって、トリメチルアンモニウムメチル基を
有するアニオン交換繊維を得た。アニオン交換繊維の交
換容量は2.7meq/g−Cl、含水度は1.8であ
った。
On the other hand, 1 part by weight of the cut fiber was added to a commercially available crosslinking solution consisting of 5 parts by weight of primary sulfuric acid, 0.5 part by weight of water and 0.2 part by weight of paraformaldehyde, and the mixture was heated to 85 ° C.
The cross-linking reaction was performed for 4 hours to obtain a cross-linked yarn. Next, a cross-linked thread was added to a solution consisting of 8.5 parts by volume of chloromethyl ether and 1.5 parts by weight of stannic chloride, added to 10 parts by volume of a 30% trimethylamine aqueous solution, and aminated at 30 ° C. for 1 hour. Washed with water. Furthermore, by treating with hydrochloric acid and then washing with water, an anion exchange fiber having a trimethylammoniummethyl group was obtained. The anion exchange fiber had an exchange capacity of 2.7 meq / g-Cl and a water content of 1.8.

【0031】こうして製造したカチオン交換繊維及びア
ニオン交換繊維を、それぞれ酸、アルカリで活性化した
後、両者を45/55の割合で攪拌混合し、60℃で7
時間乾燥した。得られた混合繊維を目付量430g/m
2 (厚さ4mm)となるようにオープナーで開繊した
後、ローラーカードを通してウェブとし、ニードルパン
チングマシン(300本/cm2 )で交絡し、カチオン
交換繊維及びアニオン交換繊維からなる混合フェルトを
作った。
The cation exchange fiber and the anion exchange fiber thus produced were respectively activated with an acid and an alkali, and then both were stirred and mixed at a ratio of 45/55, and the mixture was stirred at 60 ° C. for 7 hours.
Dried for hours. The obtained mixed fiber has a basis weight of 430 g / m.
After opening with an opener to a thickness of 2 (4 mm), a roller card is used to make a web, which is entangled with a needle punching machine (300 pieces / cm 2 ) to make a mixed felt composed of cation exchange fibers and anion exchange fibers. It was

【0032】これを縦110mm、横110mmに切断
して、実施例1と同様の電気脱イオン化装置のイオン減
少区画室に充填し、実施例1と同様に通水した。ここで
は、充填時の作業が極めて容易であった。また、得られ
た水の電気比抵抗は6MΩ・cmと高かった。比較例1 ポリスチレン繊維を長さ0.5mmに切断してカットフ
ァイバ−を得た。
This was cut into a length of 110 mm and a width of 110 mm, filled in an ion depletion compartment of the same electric deionization apparatus as in Example 1, and water was passed in the same manner as in Example 1. Here, the work during filling was extremely easy. The electrical resistivity of the obtained water was as high as 6 MΩ · cm. Comparative Example 1 Polystyrene fiber was cut into a length of 0.5 mm to obtain a cut fiber.

【0033】該カットファイバ−1重量部を、市販の1
級硫酸7.5重量部とパラホルムアルデヒド0.15重
量部とからなる架橋・スルホン化液に加え、80℃で4
時間反応処理した後、水洗した。次に、アルカリで処理
してから水洗することによって、スルホン酸基を有する
カチオン交換繊維を得た。カチオン交換繊維の交換容量
は2.8ミリ当量/g−Na、含水度は1.2であっ
た。
1 part by weight of the cut fiber was added to a commercially available 1
Add to a cross-linking / sulfonation solution consisting of 7.5 parts by weight of high-grade sulfuric acid and 0.15 parts by weight of paraformaldehyde, and add 4 at 80 ° C.
After reacting for a time, it was washed with water. Next, it was treated with alkali and washed with water to obtain a cation exchange fiber having a sulfonic acid group. The cation exchange fiber had an exchange capacity of 2.8 meq / g-Na and a water content of 1.2.

