JPH0676706A - Proximity switch for magnetic body detection - Google Patents
Proximity switch for magnetic body detectionInfo
- Publication number
- JPH0676706A JPH0676706A JP4252131A JP25213192A JPH0676706A JP H0676706 A JPH0676706 A JP H0676706A JP 4252131 A JP4252131 A JP 4252131A JP 25213192 A JP25213192 A JP 25213192A JP H0676706 A JPH0676706 A JP H0676706A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnet
- magnetoresistive
- magnetoresistive element
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 65
- 238000001514 detection method Methods 0.000 title claims abstract description 28
- 230000007935 neutral effect Effects 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 11
- 239000000696 magnetic material Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- 230000005294 ferromagnetic effect Effects 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 230000004907 flux Effects 0.000 claims 2
- 238000013459 approach Methods 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 244000126211 Hericium coralloides Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 244000145845 chattering Species 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0011—Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Switches That Are Operated By Magnetic Or Electric Fields (AREA)
- Electronic Switches (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は磁性体検出用近接スイッ
チに関し、さらに詳しくは磁気抵抗素子を用いた磁性体
検出用近接スイッチに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic substance detection proximity switch, and more particularly to a magnetic substance detection proximity switch using a magnetoresistive element.
【0002】[0002]
【従来の技術】位置出し装置や検出装置の主要構成部と
して利用されている近接スイッチとしては、リードスイ
ッチ型、高周波発信型、静電容量型、光スイッチ型等の
ものがある。このうち、高周波発信型のものは、あらゆ
る金属体を極めて高い精度で検出することが可能である
と共に検出動作が安定しており、チャタリング等により
検出動作が不安定となるおそれがあるリードスイッチ型
のような欠点がない。また、一般に価格的にも、静電容
量型や光スイッチ型のものより低廉であり、現在最も多
数使用されている。2. Description of the Related Art Proximity switches used as main components of a positioning device and a detection device include a reed switch type, a high frequency transmission type, a capacitance type, and an optical switch type. Among them, the high frequency transmission type is capable of detecting any metal body with extremely high accuracy and the detection operation is stable, and the detection operation may be unstable due to chattering or the like. There are no such drawbacks. Further, it is generally cheaper in price than the electrostatic capacitance type and the optical switch type, and is currently most used.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、かかる
従来の高周波発信型の近接スイッチは、構成部品として
コイルのほか発振器が必要であり、スイッチとしては大
型のものとならざるを得ない。また、あらゆる金属体を
検出対象とするため、磁性体のみを検出したい場合に
は、使用に適さないという問題もある。However, such a conventional high-frequency transmission type proximity switch requires an oscillator in addition to a coil as a component, and the switch must be large. Further, since all metal objects are detected, there is a problem that it is not suitable for use when only magnetic materials are desired to be detected.
【0004】一方、磁性体のみを検出する近接スイッチ
として、従来より磁気抵抗素子を用いたものも知られて
いる。しかしながら、かかる従来の磁気抵抗素子を用い
た近接スイッチは、使用温度により、磁気抵抗素子の出
力電圧が一定していなかった。特に、正確な検出を行う
ためには、検出体である磁性体が接近していない状態の
いわゆる「offセット値」の電圧が一定であることが
要請されるが、従来このoffセット値の電圧が一定し
ておらず、このことが正確な検出を妨げる大きな要因と
なっていた。また、従来用いられている磁気抵抗素子
は、所定の磁気抵抗パターンが積層形成された基板を外
被材料でモールドし、このモールドの外面にバイアス磁
石を外付けしており、磁気抵抗パターンとバイアス磁石
との間に介在しているモールドが妨げとなり、バイアス
磁界を各パターン要素に対して所定の角度で十分作用さ
せることが困難であった。そのため、弱磁界領域が生
じ、検出距離が一定しないばかりか、上記高周波発信型
のものと比較して長距離の検出が困難であるという問題
があった。On the other hand, as a proximity switch for detecting only a magnetic substance, a switch using a magnetoresistive element has been conventionally known. However, in the conventional proximity switch using the magnetoresistive element, the output voltage of the magnetoresistive element is not constant depending on the operating temperature. In particular, in order to perform accurate detection, it is required that the voltage of the so-called “off set value” in the state where the magnetic body as the detection body is not close is constant, but conventionally, the voltage of this off set value is required. Was not constant, which was a major factor that hindered accurate detection. In the conventional magnetoresistive element, a substrate on which a predetermined magnetoresistive pattern is laminated is molded with a jacket material, and a bias magnet is externally attached to the outer surface of the mold. It was difficult to make the bias magnetic field sufficiently act on each pattern element at a predetermined angle because the mold interposed between the magnet and the magnet interfered. Therefore, there is a problem that a weak magnetic field region is generated, the detection distance is not constant, and it is difficult to detect a long distance as compared with the high-frequency transmission type.
