JPH0679170A - CaA-type zeolite molded body and method for producing the same - Google Patents
CaA-type zeolite molded body and method for producing the sameInfo
- Publication number
- JPH0679170A JPH0679170A JP25756092A JP25756092A JPH0679170A JP H0679170 A JPH0679170 A JP H0679170A JP 25756092 A JP25756092 A JP 25756092A JP 25756092 A JP25756092 A JP 25756092A JP H0679170 A JPH0679170 A JP H0679170A
- Authority
- JP
- Japan
- Prior art keywords
- caa
- type zeolite
- zeolite
- ion exchange
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 59
- 239000010457 zeolite Substances 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title description 3
- 229910001424 calcium ion Inorganic materials 0.000 claims abstract description 31
- 239000011230 binding agent Substances 0.000 claims abstract description 20
- 239000003463 adsorbent Substances 0.000 claims abstract description 4
- 238000001179 sorption measurement Methods 0.000 abstract description 41
- 239000000203 mixture Substances 0.000 abstract description 2
- 238000005342 ion exchange Methods 0.000 description 31
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 19
- 239000001301 oxygen Substances 0.000 description 19
- 229910052760 oxygen Inorganic materials 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 239000007789 gas Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 9
- 239000011575 calcium Substances 0.000 description 8
- 239000004927 clay Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000010304 firing Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 4
- 239000005995 Aluminium silicate Substances 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052622 kaolinite Inorganic materials 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
(57)【要約】
【構成】Caイオンで40%以上70%未満イオン交換
されたCaA型ゼオライト100重量部に対して、バイ
ンダー10重量部以上含有するCaA型ゼオライト成形
体および該成形体からなる吸着剤。
【効果】吸着特性だけでなく耐熱性に優れている。(57) [Summary] [Composition] A CaA-type zeolite molded product containing 10 parts by weight or more of a binder with respect to 100 parts by weight of CaA-type zeolite ion-exchanged with Ca ions of 40% or more and less than 70%, and the molded product. Adsorbent. [Effect] It has excellent heat resistance as well as adsorption properties.
Description
【0001】[0001]
【産業上の利用分野】本発明はCaA型ゼオライト成形
体およびそれからなる吸着剤に関するものである。Ca
A型ゼオライトは、優れたガス吸着性能を有し、例え
ば、炭化水素混合物からn−パラフィンの選択的吸着分
離、ブタン−ブチレン留分からブタジエン製造原料のn
−ブチレンの分離、酸素と窒素との混合ガスからの純酸
素分離精製などに広く使用されている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CaA type zeolite compact and an adsorbent comprising the same. Ca
The A-type zeolite has excellent gas adsorption performance, and includes, for example, selective adsorption separation of n-paraffins from a hydrocarbon mixture and n-butane-producing raw material from a butane-butylene fraction.
-Widely used for separation of butylene, separation and purification of pure oxygen from mixed gas of oxygen and nitrogen.
【0002】[0002]
【従来の技術】従来のCaA型ゼオライトは、Caイオ
ン交換率が70%以上である細孔径が約5オングストロ
ームの分子ふるいであり、Ca交換率が高いほど吸着容
量が高く、吸着特性が優れているとされている。一方、
特開昭58−196847には1重量%以上の水酸化ア
ルミニウムを加えることによって、Caイオン交換率1
5%以上で低温におけるO2、N2分離性能の優れた吸
着剤となるとしている。2. Description of the Related Art Conventional CaA-type zeolite is a molecular sieve having a Ca ion exchange rate of 70% or more and a pore size of about 5 angstroms. The higher the Ca exchange rate, the higher the adsorption capacity and the excellent adsorption characteristics. It is said that on the other hand,
In the case of JP-A-58-196847, by adding 1% by weight or more of aluminum hydroxide, the Ca ion exchange rate becomes 1
It is said that when it is 5% or more, it becomes an adsorbent excellent in O 2 / N 2 separation performance at low temperature.
【0003】[0003]
【発明が解決しようとする課題】CaA型ゼオライトは
製造時細孔内の水を除去するために300℃以上に熱処
理する必要があるが、このように70%以上Caイオン
交換されたCaA型ゼオライトは、高い温度および高い
水分雰囲気による吸着特性の劣化が激しく、かつ、この
吸着特性の劣化は従来のCaA型ゼオライトでは事実上
抑えることができない。The CaA-type zeolite needs to be heat-treated at 300 ° C. or higher in order to remove water in the pores at the time of production. Has severe deterioration of the adsorption characteristics due to high temperature and high moisture atmosphere, and the deterioration of the adsorption characteristics cannot be practically suppressed by the conventional CaA-type zeolite.