【0034】一方、前記カットファイバー1重量部を、
市販の1級硫酸5重量部と水0.5重量部とパラホルム
アルデヒド0.2重量部とからなる架橋液に加え、85
℃で4時間架橋反応を行い架橋糸を得た。次に、クロル
メチルエーテル8.5容量部と塩化第二スズ1.5容量
部とからなる溶液に架橋糸を加え、それを30%トリメ
チルアミン水溶液10容量部に加え、30℃で1時間ア
ミノ化して水洗した。さらに塩酸で処理してから水洗す
ることによって、トリメチルアンモニウムメチル基を有
するアニオン交換繊維を得た。アニオン交換繊維の交換
容量は2.5ミリ当量/g−Cl、含水度は1.8であ
った。
On the other hand, 1 part by weight of the cut fiber is
Add to the commercially available crosslinking solution consisting of 5 parts by weight of primary sulfuric acid, 0.5 parts by weight of water and 0.2 parts by weight of paraformaldehyde,
A cross-linking reaction was performed at 4 ° C. for 4 hours to obtain a cross-linked yarn. Next, a cross-linked thread was added to a solution consisting of 8.5 parts by volume of chloromethyl ether and 1.5 parts by weight of stannic chloride, added to 10 parts by volume of a 30% trimethylamine aqueous solution, and aminated at 30 ° C. for 1 hour. Washed with water. Further, it was treated with hydrochloric acid and washed with water to obtain an anion exchange fiber having a trimethylammonium methyl group. The anion exchange fiber had an exchange capacity of 2.5 meq / g-Cl and a water content of 1.8.

【0035】カチオン交換繊維及びアニオン交換繊維を
それぞれ酸、アルカリで活性化した後、両者を45/5
5の割合で攪拌混合して、イオン交換繊維混合体を得
た。これを、実施例1と同様の電気脱イオン化装置のイ
オン減少区画室に充填し、実施例1と同様に通水した。
充填する時には、繊維が脆くしかも硬いため、均一に充
填できず、充填密度を高くすることができなかった。ま
た、繊維内部までイオン交換基があり洗浄が十分行われ
ず、またイオン交換−再生がスムーズに行われないた
め、得られた水の電気比抵抗は0.5MΩ・cmと低か
った。また、破砕された繊維が精密ろ過膜で確認され
た。
After activating the cation exchange fiber and the anion exchange fiber with an acid and an alkali, respectively, both of them are treated with 45/5.
The mixture was stirred and mixed at a ratio of 5 to obtain an ion exchange fiber mixture. This was filled in the ion depletion compartment of the same electric deionization apparatus as in Example 1, and water was passed in the same manner as in Example 1.
At the time of filling, the fibers were brittle and hard, so that the filling could not be performed uniformly and the filling density could not be increased. In addition, since the inside of the fiber has ion-exchange groups, washing is not performed sufficiently, and ion-exchange-regeneration is not performed smoothly, the electrical resistivity of the obtained water is as low as 0.5 MΩ · cm. Further, the crushed fibers were confirmed by the microfiltration membrane.

【0036】[0036]

【発明の効果】本発明の目的は、繊維状イオン交換体を
用いて電気脱イオン化により連続的に超純水を得る際
に、長期間安定して極めて高純度の水を得ることができ
るようにすることにある。本発明は、複合繊維形態のイ
オン交換繊維を採用することによって、電気脱イオン化
による連続的な超純水の製造において極めて高純度の水
が得られる。さらに、イオン交換繊維の機械的強度が大
きいために繊維が破砕しにくく、長期間安定して使用可
能となり、加えて作業性も改善される。
The object of the present invention is to obtain extremely high purity water stably for a long period of time when ultrapure water is continuously obtained by electric deionization using a fibrous ion exchanger. Is to In the present invention, by using the ion-exchange fiber in the form of the composite fiber, extremely high-purity water can be obtained in the continuous production of ultrapure water by electric deionization. Further, since the ion-exchange fiber has high mechanical strength, the fiber is unlikely to be crushed, which enables stable use for a long period of time, and also improves workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例及び比較例で用いた電気脱イオン化装置
の断面略図。
FIG. 1 is a schematic sectional view of an electric deionization device used in Examples and Comparative Examples.