【0005】本発明は上記課題を解消するためになされ
たものであり、温度特性が優れ検出動作が安定している
と共に、高周波発信型のものよりコンパクトでほぼ同じ
かそれ以上の検出距離を得ることが可能な磁気抵抗素子
を用いた磁性体検出用近接スイッチを提供することを目
的とする。The present invention has been made in order to solve the above-mentioned problems, and is excellent in temperature characteristics, has stable detection operation, and is more compact than a high-frequency transmission type and obtains a detection distance substantially equal to or longer than that. An object of the present invention is to provide a proximity switch for detecting a magnetic body using a magnetoresistive element capable of detecting the magnetic substance.
【0006】[0006]
【課題を解決するための手段】本発明者は上記目的を達
成するため鋭意研究を重ねた結果、磁気抵抗素子をリン
グ状磁石体の両端付近に生じる磁気的中性点(磁石体の
磁界が互いに反発し合う結果、磁界ベクトルがほぼゼロ
となる点)に配設することで温度特性が向上し、出力電
圧、特にoffセット値が安定することを見出し、本発
明を完成するに至った。すなわち、本発明にかかる磁性
体検出用近接スイッチは、略リング状に形成された磁石
体と、該磁石体の中心軸に沿う直線上又はその付近であ
ってかつ該磁石体の両端部近傍に生ずる磁気的中性点の
いずれかに、中心位置を略一致させて配設されるバイア
ス磁石一体型磁気抵抗素子と、該磁石体と磁気抵抗素子
とを収納保持する非磁性体性の収納ケースと、を有して
構成されていることを特徴とする。As a result of intensive studies to achieve the above object, the present inventor has found that a magnetic neutral point (a magnetic field of the magnet body is As a result of mutual repulsion, the magnetic field vector is arranged at a point where the magnetic field vector becomes almost zero), and the temperature characteristics are improved, and the output voltage, especially the off set value is found to be stable, and the present invention has been completed. That is, the proximity switch for magnetic body detection according to the present invention includes a magnet body formed in a substantially ring shape, and on a straight line along the central axis of the magnet body or in the vicinity thereof and in the vicinity of both end portions of the magnet body. A bias magnet integrated type magnetoresistive element arranged so that its center position is substantially coincident with any of the generated magnetic neutral points, and a non-magnetic accommodating case accommodating and holding the magnet body and the magnetoresistive element It is characterized by having and.
【0007】[0007]
【実施例】以下、本発明にかかる磁性体検出用近接スイ
ッチを図面に示した一実施例に基づき更に詳細に説明す
る。図1において1は本実施例の磁性体検出用近接スイ
ッチであり、磁石体2、磁気抵抗素子3及び収納ケース
4を有して構成される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetic material detecting proximity switch according to the present invention will now be described in more detail with reference to an embodiment shown in the drawings. In FIG. 1, reference numeral 1 is a magnetic material detection proximity switch of this embodiment, which is configured to include a magnet body 2, a magnetoresistive element 3, and a housing case 4.
【0008】磁石体2は、所定長さを有する略リング状
に形成され、両端面に磁極が着磁されている。この磁石
体2は、常態においては、図2の実線矢印で示すような
磁力が生じている。The magnet body 2 is formed in a substantially ring shape having a predetermined length, and has magnetic poles magnetized on both end faces. In the normal state, the magnet body 2 has a magnetic force as indicated by the solid arrow in FIG.