【0004】本発明は、このような問題を解決した、す
なわち、従来のCaA型ゼオライトよりも著しく耐熱性
が高く、かつ、水酸化アルミニウムを加えずに−10℃
から25℃という、広い温度範囲で、著しく吸着性能の
優れたCaA型ゼオライトおよびその成形体の提供を目
的とするものである。The present invention has solved such a problem, that is, the heat resistance is remarkably higher than that of the conventional CaA type zeolite, and it is -10 ° C without adding aluminum hydroxide.
The object of the present invention is to provide a CaA-type zeolite and a molded product thereof, which are extremely excellent in adsorption performance in a wide temperature range of 25 to 25 ° C.
【0005】[0005]
【課題を解決するための手段】本発明者等は、CaA型
ゼオライトの吸着性能を高くするのに、Caイオン交換
率を100%近くにする必要も水酸化アルミニウムも加
える必要はなく、70%未満であっても40%以上とす
れば充分であり、そのようなCaイオン交換率に調節す
ることによって実用上、吸着性能を落とすことなく吸着
容量を上げることができること;およびCaイオン交換
率70%未満のCaA型ゼオライトは70%以上のそれ
にくらべて耐熱性が非常に優れていることを見出した。
すなわち、本発明は、Caイオンで40%以上70%未
満のイオン交換された該CaA型ゼオライトとバインダ
ーとからなり、該CaA型ゼオライト100重量部あた
り該バインダーを10重量部以上含有する、CaA型ゼ
オライト成形体および該CaA型ゼオライト成形体を要
旨とするものである。The present inventors have found that in order to improve the adsorption performance of CaA-type zeolite, it is not necessary to make the Ca ion exchange rate close to 100% or to add aluminum hydroxide, and 70% If it is less than 40%, it is sufficient if it is 40% or more. By adjusting such a Ca ion exchange rate, it is possible to increase the adsorption capacity in practical use without deteriorating the adsorption performance; and Ca ion exchange rate 70 It has been found that the CaA type zeolite of less than 50% has very excellent heat resistance as compared with that of 70% or more.
That is, the present invention is composed of the CaA-type zeolite ion-exchanged by 40% or more and less than 70% with Ca ion and a binder, and contains 10 parts by weight or more of the binder per 100 parts by weight of the CaA-type zeolite, CaA-type The gist is a zeolite compact and the CaA-type zeolite compact.
【0006】以下、本発明を詳細に説明する。The present invention will be described in detail below.
【0007】本発明のCaA型ゼオライト成形体のCa
イオン交換率は、40%以上70%未満の範囲でなけれ
ばならない。Caイオン交換率が40%以下であるとガ
ス吸着容量が低く;70%以上であると耐熱性が劣り;
40%以上70%未満であれば実質上、高いガス吸着容
量と優れた耐熱性を維持できる。今回、明らかになった
Caイオン交換率70%未満であれば、吸着容量を低下
させることなく耐熱性が向上すると言う事実は驚くべき
ことである。また、Caイオン交換率70%未満の低イ
オン交換率においては、細孔の大きさがCaイオン交換
率70%以上の高イオン交換率のものに比べ小さく、ガ
スの吸着・脱着速度が著しく低いとされてきた。しか
し、本発明のCaA型ゼオライト成形体は、Caイオン
交換率40%以上では吸着・脱着速度に大きなちがいは
ないことがわかった。本発明のCaA型ゼオライト成形
体のうちでも、Caイオン交換率50〜60%のもの
は、ガス吸着性能および耐熱性の両面が特に優れてい
る。Ca of the CaA type zeolite compact of the present invention
The ion exchange rate must be in the range of 40% or more and less than 70%. If the Ca ion exchange rate is 40% or less, the gas adsorption capacity is low; if it is 70% or more, the heat resistance is poor;
If it is 40% or more and less than 70%, a substantially high gas adsorption capacity and excellent heat resistance can be maintained. It is surprising that the revealed Ca ion exchange rate of less than 70% improves heat resistance without lowering the adsorption capacity. At a low ion exchange rate of less than 70%, the size of the pores is smaller than that of a high ion exchange rate of 70% or more, and the gas adsorption / desorption rate is extremely low. Has been said. However, it has been found that the CaA-type zeolite molded product of the present invention has no significant difference in the adsorption / desorption rate when the Ca ion exchange rate is 40% or more. Among the CaA type zeolite compacts of the present invention, those having a Ca ion exchange rate of 50 to 60% are particularly excellent in both gas adsorption performance and heat resistance.
【0008】本発明のCaA型ゼオライト成形体のバイ
ンダーは、該CaA型ゼオライト100重量部あたり1
0重量部以上でなければならない。バインダーが10重
量部未満であると成形が困難であり、成形できても充分
な成形体強度が得られないため好ましくない。ただし、
過剰のバインダーはゼオライト含有量を低下させるのみ
ならず、ゼオライト細孔を閉鎖し、吸着特性を低下させ
る。具体的には、30重量部を越えるとガス吸着容量が
低くなりすぎ好ましくなく、30重量部以下が好まし
い。さらに、充分な成形体強度を得るためには15重量
部以上が好ましい。本発明のCaA型ゼオライト成形体
のガス吸着容量は、たとえば、温度−10℃、圧力70
0torrにおいて窒素ガスを用いた場合、25〜37
Ncc/gである。The binder of the CaA-type zeolite molded product of the present invention is 1 per 100 parts by weight of the CaA-type zeolite.
Must be 0 parts by weight or more. When the amount of the binder is less than 10 parts by weight, molding is difficult, and even if molding is possible, sufficient molded product strength cannot be obtained, which is not preferable. However,
Excess binder not only lowers the zeolite content, but also closes the zeolite pores and reduces the adsorption properties. Specifically, if it exceeds 30 parts by weight, the gas adsorption capacity becomes too low, which is not preferable, and 30 parts by weight or less is preferable. Further, in order to obtain sufficient strength of the molded body, it is preferably 15 parts by weight or more. The CaA type zeolite molded article of the present invention has a gas adsorption capacity of, for example, a temperature of −10 ° C. and a pressure of 70.
25 to 37 when nitrogen gas is used at 0 torr
Ncc / g.
【0009】本発明のCaA型ゼオライト成形体の吸着
性能はゼオライト本来の性能によるものであるため、使
用されるバインダーの種類は、特に限定されるものでは
ないが、成形体強度を得るため、焼結性の良いバインダ
ーを用いるのがよい。例えばアタパルジャイト型粘土、
モンモリロナイト型粘土、カオリナイト型粘土等が使わ
れる。Since the CaA type zeolite molded article of the present invention has an adsorption performance due to the original performance of the zeolite, the kind of the binder used is not particularly limited. It is preferable to use a binder having a good binding property. For example, attapulgite-type clay,
Montmorillonite type clay and kaolinite type clay are used.
【0010】本発明のCaA型ゼオライト成形体は、公
知の方法、例えばアルミン酸ナトリウムと珪酸ナトリウ
ムとから合成されたNaA型ゼオライトすなわち4A型
ゼオライトを出発原料とし、該A型ゼオライトの粉末を
CaCl2,Ca(OH)2,Ca(NO3)2などの
Caイオンを含む溶液でイオン交換し、バインダー/ゼ
オライト重量比が10〜30/100となる割合でバイ
ンダーと混合し、成形し、焼成するか;あるいは、4A
型ゼオライト粉末を下記のイオン交換後にバインダー/
ゼオライト重量比が10〜30/100となる割合でバ
インダーと混合、成形、焼成し、CaCl2,Ca(O
H)2,Ca(NO3)2などのCaイオンを含む溶液
でCaイオン交換率を40%以上70%未満に調整する
ことにより完成する。The CaA-type zeolite compact of the present invention is produced by a known method, for example, NaA-type zeolite synthesized from sodium aluminate and sodium silicate, that is, 4A-type zeolite as a starting material, and the powder of the A-type zeolite is CaCl 2 , ion-exchanged with a solution containing Ca ions, such as Ca (OH) 2, Ca ( NO 3) 2, a binder / zeolite weight ratio is mixed with a binder in a ratio which is a 10-30 / 100, molded, fired Or; 4A
Type zeolite powder after the following ion exchange binder /
Mixing with a binder in a ratio such that the weight ratio of zeolite is 10 to 30/100, molding and firing, CaCl 2 , Ca (O
It is completed by adjusting the Ca ion exchange rate to 40% or more and less than 70% with a solution containing Ca ions such as (H) 2 and Ca (NO 3 ) 2 .
【0011】また、このCaイオン交換時の溶液のpH
は7以上が好ましい。pH7未満すなわち酸性雰囲気で
はゼオライト結晶が不安定となり結晶構造に欠陥が生じ
たり結晶構造自体が崩壊したりしてガス吸着容量が著し
く低下するからである。Further, the pH of the solution during this Ca ion exchange
Is preferably 7 or more. This is because in a pH of less than 7, that is, in an acidic atmosphere, zeolite crystals become unstable, defects occur in the crystal structure, or the crystal structure itself collapses, resulting in a marked decrease in the gas adsorption capacity.
【0012】続いて、該CaA型ゼオライト成形体の製
造法を説明する。Next, a method for producing the CaA type zeolite compact will be described.
【0013】まずNaA型ゼオライト粉末あるいは上記
の方法で調製したCaA型ゼオライト粉末とバインダー
とを混練し適当な大きさの成形体に成形する。この際、
成形性を良くする為に必要に応じた少量の成形助剤を加
えるのもよい。成形体の形状としては柱状、球状等の種
類があるが特に制限はない。First, the NaA-type zeolite powder or the CaA-type zeolite powder prepared by the above method is kneaded with a binder to form a compact having an appropriate size. On this occasion,
If necessary, a small amount of a molding aid may be added to improve the moldability. The shape of the molded body may be columnar, spherical, or the like, but is not particularly limited.
【0014】このとき、バインダー種は、特に制限はな
いが焼結性の良いものが良く、そのバインダー量は、ゼ
オライト100重量部(CaA型ゼオライト換算)に対
して10重量部以上、好ましくは30重量部以下となる
ように添加する。At this time, the binder kind is not particularly limited, but one having good sinterability is preferable, and the binder amount is 10 parts by weight or more, preferably 30 parts by weight with respect to 100 parts by weight of zeolite (calculated as CaA type zeolite). It is added so as to be not more than the weight part.
【0015】得られたペレットはつぎの焼成の前に、常
法により、すなわち100℃から120℃で成形体中の
水分が約20重量%かそれ以下となるまで乾燥するのが
よい。Before the subsequent firing, the pellets thus obtained are preferably dried by a conventional method, that is, at 100 ° C. to 120 ° C. until the water content in the molded body becomes about 20% by weight or less.
【0016】乾燥されたペレットは焼結し、良く焼き固
める。たとえば、カオリン系粘土をバインダーとして用
いた場合、焼成はカオリン系粘土の良く焼き固まる55
0℃以上、ゼオライト結晶に影響を与えない700℃以
下で行うのが好ましい。焼結時間は、2時間以上とれば
充分である。このような条件で焼成することによって、
カオリン系粘土中の有機物や成形助剤は全て燃焼して無
くなり、バインダーは充分に焼固まる。The dried pellets are sintered and baked well. For example, when kaolin-based clay is used as a binder, firing is performed so that the kaolin-based clay is well baked and hardened 55.
It is preferable to carry out at 0 ° C. or higher and 700 ° C. or lower at which zeolite crystals are not affected. Sintering time of 2 hours or more is sufficient. By firing under such conditions,
All the organic substances and molding aids in the kaolin-based clay are burnt and disappeared, and the binder is sufficiently baked and solidified.
【0017】成形体の原料としてNaA型ゼオライトを
用いた場合、さらに、CaCl2,Ca(OH)2,C
a(NO3)2水溶液などのCaイオン溶液で40%以
上70%未満のイオン交換率に調整する。When NaA type zeolite is used as a raw material for the molded body, CaCl 2 , Ca (OH) 2 , C
The ion exchange rate is adjusted to 40% or more and less than 70% with a Ca ion solution such as an a (NO 3 ) 2 aqueous solution.
【0018】また、Caイオン交換時の溶液のpHは7
以上が好ましい。pH7未満すなわち酸性雰囲気ではゼ
オライト結晶が不安定となり結晶構造に欠陥が生じたり
結晶構造自体が崩壊したりしてガス吸着性能が著しく低
下するからである。The pH of the solution at the time of Ca ion exchange is 7
The above is preferable. This is because the zeolite crystals become unstable at a pH of less than 7, that is, in an acidic atmosphere, defects occur in the crystal structure, or the crystal structure itself collapses, and the gas adsorption performance remarkably decreases.
【0019】この際、イオン交換の前処理として、焼成
されたNaA型ゼオライト成形体を少なくとも20重量
%以上になるように加湿し、その細孔から吸着されたガ
ス等を脱着させるのが良い。この操作は、つぎにCaイ
オン溶液中でイオン交換する際にペレットにヒビ割れ、
亀裂等をなくすのに役立つ。At this time, as a pretreatment for the ion exchange, it is preferable that the calcined NaA type zeolite compact is moistened to at least 20% by weight so that the gas adsorbed through the pores is desorbed. This operation is to crack the pellets during ion exchange in the Ca ion solution,
Useful for eliminating cracks.
【0020】イオン交換につづいて、ゼオライト成形体
中の構造水を除去できる最低温度300℃からゼオライ
ト結晶が崩壊しない最高温度700℃の範囲で焼成、活
性化を行なう。Subsequent to the ion exchange, calcination and activation are carried out in the range of a minimum temperature of 300 ° C. at which structural water in the zeolite compact can be removed to a maximum temperature of 700 ° C. at which zeolite crystals do not collapse.
【0021】[0021]
【作用】CaA型ゼオライトは、Caイオン交換率が高
いほどCaイオン吸着サイトが増えるので吸着量が増す
のは良く知られている。一方、CaA型ゼオライトはイ
オン交換時に構造水を形成し、乾燥してもなかなか除去
できない。この構造水は吸着サイトのCaイオンに配位
するため、Caイオン交換率が高いほど増加する。この
構造水は、吸着性能を左右する一因となり、Caイオン
交換率70%以上では、熱処理によりゼオライト骨格の
アルミノシリケイトと反応を起こし、吸着量を低下させ
る。It is well known that the higher the Ca ion exchange rate, the more the CaA type zeolite has adsorbed sites for the Ca ion adsorption, so that the adsorption amount increases. On the other hand, CaA-type zeolite forms structural water during ion exchange and cannot be easily removed even when dried. Since this structured water coordinates with Ca ions at the adsorption site, it increases as the Ca ion exchange rate increases. This structured water is one of the factors that influence the adsorption performance, and when the Ca ion exchange rate is 70% or more, it reacts with the aluminosilicate of the zeolite skeleton by heat treatment and reduces the adsorption amount.
【0022】通常は、この水を除去するため、300℃
以上700℃以下でCaA型ゼオライトを焼成、活性化
を行なっている。この段階で、ゼオライト骨格のアルミ
ノシリケイトと構造水の反応が進行し、吸着量を著しく
低下させる。極端な場合には、この水は脱Al反応を引
き起こし、ゼオライト骨格を壊してしまう。Caイオン
交換率が70%以上であると事実上、この構造水の形成
およびゼオライト骨格との反応をおさえることができな
い。Usually, in order to remove this water, the temperature is 300 ° C.
The CaA-type zeolite is fired and activated at 700 ° C. or lower. At this stage, the reaction of the aluminosilicate of the zeolite skeleton with the structured water proceeds, and the amount of adsorption is significantly reduced. In extreme cases, this water causes a de-Al reaction and destroys the zeolite framework. When the Ca ion exchange rate is 70% or more, it is practically impossible to suppress the formation of this structured water and the reaction with the zeolite skeleton.
【0023】しかし、Caイオン交換率70%未満で
は、通常の乾燥方法と焼成方法によりこの構造水を取除
くことができる。However, when the Ca ion exchange rate is less than 70%, the structured water can be removed by the usual drying method and firing method.
【0024】[0024]
【発明の効果】以上の説明から明らかなように、本発明
のCaA型ゼオライト成形体は、従来の技術で製造した
ものよりも著しく吸着特性に優れ、且つ耐熱性に著しく
優れたものである。従って、たとえば酸素PSA、TP
SA等のガス吸着分離効率の向上に役立つ。As is apparent from the above description, the CaA-type zeolite molded product of the present invention has remarkably excellent adsorption properties and heat resistance as compared with those manufactured by the conventional technique. Thus, for example, oxygen PSA, TP
Useful for improving the efficiency of gas adsorption and separation of SA.
【0025】[0025]
【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明はこれに限定されるものではない。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
【0026】実施例、比較例における各種測定方法は以
下の通りである。 <窒素吸着容量測定方法>窒素吸着容量の測定は容量法
で行った。ゼオライト成形体を0.01mmHg以下の
圧力下で350℃で120分間活性化し、冷却後、窒素
ガスを導入し、吸着温度−10℃、吸着圧700mmH
gに保ち、吸着が十分平衡に達した後に吸着容量(Nc
c/g)を測定した。 <酸素PSA性能測定方法>乾燥空気を温度25℃、サ
イクル時間1min、吸着圧0.2kgf/cm2で吸
着、185torrで脱着させることにより、酸素濃度
93%に精製する際の1時間、成形体1kgあたりの酸
素精製量を酸素取出量(Nl/kg・h)とし、空気に
含まれた酸素量に対する酸素精製量を酸素回収率(%)
として測定した。 <成形体強度測定方法>成形体強度の測定は木屋式硬度
計を用いて行った。この際、100個の成形体の強度測
定値の平均を取って、成形体強度とした。Various measuring methods in Examples and Comparative Examples are as follows. <Method for measuring nitrogen adsorption capacity> The nitrogen adsorption capacity was measured by the volume method. The zeolite molded body is activated at 350 ° C. for 120 minutes under a pressure of 0.01 mmHg or less, and after cooling, nitrogen gas is introduced, adsorption temperature −10 ° C., adsorption pressure 700 mmH.
g, and the adsorption capacity (Nc
c / g) was measured. <Oxygen PSA performance measurement method> Dry air is adsorbed at a temperature of 25 ° C. for a cycle time of 1 min at an adsorption pressure of 0.2 kgf / cm 2 and desorbed at 185 torr to refine the oxygen concentration to 93% for 1 hour. The amount of oxygen purified per 1 kg is taken as the amount of oxygen taken out (Nl / kg · h), and the amount of oxygen purified relative to the amount of oxygen contained in air is the oxygen recovery rate (%)
Was measured as. <Molded Body Strength Measuring Method> The molded body strength was measured using a Kiya type hardness meter. At this time, the average of the measured strength values of 100 molded articles was taken as the molded article strength.
【0027】以下の具体例における「部」は、重量部に
よる。"Parts" in the following specific examples are by weight.
【0028】実施例1 4A型合成ゼオライト粉末(ゼオラム4−A粉末:東ソ
ー株式会社製)100gをCaイオン0.35モル含む
塩化カルシウム水溶液1000ml、60℃で3時間イ
オン交換を行った。洗浄し、付着水を取り除いたゼオラ
イトのイオン交換率を原子吸光により調べたところ51
%であり、残りはナトリウムイオンであった。Example 1 100 g of 4A type synthetic zeolite powder (Zeolam 4-A powder: manufactured by Tosoh Corporation) was subjected to ion exchange at 60 ° C. for 3 hours in 1000 ml of an aqueous calcium chloride solution containing 0.35 mol of Ca ions. The ion exchange rate of the zeolite after washing and removing the attached water was examined by atomic absorption.
%, And the balance was sodium ion.
【0029】このものの窒素吸着容量を上述の方法で評
価したところ、39.5Ncc/gであった。The nitrogen adsorption capacity of this product was evaluated by the above method and was found to be 39.5 Ncc / g.
【0030】このゼオライト粉末100部にカオリナイ
ト型粘土25部を混合し、造粒器(muller mi
xer)中で水分の調整を行いながら混練捏和した。次
に、この捏和物を直径1.5mmのダイスプレートを備
えた押し出し成形器に供給し柱状に押し出し成形した。
120℃で乾燥した後、長さ5〜10mmに調整しマッ
フル炉を用いて650℃で4時間焼成した。25 parts of kaolinite-type clay was mixed with 100 parts of this zeolite powder, and a granulator (muller mi) was used.
xer) while adjusting the water content and kneading and kneading. Next, this kneaded product was supplied to an extrusion molding machine equipped with a die plate having a diameter of 1.5 mm to perform extrusion molding into a columnar shape.
After drying at 120 ° C., the length was adjusted to 5 to 10 mm and firing was performed at 650 ° C. for 4 hours using a muffle furnace.
【0031】このものの窒素吸着容量、耐圧強度を上述
の方法で評価したところ、32.5Ncc/g,3.2
kgであった。酸素PSA性能を上述の方法で評価した
ところ、酸素取出量53.1Nl/kg・h,酸素回収
率45.3%であった。When the nitrogen adsorption capacity and pressure resistance of this product were evaluated by the above-mentioned methods, it was 32.5 Ncc / g, 3.2.
It was kg. When the oxygen PSA performance was evaluated by the above method, the oxygen extraction amount was 53.1 Nl / kg · h and the oxygen recovery rate was 45.3%.
【0032】実施例2〜4 比較例1〜3 Caイオン量とバインダー量を変化させたこと以外、実
施例1とまったく同じ操作によって、表1に示す各々の
Caイオン交換率のA型ゼオライト成形体をそれぞれ調
製した。それらの物性を実施例1と同じ方法で評価した
結果を表1に示す。Examples 2 to 4 Comparative Examples 1 to 3 A type zeolite molding of each Ca ion exchange rate shown in Table 1 was carried out by exactly the same operation as in Example 1 except that the Ca ion amount and the binder amount were changed. Each body was prepared. Table 1 shows the results of evaluation of those physical properties by the same method as in Example 1.
【0033】これらの窒素吸着容量測定結果および酸素
PSA性能測定結果から−10℃から25℃の温度範囲
において本発明の成形体は優れた吸着特性を有すること
がわかる。From these nitrogen adsorption capacity measurement results and oxygen PSA performance measurement results, it is understood that the molded article of the present invention has excellent adsorption characteristics in the temperature range of -10 ° C to 25 ° C.
【0034】実施例5 4A型合成ゼオライト粉末(ゼオラム4A粉末:東ソー
株式会社製)100部にカオリナイト型粘土25部を混
合し、造粒器(muller mixer)中で水分の
調整を行いながら混練捏和した。次に、この捏和物を直
径1.5mmのダイスプレートを備えた押し出し成形器
に供給し柱状に押し出し成形した。120℃で乾燥した
後、長さ5〜10mmに調整しマッフル炉を用いて65
0℃で4時間焼成した。Example 5 25 parts of kaolinite clay was mixed with 100 parts of 4A type synthetic zeolite powder (Zeorum 4A powder: manufactured by Tosoh Corporation) and kneaded while adjusting water content in a granulator (muller mixer). I kneaded. Next, this kneaded product was supplied to an extrusion molding machine equipped with a die plate having a diameter of 1.5 mm to perform extrusion molding into a columnar shape. After drying at 120 ℃, adjust the length to 5-10mm and use a muffle furnace to
It was calcined at 0 ° C. for 4 hours.
【0035】冷却後、この成形体125gを水和し脱ガ
スした後、Caイオン0.12モル含む塩化カルシウム
水溶液1000ml、60℃で3時間イオン交換を行っ
た。洗浄し、付着水を取り除いた成形体を120℃で乾
燥し、400℃で1時間焼成活性化した。このようにし
てえられたゼオライト成形体のイオン交換率を原子吸光
により調べたところ51%であり、残りはナトリウムイ
オンであった。After cooling, 125 g of this molded body was hydrated and degassed, and then ion-exchanged for 3 hours at 60 ° C. in 1000 ml of an aqueous calcium chloride solution containing 0.12 mol of Ca ions. The molded body, which had been washed and freed from adhering water, was dried at 120 ° C. and fired and activated at 400 ° C. for 1 hour. When the ion exchange rate of the thus obtained zeolite molded product was examined by atomic absorption, it was 51%, and the remainder was sodium ion.
【0036】このものの窒素吸着容量、耐圧強度を上述
の方法で評価したところ、32.7Ncc/g,3.2
kgであった。酸素PSA性能を上述の方法で評価した
ところ、酸素取出量53.5Nl/kg・h,酸素回収
率45.6%であった。When the nitrogen adsorption capacity and pressure resistance of this product were evaluated by the above-mentioned methods, they were 32.7 Ncc / g, 3.2.
It was kg. When the oxygen PSA performance was evaluated by the above-mentioned method, the oxygen extraction amount was 53.5 Nl / kg · h and the oxygen recovery rate was 45.6%.
【0037】実施例6〜8 比較例4〜6 実施例5と同じ操作によって、表3に示すバインダー
量,Caイオン交換率のCa−NaA型ゼオライト成形
体をそれぞれ調製した。それらの物性を前述と同じ方法
で評価した結果を表1に示す。Examples 6 to 8 Comparative Examples 4 to 6 By the same operations as in Example 5, Ca-NaA type zeolite compacts having the binder content and Ca ion exchange rate shown in Table 3 were prepared. Table 1 shows the results of evaluation of those physical properties by the same method as described above.
【0038】 表1 Caイオ イオン バイン 窒素吸着 酸素取出 酸素回収 耐圧強度 ン量 交換率 ダー量 容量 量 モル % 部 Ncc Nl/ % kgf /g kgh 実施例 2 0.26 42 25 26.9 51.3 45.8 3.5 3 0.48 58 25 33.2 53.4 45.7 3.3 4 0.85 64 25 29.1 51.9 45.9 3.1 比較例 1 0.17 31 25 20.2 33.5 37.1 3.4 2 2.50 89 25 22.0 48.5 40.5 3.4 3 0.35 51 5 33.4 63.1 43.5 0.5 実施例 6 0.26 42 25 27.1 51.9 45.6 3.4 7 0.48 58 25 33.6 53.5 45.8 3.1 8 0.85 64 25 29.8 51.8 45.7 3.2 比較例 4 0.17 31 25 20.5 37.8 37.5 3.4 5 2.50 89 25 22.4 48.1 40.7 3.2 6 0.35 51 5 33.5 63.3 43.6 0.5Table 1 Ca Io Ion Vine Nitrogen Adsorption Oxygen Extraction Oxygen Recovery Oxygen Recovery Pressure Resistance Strength Exchange Rate Dar Volume Volume Volume Mol% Part Ncc Nl /% kgf / g kgh Example 2 0.26 42 25 26.9 51.3 45.8 3.5 3 0.48 58 25 33.2 53.4 45.7 3.3 4 0.85 64 25 29.1 51.9 45.9 3.1 Comparative Example 1 0.17 31 25 20.2 33.5 37.1 3.4 2 2.50 89 25 22.0 48.5 40.5 3.4 3 0.35 51 5 33.4 63.1 43.5 0.5 Example 6 0.26 42 25 27.1 51.9 45.6 3.4 7 0.48 58 25 33.6 53.5 45.8 3.1 8 0.85 64 25 29.8 51.8 45. 7 3.2 Comparative example 4 0.17 312 20.5 37.8 37.5 3.4 5 2.50 89 25 22.4 48.1 40.7 3.2 6 0.35 51 5 33.5 63.3 43.6 0.5
Claims (2)
交換されたCaA型ゼオライト100重量部に対して、
バインダー10重量部以上含有するCaA型ゼオライト
成形体。1. To 100 parts by weight of CaA-type zeolite ion-exchanged with Ca ions of 40% or more and less than 70%,
A CaA-type zeolite molded product containing 10 parts by weight or more of a binder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25756092A JPH0679170A (en) | 1992-09-02 | 1992-09-02 | CaA-type zeolite molded body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25756092A JPH0679170A (en) | 1992-09-02 | 1992-09-02 | CaA-type zeolite molded body and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0679170A true JPH0679170A (en) | 1994-03-22 |
Family
ID=17307978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25756092A Pending JPH0679170A (en) | 1992-09-02 | 1992-09-02 | CaA-type zeolite molded body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0679170A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003026415A (en) * | 2001-07-11 | 2003-01-29 | Nippon Sanso Corp | Method for purifying carbon monoxide |
-
1992
- 1992-09-02 JP JP25756092A patent/JPH0679170A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003026415A (en) * | 2001-07-11 | 2003-01-29 | Nippon Sanso Corp | Method for purifying carbon monoxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100625359B1 (en) | Molecular sieve adsorbent for gas purification and preparation method thereof | |
JP3776813B2 (en) | Argon / oxygen selective X zeolite | |
JP2627708B2 (en) | Adsorbent beds for improved pressure swing adsorption operations | |
JP4195516B2 (en) | Method for obtaining LSX zeolite granular agglomerates with a low ratio of inert binder | |
EP0297542A2 (en) | Process for separating nitrogen from mixtures thereof with less polar substances | |
JPH0337156A (en) | Formed and calcined zeolite and its production | |
JP2003511218A (en) | Zeolite adsorbent, method for obtaining it and use for removing carbonate from gas streams | |
JP3066430B2 (en) | Method for producing zeolite X-shaped compact | |
US7300899B2 (en) | Lithium exchanged zeolite X adsorbent blends | |
CN111683744A (en) | Excellent core-shell component composite adsorbents for VSA/VPSA/PSA systems | |
JP2782744B2 (en) | Method for producing binderless zeolite molded body | |
US6030916A (en) | Process for the preparation of a molecular sieve adsorbent for selectively adsorbing nitrogen from a gaseous mixture | |
US6090738A (en) | Process for the preparation of a molecular sieve adsorbent for selectively adsorbing methane from a gaseous mixture | |
JP2000210557A (en) | X-type zeolite-containing molded article, method for producing the same, and use thereof | |
JPH06183727A (en) | Cax type zeolite molding and its production | |
JPH03295805A (en) | X-type zeolite molded body and its production | |
JPH0679170A (en) | CaA-type zeolite molded body and method for producing the same | |
JPH04198011A (en) | Production of molded article of binderless x type zeolite | |
JP2001347123A (en) | Carbon dioxide adsorption separation method | |
JP3066427B2 (en) | High-strength A-type zeolite compact and method for producing the same | |
JPH11246214A (en) | Type A zeolite bead molding and method for producing the same | |
JP2000211915A (en) | Low silica X-type zeolite-containing molded article, method for producing the same, and use thereof | |
JP3772412B2 (en) | Low-abrasion zeolite bead molded body and method for producing the same | |
JPH11246282A (en) | X-shaped zeolite bead molding and method for producing the same | |
JPH0648728A (en) | 3A type zeolite compact and method for producing the same |