【図2】実施例及び比較例で用いた純水製造装置の概略
ブロック図。
FIG. 2 is a schematic block diagram of a pure water production apparatus used in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 陽極板 2 陰極板 3 陽極室 4 陰極室 5 アニオン交換膜 6 カチオン交換膜 7 イオン減少区画室 8 イオン濃縮区画室 11 プレフィルタ− 12 逆浸透膜 13 紫外線照射器 14 電気脱イオン化装置 15 精密ろ過膜 1 Anode Plate 2 Cathode Plate 3 Anode Chamber 4 Cathode Chamber 5 Anion Exchange Membrane 6 Cation Exchange Membrane 7 Ion Reduction Compartment 8 Ion Concentration Compartment 11 Prefilter-12 Reverse Osmosis Membrane 13 Ultraviolet Irradiator 14 Electrodeionizer 15 Microfiltration film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】繊維状イオン交換体を用いて電気脱イオン
化により連続的に超純水を得る超純水製造方法におい
て、前記イオン交換体がイオン交換ポリマと補強材ポリ
マとからなる複合繊維形態であることを特徴とする超純
水製造方法。
1. A method for producing ultrapure water in which ultrapure water is continuously obtained by electric deionization using a fibrous ion exchanger, wherein the ion exchanger comprises an ion exchange polymer and a reinforcing polymer. And a method for producing ultrapure water.
【請求項2】前記イオン交換ポリマがポリスチレンで、
前記補強材ポリマがポリエチレンである、請求項1に記
載の超純水製造方法。
2. The ion exchange polymer is polystyrene,
The method for producing ultrapure water according to claim 1, wherein the reinforcing material polymer is polyethylene.
【請求項3】前記繊維状イオン交換体が、シート状であ
る、請求項1に記載の超純水製造方法。
3. The method for producing ultrapure water according to claim 1, wherein the fibrous ion exchanger is sheet-shaped.
【請求項4】水をプレフィルターで処理するプレフィル
ター工程と、 前記プレフィルター工程で処理された水を逆浸透膜で処
理する逆浸透膜工程と、 前記逆浸透膜工程で処理された水を紫外線で処理する紫
外線工程と、 前記紫外線工程で処理された水を、イオン交換ポリマと
補強材ポリマとからなる複合繊維形態であるイオン交換
体を有するイオン交換・電気脱イオン化装置で処理する
イオン交換・電気脱イオン化工程と、 前記イオン交換・電気脱イオン化工程で処理された水を
超精密ろ過膜で処理する超精密ろ過膜工程と、を含む超
純水製造方法。
4. A pre-filter step of treating water with a pre-filter, a reverse osmosis membrane step of treating water treated in the pre-filter step with a reverse osmosis membrane, and a water treated in the reverse osmosis membrane step. An ion exchange / electrodeionization device in which an ultraviolet ray step of treating with ultraviolet rays and water treated in the ultraviolet ray step are treated with an ion exchange / electrodeionization device having an ion exchanger in the form of a composite fiber composed of an ion exchange polymer and a reinforcement polymer. A method for producing ultrapure water, comprising: an electric deionization step; and an ultrafine filtration membrane step of treating the water treated in the ion exchange / electrical deionization step with an ultraprecision filtration membrane.
JP23564292A 1992-09-03 1992-09-03 Ultrapure water production method Expired - Fee Related JP3232466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23564292A JP3232466B2 (en) 1992-09-03 1992-09-03 Ultrapure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23564292A JP3232466B2 (en) 1992-09-03 1992-09-03 Ultrapure water production method

Publications (2)

Publication Number Publication Date
JPH0679268A true JPH0679268A (en) 1994-03-22
JP3232466B2 JP3232466B2 (en) 2001-11-26

Family

ID=16989045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23564292A Expired - Fee Related JP3232466B2 (en) 1992-09-03 1992-09-03 Ultrapure water production method