【0009】磁気抵抗素子3は、硬磁性材料から成形さ
れた基板31と、該基板31上に形成された強磁性体性
薄膜材料からなる磁気抵抗パターン32とを有して構成
されている。そして、この基板31は磁気抵抗パターン
32を形成するパターン要素32a,32b,32c,
32dに対して45°の方向で磁界が作用するようにバ
イアス磁界が着磁されてなる。The magnetoresistive element 3 has a substrate 31 formed of a hard magnetic material, and a magnetoresistive pattern 32 formed on the substrate 31 and made of a ferromagnetic thin film material. The substrate 31 has pattern elements 32a, 32b, 32c, which form the magnetoresistive pattern 32,
The bias magnetic field is magnetized so that the magnetic field acts in the direction of 45 ° with respect to 32d.
【0010】ここで、基板31を構成する硬磁性材料と
しては、例えば、保磁力の大きいフェライトを用いるこ
とができ、磁気抵抗パターン32は、基板31の片面上
に、図4に示すように櫛の歯状に形成されている。な
お、このパターンを形成する方法は特に限定されるもの
ではなく、フォトエッチング方法等の公知の手段を用い
ることができる。また、このように櫛の歯状に形成され
る磁気抵抗パターン32の各パターン要素32a,32
b,32c,32dに対して、基板31に45°の方向
で磁界が作用するように、バイアス磁界を着磁する時期
も特に限定されるものではなく、パターン形成前又はパ
ターン形成後の適宜の段階で着磁することができる。Here, as the hard magnetic material forming the substrate 31, for example, ferrite having a large coercive force can be used, and the magnetoresistive pattern 32 is formed on one surface of the substrate 31 as shown in FIG. It is formed in a tooth shape. The method for forming this pattern is not particularly limited, and known means such as a photoetching method can be used. Further, each pattern element 32a, 32 of the magnetoresistive pattern 32 thus formed in the shape of a comb tooth.
The timing of magnetizing the bias magnetic field is not particularly limited so that the magnetic field acts on the substrate 31 in the direction of 45 ° with respect to b, 32c, and 32d. It can be magnetized in stages.
【0011】この磁気抵抗素子3は、基板31に対する
バイアス磁界の着磁及び磁気抵抗パターン32の形成を
行った後、リードフレーム33上に載置して端子結合を
行い、さらにプラスチック等の非磁性体材料によりモー
ルド層34を形成することにより製作される。そして、
図2に示すように、上記した磁石体2の中心軸に沿う直
線21上又はその付近であって磁石体2の両端部22,
23近傍に生ずる磁気的中性点24,25のいずれか
に、該磁気抵抗素子3の中心位置35を略一致させて配
設される。ここで、磁気的中性点24,25とは、磁石
体の磁界が互いに反発し合う結果、磁界ベクトルがほぼ
ゼロとなる点であり、この磁気的中性点に磁気抵抗素子
3の中心位置35が略一致したことの判断は、磁気抵抗
素子3の出力電圧が無磁界時のoffセット値を示すこ
とによりなされる。The magnetoresistive element 3 is magnetized with a bias magnetic field on the substrate 31 and formed with a magnetoresistive pattern 32, and then mounted on a lead frame 33 to perform terminal coupling, and further nonmagnetic material such as plastic. It is manufactured by forming the mold layer 34 from a body material. And
As shown in FIG. 2, both ends 22 of the magnet body 2 are on or near the straight line 21 along the central axis of the magnet body 2 described above.
The center position 35 of the magnetoresistive element 3 is disposed so as to substantially coincide with either of the magnetic neutral points 24 and 25 generated near 23. Here, the magnetic neutral points 24 and 25 are points at which the magnetic field vector becomes substantially zero as a result of the magnetic fields of the magnet bodies repelling each other, and the central position of the magnetoresistive element 3 is at this magnetic neutral point. The determination that 35 is substantially the same is made by the output voltage of the magnetoresistive element 3 indicating the off set value when there is no magnetic field.
【0012】なお、磁気抵抗素子3としては上記したよ
うにバイアス磁石一体型のものを用いることが好ましい
が、このようなバイアス磁石一体型のものとしては、上
記した基板31をバイアス磁石として併用するタイプの
ほか、図5に示すように、バイアス磁石303を基板3
01の磁気抵抗パターン302形成面と反対面に積層し
て一体とし、さらに、リードフレーム304に載置して
これらの積層体全体をモールド層305被覆した磁気抵
抗素子300を用いてもよい。As the magnetoresistive element 3, it is preferable to use a bias magnet integrated type as described above. In such a bias magnet integrated type, the above-mentioned substrate 31 is also used as a bias magnet. In addition to the type, as shown in FIG.
The magnetoresistive element 300 in which the magnetoresistive pattern 302 of 01 is laminated on the opposite surface to be integrated, and further mounted on the lead frame 304 to cover the entire laminated body with the mold layer 305 may be used.
【0013】収納ケース4は、プラスチック等の非磁性
体材料から形成され、上記した磁石体2と磁気抵抗素子
3とを収納保持し得るように、図1に示すように、略円
筒状に形成されている。なお、図1及び図2において5
は増幅器及び比較器を示し、磁気抵抗素子3のリードフ
レーム33のリード端子と接続され、この増幅器及び比
較器5の出力は、検出体の接近により、磁気抵抗素子3
の出力電圧が予め設定した比較器の電圧レベルを越えた
時にスイッチ動作する。また、図2に示したように、収
納ケース4と磁石体2との間に外乱磁界の影響を除くた
め、純鉄等からなるシールド体6を装着する構成として
もよい。The storage case 4 is made of a non-magnetic material such as plastic and is formed in a substantially cylindrical shape as shown in FIG. 1 so that the magnet body 2 and the magnetoresistive element 3 can be stored and held. Has been done. In addition, in FIG. 1 and FIG.
Denotes an amplifier and a comparator, which are connected to the lead terminals of the lead frame 33 of the magnetoresistive element 3, and the output of the amplifier and the comparator 5 is the magnetoresistive element 3 due to the proximity of the detector.
The switch operation is performed when the output voltage of 1 exceeds the preset voltage level of the comparator. Further, as shown in FIG. 2, a shield body 6 made of pure iron or the like may be mounted between the housing case 4 and the magnet body 2 in order to eliminate the influence of the disturbance magnetic field.
【0014】本実施例の磁性体検出用近接スイッチ1
は、次のように作用する。図2に示すように、この磁性
体検出用近接スイッチ1に検出体たる磁性体10がある
一定の距離まで接近すると、磁石体2からの磁力線が図
2の実線矢印に示す状態から破線矢印に示す状態に変化
する。これにより、磁気抵抗素子3の位置は磁気的中性
点でなくなるため、磁気抵抗素子3には磁界が作用し、
出力電圧が変化する。増幅器及び比較器5は、予め設定
したしきい値を越える大きさの出力電圧を生じた場合に
スイッチ動作を行うものである。Proximity switch 1 for magnetic substance detection of this embodiment
Works as follows. As shown in FIG. 2, when the magnetic body 10 as a detection body approaches the magnetic body detection proximity switch 1 to a certain distance, the magnetic force line from the magnet body 2 changes from the state shown by the solid line arrow in FIG. 2 to the broken line arrow. Change to the state shown. As a result, the position of the magnetoresistive element 3 is not a magnetic neutral point, so that a magnetic field acts on the magnetoresistive element 3,
The output voltage changes. The amplifier / comparator 5 performs a switching operation when an output voltage whose magnitude exceeds a preset threshold value is generated.
【0015】ここで、図6は、本実施例の磁性体検出用
近接スイッチ1の使用温度Tを−30 C,25 C,
60 C,80 Cと変化させた場合の出力電圧と検出
距離との関係を示す温度特性図である。なお、使用した
磁性体検出用近接スイッチ1は、磁石体2として直径が
31mm、長さが21mmで表面磁力が700ガウスのもの
を、磁気抵抗素子3として上記したように180ガウス
のバイアス磁界を着磁した一辺1.5mmの正方形のフェ
ライトとガラスからなる基板31上に、図4で示した櫛
の歯状の磁気抵抗パターン32を施したものを用いた。
また、図6において、Voff は磁性体10の接近による
磁界の影響を受けていないoffセット値を、Vout は
出力値を示す。Here, FIG. 6 shows the operating temperature T of the magnetic substance detecting proximity switch 1 of this embodiment at −30 C, 25 C,
It is a temperature characteristic figure which shows the relationship between an output voltage and the detection distance at the time of changing into 60 C and 80 C. The magnetic substance detection proximity switch 1 used has a magnet body 2 having a diameter of 31 mm, a length of 21 mm and a surface magnetic force of 700 gauss, and the magnetoresistive element 3 has a bias magnetic field of 180 gauss as described above. A substrate 31 made of a magnetized square ferrite having a side of 1.5 mm and made of glass was provided with the comb-teeth-shaped magnetoresistive pattern 32 shown in FIG.
Further, in FIG. 6, Voff represents an off set value that is not affected by the magnetic field due to the approach of the magnetic body 10, and Vout represents an output value.
【0016】この図から明らかなように、Voff の値は
T=−30 C〜80 Cまで変化しても出力電圧の差
は1mVの差であり、ほぼ一定している。そのため、検出
距離35mmにおいてもT=80 Cの出力値とT=−3
0 CのVoff 値は識別できる。したがって、常温下で
は、検出距離35mmまで正確かつ確実に検出可能であ
る。As is apparent from this figure, even if the value of Voff changes from T = -30 C to 80 C, the difference in output voltage is 1 mV, which is almost constant. Therefore, even at the detection distance of 35 mm, the output value of T = 80 C and T = −3
A Voff value of 0 C is identifiable. Therefore, at room temperature, it is possible to detect accurately and reliably up to the detection distance of 35 mm.
【0017】[0017]
【発明の効果】本発明の磁性体検出用近接スイッチは、
磁石体の磁気的中性点に磁気抵抗素子の中心位置が略一
致するように配設しているため、使用温度による出力電
圧の変化が小さくoffセット値が一定しており、温度
による検出距離の変動が小さい。しかも、磁気抵抗素子
としてバイアス磁石一体型のものを用いているため、弱
磁界領域の不感帯がなく、従来の磁気抵抗素子を用いた
近接スイッチよりも長距離を検出することができる。ま
た、構成部品点数が少ないため、高周波発信型のものと
比較して同じ距離を検出するのに小型のものとすること
ができ、かつ構成部品のいずれもが安価なものであるこ
とから、製造コスト的にも有利である。The proximity switch for detecting a magnetic material according to the present invention comprises:
Since the center position of the magnetoresistive element is substantially aligned with the magnetic neutral point of the magnet body, the change in output voltage due to operating temperature is small and the off set value is constant. Fluctuation is small. In addition, since the bias magnet integrated type is used as the magnetoresistive element, there is no dead zone in the weak magnetic field region, and it is possible to detect a longer distance than the proximity switch using the conventional magnetoresistive element. In addition, because the number of component parts is small, it can be made smaller to detect the same distance as compared with the high frequency transmission type, and all of the component parts are inexpensive It is also advantageous in terms of cost.
【図1】本発明の磁性体検出用近接スイッチの一実施例
を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of a proximity switch for detecting a magnetic material according to the present invention.
【図2】同実施例の磁性体検出用近接スイッチの動作説
明図である。FIG. 2 is an operation explanatory view of the magnetic substance detection proximity switch of the embodiment.
【図3】同実施例で用いた磁気抵抗素子の一態様を示す
縦断面図である。FIG. 3 is a vertical cross-sectional view showing one mode of a magnetoresistive element used in the example.
【図4】同実施例で用いた磁気抵抗素子の一態様を示す
平面断面図である。FIG. 4 is a plan sectional view showing an aspect of a magnetoresistive element used in the same example.
【図5】同実施例で用いた磁気抵抗素子の他の態様を示
す縦断面図である。FIG. 5 is a vertical cross-sectional view showing another aspect of the magnetoresistive element used in the example.
【図6】同実施例の磁性体検出用近接スイッチの温度特
性図である。FIG. 6 is a temperature characteristic diagram of the proximity switch for detecting a magnetic material according to the embodiment.
1 磁性体検出用近接スイッチ 2 磁石体 3 磁気抵抗素子 4 収納ケース 5 増幅器及び比較器 10 磁性体 1 Magnetic substance detection proximity switch 2 Magnet body 3 Magnetoresistive element 4 Storage case 5 Amplifier and comparator 10 Magnetic body
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H03K 17/90 9383−5J 17/95 A 9383−5J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical indication location H03K 17/90 9383-5J 17/95 A 9383-5J
Claims (3)
石体の中心軸に沿う直線上又はその付近であってかつ該
磁石体の両端部近傍に生ずる磁気的中性点のいずれか
に、中心位置を略一致させて配設されるバイアス磁石一
体型磁気抵抗素子と、該磁石体と磁気抵抗素子とを収納
保持する非磁性体性の収納ケースと、を有して構成され
ていることを特徴とする磁性体検出用近接スイッチ。1. A magnet body formed in a substantially ring shape, and a magnetic neutral point generated on or near a straight line along the central axis of the magnet body and near both ends of the magnet body. And a non-magnetic storage case for storing and holding the magnet body and the magnetoresistive element, and a bias magnet integrated type magnetoresistive element disposed so that their center positions are substantially aligned with each other. Proximity switch for magnetic substance detection characterized by
形された基板と、該基板の一面上に形成された強磁性体
薄膜材料からなる磁気抵抗パターンとを有して構成され
ると共に、該基板が、磁気抵抗パターンを形成するパタ
ーン要素に対して45°の方向で磁束が作用するように
バイアス磁界が着磁されてなるバイアス磁石一体型であ
る請求項1記載の磁性体検出用近接スイッチ。2. The magnetoresistive element comprises a substrate formed of a hard magnetic material and a magnetoresistive pattern made of a ferromagnetic thin film material formed on one surface of the substrate, and The proximity for magnetic body detection according to claim 1, wherein the substrate is a bias magnet integrated type in which a bias magnetic field is magnetized so that a magnetic flux acts on a pattern element forming a magnetoresistive pattern in a direction of 45 °. switch.
と、該基板上に形成された強磁性体性薄膜材料からなる
磁気抵抗パターンと、磁気抵抗パターンを形成するパタ
ーン要素に対して45°の方向でバイアス磁界の磁束を
作用させることができるバイアス磁石と、を有し、これ
らが積層されて外被材料でモールド封入されたバイアス
磁石一体型である請求項1記載の磁性体検出用近接スイ
ッチ。3. A magnetoresistive element for a non-magnetic substrate, a magnetoresistive pattern made of a ferromagnetic thin film material formed on the substrate, and a pattern element forming the magnetoresistive pattern. The magnetic substance detection device according to claim 1, further comprising a bias magnet capable of acting a magnetic flux of a bias magnetic field in a direction of 45 °, the bias magnet being laminated and molded with a jacket material to be sealed. Proximity switch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4252131A JPH0676706A (en) | 1992-08-27 | 1992-08-27 | Proximity switch for magnetic body detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4252131A JPH0676706A (en) | 1992-08-27 | 1992-08-27 | Proximity switch for magnetic body detection |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0676706A true JPH0676706A (en) | 1994-03-18 |
Family
ID=17232912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4252131A Pending JPH0676706A (en) | 1992-08-27 | 1992-08-27 | Proximity switch for magnetic body detection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0676706A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006502381A (en) * | 2002-10-07 | 2006-01-19 | ムービング マグネット テクノロジーズ (ソシエテ アノニム) | Variable reluctance position sensor |
JP2007305594A (en) * | 2007-06-07 | 2007-11-22 | Alps Electric Co Ltd | Magnetic sensor |
WO2008105228A1 (en) | 2007-02-26 | 2008-09-04 | Fujikura Ltd. | Magnetic sensor module and piston position detecting device |
US7575267B2 (en) | 2004-11-09 | 2009-08-18 | Piolax Inc. | Metal clip for vehicle accessory fixation and structure using the same |
JP2012503767A (en) * | 2008-09-24 | 2012-02-09 | ムービング マグネット テクノロジーズ | Linear position or rotational position sensor with permanent magnet for ferromagnetic object detection |
JP2012079424A (en) * | 2010-09-30 | 2012-04-19 | Tokai Rika Co Ltd | Proximity switch |
US11493527B2 (en) * | 2020-10-21 | 2022-11-08 | Infineon Technologies Ag | Zero-gauss-magnet for differential, twist-insensitive magnetic speed sensors |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS545800U (en) * | 1977-06-16 | 1979-01-16 | ||
JPH01122532A (en) * | 1987-11-06 | 1989-05-15 | Nippon Autom:Kk | Magnetic proximity switch device |
JPH01175141A (en) * | 1987-12-28 | 1989-07-11 | Nippon Autom:Kk | Magnetic proximity switch device |
JPH02120855U (en) * | 1989-03-16 | 1990-09-28 |
-
1992
- 1992-08-27 JP JP4252131A patent/JPH0676706A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS545800U (en) * | 1977-06-16 | 1979-01-16 | ||
JPH01122532A (en) * | 1987-11-06 | 1989-05-15 | Nippon Autom:Kk | Magnetic proximity switch device |
JPH01175141A (en) * | 1987-12-28 | 1989-07-11 | Nippon Autom:Kk | Magnetic proximity switch device |
JPH02120855U (en) * | 1989-03-16 | 1990-09-28 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006502381A (en) * | 2002-10-07 | 2006-01-19 | ムービング マグネット テクノロジーズ (ソシエテ アノニム) | Variable reluctance position sensor |
US7575267B2 (en) | 2004-11-09 | 2009-08-18 | Piolax Inc. | Metal clip for vehicle accessory fixation and structure using the same |
WO2008105228A1 (en) | 2007-02-26 | 2008-09-04 | Fujikura Ltd. | Magnetic sensor module and piston position detecting device |
EP2117026A1 (en) * | 2007-02-26 | 2009-11-11 | Fujikura, Ltd. | Magnetic sensor module and piston position detecting device |
EP2339362A1 (en) | 2007-02-26 | 2011-06-29 | Fujikura Ltd. | Magnetic sensor module and piston position detector |
EP2117026A4 (en) * | 2007-02-26 | 2012-03-14 | Fujikura Ltd | Magnetic sensor module and piston position detecting device |
JP2007305594A (en) * | 2007-06-07 | 2007-11-22 | Alps Electric Co Ltd | Magnetic sensor |
JP4639216B2 (en) * | 2007-06-07 | 2011-02-23 | アルプス電気株式会社 | Magnetic sensor |
JP2012503767A (en) * | 2008-09-24 | 2012-02-09 | ムービング マグネット テクノロジーズ | Linear position or rotational position sensor with permanent magnet for ferromagnetic object detection |
JP2012079424A (en) * | 2010-09-30 | 2012-04-19 | Tokai Rika Co Ltd | Proximity switch |
US11493527B2 (en) * | 2020-10-21 | 2022-11-08 | Infineon Technologies Ag | Zero-gauss-magnet for differential, twist-insensitive magnetic speed sensors |
US11802886B2 (en) | 2020-10-21 | 2023-10-31 | Infineon Technologies Ag | Zero-gauss-magnet for differential, twist-insensitive magnetic speed sensors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4059798A (en) | Method and apparatus for measuring the current flowing in a workpiece | |
US4851775A (en) | Digital compass and magnetometer having a sensor coil wound on a high permeability isotropic core | |
US4045738A (en) | Variable reluctance speed sensor of integral construction utilizing a shielded high coercive force rare earth magnet positioned directly adjacent the sensing rotating element | |
EP0215454B1 (en) | Position detecting apparatus utilizing a magnetic sensor | |
KR20020086581A (en) | Measuring device for contactlessly detecting a ferromagnetic object | |
JP2002538450A (en) | Magnetic susceptibility probe position sensor | |
WO2002021080A1 (en) | Non-contacting linear position sensor | |
EP0478143B1 (en) | Angle detecting apparatus | |
US20010026154A1 (en) | Magnetic sensor and position transducer | |
US6229300B1 (en) | Wiegand tilt sensor | |
JPS6355014B2 (en) | ||
US6549003B2 (en) | Position detector utilizing two magnetic field sensors and a scale | |
JPH0676706A (en) | Proximity switch for magnetic body detection | |
JPH0136590B2 (en) | ||
JPH0140940B2 (en) | ||
JPS5743483A (en) | Magnetoelectric transducer | |
JPH09292202A (en) | Linear displacement detecting device | |
JP3961809B2 (en) | Magnetic sensor element | |
JPH0418256B2 (en) | ||
JP2514338B2 (en) | Current detector | |
JPH0355228Y2 (en) | ||
JPH01132183A (en) | Magnetic proximity switch device | |
SU513249A1 (en) | Tilt angle sensor | |
JPH01122532A (en) | Magnetic proximity switch device | |
JPH04271425A (en) | Contactless position detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040531 |