Country Status (1)

Country Link
JP (1) JP3232466B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236889A (en) * 1993-04-21 1995-09-12 Nippon Rensui Kk Pure water making apparatus
JPH08192163A (en) * 1995-01-19 1996-07-30 Asahi Glass Co Ltd Electrodialytic production of deionized water
EP0870533A1 (en) * 1997-04-10 1998-10-14 Asahi Glass Company Ltd. Apparatus for producing deionized water
JP2001259376A (en) * 2000-03-16 2001-09-25 Japan Organo Co Ltd Deionized water making apparatus
JP2001314867A (en) * 2000-05-12 2001-11-13 Japan Organo Co Ltd Secondary pure water preparing device
US6423205B1 (en) 1998-03-24 2002-07-23 Ebara Corporation Electric deionization apparatus
JP2007107119A (en) * 2005-10-12 2007-04-26 Mitsubishi Paper Mills Ltd Method for producing ion exchange fiber and method for producing fabric comprising ion exchange fiber
JP2012148482A (en) * 2011-01-19 2012-08-09 Kurita Water Ind Ltd Composite membrane, method for producing the same, adsorbing filter and method for treating fluid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236889A (en) * 1993-04-21 1995-09-12 Nippon Rensui Kk Pure water making apparatus
JPH08192163A (en) * 1995-01-19 1996-07-30 Asahi Glass Co Ltd Electrodialytic production of deionized water
EP0870533A1 (en) * 1997-04-10 1998-10-14 Asahi Glass Company Ltd. Apparatus for producing deionized water
US6423205B1 (en) 1998-03-24 2002-07-23 Ebara Corporation Electric deionization apparatus
JP2001259376A (en) * 2000-03-16 2001-09-25 Japan Organo Co Ltd Deionized water making apparatus
JP4499239B2 (en) * 2000-03-16 2010-07-07 オルガノ株式会社 Deionized water production equipment
JP2001314867A (en) * 2000-05-12 2001-11-13 Japan Organo Co Ltd Secondary pure water preparing device
JP4497387B2 (en) * 2000-05-12 2010-07-07 オルガノ株式会社 Secondary pure water production equipment
JP2007107119A (en) * 2005-10-12 2007-04-26 Mitsubishi Paper Mills Ltd Method for producing ion exchange fiber and method for producing fabric comprising ion exchange fiber
JP2012148482A (en) * 2011-01-19 2012-08-09 Kurita Water Ind Ltd Composite membrane, method for producing the same, adsorbing filter and method for treating fluid

Also Published As

Publication number Publication date
JP3232466B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
Swanckaert et al. A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste) water treatment
JP7108622B2 (en) Method for producing ultrapure water
AU731825B2 (en) Microporous membranes and uses thereof
JP4065664B2 (en) Electric desalination equipment
WO2003097536A1 (en) Electric demineralizer
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
WO1986001744A1 (en) Method for ion-exchange or adsorption
JP3394372B2 (en) Electric regeneration type desalination equipment
JP3232466B2 (en) Ultrapure water production method
KR100454093B1 (en) Ion exchange textile for electrodeionization process
JP2003190820A (en) Electric demineralizing apparatus
JPS63156591A (en) Production of ultra-pure water
JPS6344988A (en) Method for making ultrapure water
JP4291156B2 (en) Electric desalination equipment
JP2003190959A (en) Electric demineralizer
JP3727586B2 (en) Electric desalination equipment
JPH06126278A (en) Water purifying apparatus
JPS59166245A (en) Method for ion exchange or ion adsorption
WO1990014311A1 (en) Method of water treatment
JPH0623282A (en) Tower packed with ion exchange fiber
JP2000042374A (en) Apparatus for removing polar material
JPH10192717A (en) Porous ion exchanger and production of demineralized water
JP3513955B2 (en) Electrodialysis type deionized water production method
JPH03151050A (en) Ion exchangeable sheet-like material
JPH02289628A (en) Ultrafine ion-exchange fiber and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees