JPH0672022B2 - Method for manufacturing base material for optical fiber - Google Patents
Method for manufacturing base material for optical fiberInfo
- Publication number
- JPH0672022B2 JPH0672022B2 JP553487A JP553487A JPH0672022B2 JP H0672022 B2 JPH0672022 B2 JP H0672022B2 JP 553487 A JP553487 A JP 553487A JP 553487 A JP553487 A JP 553487A JP H0672022 B2 JPH0672022 B2 JP H0672022B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- optical fiber
- eccentricity
- core
- cladding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000000034 method Methods 0.000 title claims description 12
- 239000013307 optical fiber Substances 0.000 title description 34
- 238000012545 processing Methods 0.000 claims description 30
- 238000005253 cladding Methods 0.000 claims description 22
- 239000011521 glass Substances 0.000 claims description 14
- 238000012937 correction Methods 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 239000011162 core material Substances 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003754 machining Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/01228—Removal of preform material
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコアおよびクラツドからなる光フアイバ用母材
の製造方法に関し、とくにクラツド中心に対するコア中
心の偏心量の少ない光フアイバ用母材の製造方法に関す
るものである。Description: TECHNICAL FIELD The present invention relates to a method for producing a base material for an optical fiber composed of a core and a cladding, and particularly to a production method for an optical fiber preform having a small eccentricity of the core center with respect to the center of the cladding. It is about the method.
従来、光フアイバ用母材の製造方法としては、たとえば
VAD法(Vapor Phase Axial Deposition:気相軸付法)、
MCVD法(Modified Chemical Vapor Phase Deposition:
内付化学気相堆積法)、OVD法(Outside Vapor Phase O
xidation Deposition:外付気相酸化法)などが行われて
いるが、これらいずれの製造方法においても、クラツド
中心に対するコア中心の偏心が発生する可能性は避けら
れず、一般にこの偏心を少くするため、上記の各種それ
ぞれの光フアイバ用母材の製造方法における製造工程に
おいて、コアの偏心発生要因を可能な限り抑制する方法
がとられている。しかし、コアの偏心の少ない母材を製
造することは極めて困難で、母材としての不良品の発生
を完全になくすことは不可能であった。また不良品とま
ではならなくとも、コアの偏心量の大きいものについて
は、母材を線引きし、フアイバ化した際、接続損失が増
加する、あるいは接続が非常に難しくなることから、母
材の段階で選別を行つている。Conventionally, as a method of manufacturing a base material for optical fibers, for example,
VAD method (Vapor Phase Axial Deposition)
MCVD method (Modified Chemical Vapor Phase Deposition:
Internal chemical vapor deposition), OVD (Outside Vapor Phase O)
xidation Deposition: External vapor phase oxidation method) is performed, but in any of these manufacturing methods, the possibility of eccentricity of the core center with respect to the center of the cladding is unavoidable and generally this eccentricity is reduced. In the manufacturing steps of the above-described various manufacturing methods of the optical fiber preform, a method of suppressing the core eccentricity generation factor as much as possible is adopted. However, it is extremely difficult to manufacture a base material with a small eccentricity of the core, and it has been impossible to completely eliminate the occurrence of defective products as the base material. If the core material has a large amount of eccentricity even if it is not defective, connection loss increases or connection becomes very difficult when the base material is drawn and made into fiber. Sorting is done in stages.
従来の光フアイバ用母材の製造方法では、製造した母材
の段階で、折角母材化したにもかかわらず、コアの偏心
が発生した場合、この偏心を修正する技術がないため、
母材を選別するほかなく、母材から光フアイバへの歩留
りが悪くなるという問題がある。In the conventional method for producing a base material for optical fibers, at the stage of the produced base material, if the core is eccentric even though it is made into a bent base material, there is no technology to correct this eccentricity.
There is a problem that the yield from the base material to the optical fiber becomes poor without selecting the base material.
本発明は従来の問題点を解決し、母材化後のコアの偏心
修正を目的として、これにより光フアイバ製造の生産性
向上を可能とするもので、コアおよびクラツドからなる
光フアイバ用のガラス母材の製造方法において、クラツ
ドの中心に対するコアの中心の偏心を測定し、ガラス母
材のクラツド部分に、測定したコアの偏心量の修正加工
を施すことを特徴とし、とくにコアの偏心量の修正加工
は、クラツド外周部を火炎加熱し、ガラス蒸発させるこ
とにより行うことを特徴としている。The present invention solves the conventional problems and aims to correct the eccentricity of the core after forming the base material, thereby enabling the improvement of the productivity of the optical fiber manufacturing, and the glass for the optical fiber comprising the core and the cladding. In the manufacturing method of the base material, the eccentricity of the center of the core with respect to the center of the cladding is measured, and the cladding portion of the glass base material is characterized by performing a correction process on the measured eccentricity of the core. The correction process is characterized by performing flame heating on the outer periphery of the cladding and evaporating the glass.
本発明は、光フアイバ用母材の製造において、透明ガラ
ス母材化した段階以降にコアのクラツド中心に対する偏
心を測定し、偏心の大きいものについては、偏心を減少
するよう透明ガラス母材に物理的な修正を加え、たとえ
ば火炎を用いてクラツド外周部のガラスを蒸発させるこ
とにより透明ガラス母材の構造を変化させ、これにより
コアの偏心の少ない光フアイバ用母材を製造することが
でき、製造歩留りの向上、光フアイバの製造価格の低減
を可能とし、経済的効果が顕著となる。以下図面にもと
づき実施例について説明する。The present invention measures the eccentricity of the core with respect to the center of the cladding after the step of forming the transparent glass preform in the production of the optical fiber preform, and if the eccentricity is large, the eccentricity is physically reduced to the transparent glass preform. The structure of the transparent glass base material is changed by evaporating the glass in the outer peripheral portion of the cladding using, for example, a flame, whereby a base material for an optical fiber with less eccentricity of the core can be manufactured, It is possible to improve the manufacturing yield and reduce the manufacturing cost of optical fibers, and the economic effect becomes remarkable. Embodiments will be described below with reference to the drawings.
第1図は本発明の光フアイバ用母材の製造方法の実施例
の要部概要を説明する図である。10は光フアイバ用母
材、11はコア、12はクラツド、13はクラツド中心、14は
クラツド中心13とコア11の中心のずれを修正する加工の
一例として、火炎を用いて光フアイバ用母材10のクラツ
ド12の部分のガラスを蒸発させ、修正加工を行う加工用
バーナである。FIG. 1 is a diagram for explaining the outline of the main part of an embodiment of a method for producing a base material for optical fibers according to the present invention. 10 is a base material for optical fiber, 11 is a core, 12 is a cladding, 13 is a center of the cladding, 14 is a processing for correcting the misalignment between the center of the cladding 13 and the center of the core 11 This is a processing burner that evaporates the glass in the portion of the clad 12 of 10 and performs correction processing.
本実施例のコア偏心の修正加工として、火炎によるクラ
ツド部の構造変化を例示したが、この他に機械的にクラ
ツド部のガラスを研削する修正加工、あるいは化学反応
を利用したクラツド部のガラスエツチングによる修正加
工も本発明の態様に含まれる。しかし、前者の機械加工
の場合には、クラツド部の研削面の強度劣化や残留ひず
みによる割れなどの問題が生ずる恐れがあり、また後者
の薬品などを用いたエツチングによる化学反応を用いた
修正加工の場合は、研削量、研削方向の制御性に制限が
あり、微細加工が難かしいという問題がある。これに対
し本実施例の火炎を用いる修正加工は、機械的強度劣化
の恐れがなく、また火炎を絞るとか、加熱時間、加熱量
を変えるなどの方法により、微細加工が容易に可能なこ
とから、本発明のコア偏心修正加工としては好ましい態
様である。As a modification of the core eccentricity of the present embodiment, the structural change of the cladding part due to a flame was illustrated, but in addition to this, modification processing of mechanically grinding the glass of the cladding part, or glass etching of the cladding part using a chemical reaction was performed. The modification processing according to the present invention is also included in the embodiments of the present invention. However, in the case of the former machining, there is a possibility that problems such as strength deterioration of the ground surface of the cladding and cracks due to residual strain may occur, and the latter is modified machining using chemical reaction by etching with chemicals. In the case, there is a limit in the controllability of the grinding amount and the grinding direction, and there is a problem that fine processing is difficult. On the other hand, the correction processing using the flame of the present embodiment has no fear of deterioration of mechanical strength, and since fine processing can be easily performed by such methods as squeezing the flame, heating time, and changing the heating amount. The core eccentricity correcting process of the present invention is a preferred embodiment.
なお、本発明におけるコア中心とクラツド中心とのずれ
量の指標としての偏心率εは次式で定義されるものであ
る。The eccentricity ε as an index of the deviation amount between the core center and the cladding center in the present invention is defined by the following equation.
ここでδはコア中心とクラツド中心のずれ量、Dはクラ
ツド直径を示す。 Where δ is the amount of deviation between the core center and the cladding center, and D is the cladding diameter.
次に本発明により製造した光フアイバ用母材の具体例に
ついて述べる。Next, a specific example of the optical fiber preform manufactured according to the present invention will be described.
具体例1: 直径25mmφの光フアイバ用母材について、あらかじめコ
アの偏心を測定し、コア中心の、外径中心、すなわちク
ラツド中心からのずれ量およびずれの方向を記録した。
この測定・記録結果をもとに、コアの偏心を減少させる
方向に、酸水素火炎を用いて修正加工を行つた。加工用
バーナは同心円状の二重管を用い、この二重管構造の加
工用バーナを5本、被加工体である光フアイバ用母材を
中心とする同一円周上の位置に配置した。第2図は本具
体例の加工用バーナの配置概要である。20は光フアイバ
用母材の被加工体、21は加工用バーナを示す。第3図
は、加工用バーナによる加熱時間と光フアイバ用母材の
クラツド部の加工量の関係を示す図である。Example 1: The eccentricity of the core was measured in advance for the optical fiber preform having a diameter of 25 mmφ, and the deviation amount and the deviation direction of the core center from the outer diameter center, that is, the cladding center were recorded.
Based on the measurement and recording results, correction processing was performed using an oxyhydrogen flame in the direction of reducing the eccentricity of the core. A concentric double tube was used as the processing burner, and five processing burners having this double tube structure were arranged at positions on the same circumference centered on the optical fiber preform that is the workpiece. FIG. 2 is an outline of the arrangement of the working burners of this example. Reference numeral 20 is a workpiece of the optical fiber base material, and 21 is a processing burner. FIG. 3 is a diagram showing the relationship between the heating time by the processing burner and the processing amount of the cladding portion of the optical fiber base material.
本具体例における光フアイバ用母材は、GeO2-SiO2ガラ
スコア、SiO2ガラスクラツドからなるものを使用し、加
工用バーナ1本当り水素毎分20リツトル、酸素毎分6リ
ツトル流した。光フアイバ用母材の被加工体に対し、加
工用バーナを毎分50mmの速度で、被加工体の長手方向に
移動させながら片側のみ加熱したところ、被加工体の光
フアイバ用母材の直径が約280μm減少した。この修正
加工を施すことにより、本具体例の光フアイバ用母材の
コアの偏心率は2.0%であつたものが、偏心修正加工後
の偏心率は0.9%に修正された。Preform for optical fiber according to the present specific example, GeO 2 -SiO 2 glass core, using a made of SiO 2 Garasukuratsudo, machining burner 1 Hontori hydrogen per minute 20 liters, were passed oxygen per minute 6 liters. When the processing burner was moved in the longitudinal direction of the work piece at a speed of 50 mm per minute with respect to the work piece of the base material for the optical fiber, and only one side was heated, the diameter of the base material for the optical fiber of the work piece was measured. Was reduced by about 280 μm. By performing this correction processing, the eccentricity of the core of the optical fiber preform in this example was 2.0%, but the eccentricity after the eccentricity correction processing was corrected to 0.9%.
具体例2: 直径60mmφの具体例1と同じ材質および構造の光フアイ
バ用母材に対して、具体例1と同様の偏心修正加工を施
した。ただし、光フアイバ用母材に対する加工用バーナ
の移動速度は毎分30mmとした。この偏心修正加工を施す
ことにより、偏心修正加工前に比べ光フアイバ用母材の
外径は0.5mm減少し、偏心率は2.0%であつたものが、偏
心修正加工後の偏心率は1.2%に修正された。Example 2: The same eccentricity correction process as in Example 1 was applied to an optical fiber base material having the same material and structure as Example 1 with a diameter of 60 mmφ. However, the moving speed of the processing burner with respect to the optical fiber base material was 30 mm / min. By performing this eccentricity correction processing, the outer diameter of the optical fiber base material decreased by 0.5 mm compared to before the eccentricity correction processing, and the eccentricity was 2.0%, but the eccentricity after the eccentricity correction processing is 1.2%. Was fixed.
なお以上の具体例においては、加工用の火炎として酸水
素火炎を用いたが、これに限定するものではなく、メタ
ン、プロパンなどのガスを用いてもよく、また加工用バ
ーナの数は、必要な加工量に対し適宜選定することによ
り同等の効果が得られる。In the above specific examples, an oxyhydrogen flame was used as the processing flame, but the invention is not limited to this, and a gas such as methane or propane may be used, and the number of processing burners is required. The same effect can be obtained by appropriately selecting the processing amount.
〔発明の効果〕 以上述べたように、本発明は光フアイバ用母材の製造工
程において、光フアイバ用母材の段階でクラツド中心に
対するコア中心の偏心を測定し、測定の結果得られたコ
ア偏心量を減少するよう光フアイバ用母材のクラツド部
に偏心修正加工を行うことにより、コア偏心の少ない光
フアイバ用母材を製造することができ、光フアイバ用母
材の製造歩留りの向上、光フアイバの製造価格の低減が
可能となり、その効果顕著である。[Effect of the invention] As described above, in the manufacturing process of the optical fiber preform, the present invention measures the eccentricity of the core center with respect to the cladding center at the stage of the optical fiber preform, and obtains the core obtained as a result of the measurement. By performing eccentricity correction processing on the cladding part of the optical fiber base material so as to reduce the amount of eccentricity, it is possible to manufacture an optical fiber base material with less core eccentricity, and improve the manufacturing yield of the optical fiber base material. The manufacturing cost of the optical fiber can be reduced, and the effect is remarkable.
第1図は本発明の光フアイバ用母材の製造方法の概要を
説明する図、第2図は本発明による加工用バーナの配置
例の概要図、第3図は加工用バーナによる被加工体の加
熱温度と加工量との関係を示す図である。 10……光フアイバ用母材、11……コア、12……クラツ
ド、13……クラツド中心、14……加工用バーナ、20……
被加工体、21……加工用バーナFIG. 1 is a diagram for explaining an outline of a method for producing a base material for optical fibers according to the present invention, FIG. 2 is a schematic diagram of an arrangement example of a processing burner according to the present invention, and FIG. 3 is a workpiece to be processed by a processing burner. It is a figure which shows the relationship between the heating temperature and the amount processed. 10 …… Base material for optical fiber, 11 …… Core, 12 …… Clad, 13 …… Clad center, 14 …… Processing burner, 20 ……
Workpiece, 21 ... Burner for processing
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 真澄 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (56)参考文献 特開 昭52−98538(JP,A) 特開 昭58−213652(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masumi Ito 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works (56) Reference JP-A-52-98538 (JP, A) Sho 58-213652 (JP, A)
Claims (1)
ガラス母材の製造方法において、 前記クラツドの中心に対する前記コアの中心の偏心を測
定したのち、前記クラツド外周部を火炎加熱し、ガラス
を蒸発させることにより、ガラス母材のクラツド部分
に、前記の測定した偏心量修正加工を施す工程を含んで
なる ことを特徴とする光フアイバ用母材の製造方法。1. A method of manufacturing a glass base material for a fiber optic comprising a core and a cladding, wherein after measuring the eccentricity of the center of the core with respect to the center of the cladding, the outer peripheral portion of the cladding is flame heated to evaporate the glass. By so doing, the method includes the step of subjecting the clad portion of the glass base material to the above-described measured eccentricity correction processing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP553487A JPH0672022B2 (en) | 1987-01-13 | 1987-01-13 | Method for manufacturing base material for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP553487A JPH0672022B2 (en) | 1987-01-13 | 1987-01-13 | Method for manufacturing base material for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63176324A JPS63176324A (en) | 1988-07-20 |
JPH0672022B2 true JPH0672022B2 (en) | 1994-09-14 |
Family
ID=11613853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP553487A Expired - Lifetime JPH0672022B2 (en) | 1987-01-13 | 1987-01-13 | Method for manufacturing base material for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0672022B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6131414A (en) * | 1997-05-13 | 2000-10-17 | Shin-Etsu Chemical Co., Ltd. | Method for making a preform for optical fibers by drawing a mother ingot |
JP2000047039A (en) * | 1998-07-29 | 2000-02-18 | Shin Etsu Chem Co Ltd | Optical fiber preform ingot and manufacturing method thereof |
-
1987
- 1987-01-13 JP JP553487A patent/JPH0672022B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63176324A (en) | 1988-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4810276A (en) | Forming optical fiber having abrupt index change | |
US5837334A (en) | Large sized quartz glass tube, large scale quartz glass preform, process for manufacturing the same and quartz glass optical fiber | |
KR900002047B1 (en) | Preparation method of preform for optical fibers | |
JPH052118A (en) | Optical fiber and production thereof | |
JP2919752B2 (en) | Optical fiber forming method and apparatus | |
EP1487750B1 (en) | Method for producing an optical fiber and optical fiber | |
JPH07109136A (en) | Large-sized quartz glass tube, large-sized quartz glass preform, and methods for producing the same | |
JP3061714B2 (en) | Large quartz glass tube, optical fiber preform, and method for producing them | |
US7062941B2 (en) | Manufacturing method of optical fiber preform | |
JPH0672022B2 (en) | Method for manufacturing base material for optical fiber | |
EP4105185B1 (en) | Method for manufacturing a preform for a multi-core optical fiber and a multi-core optical fiber | |
CN111620558B (en) | Method for manufacturing elliptical core polarization maintaining optical fiber | |
JPH0463018B2 (en) | ||
JP3678294B2 (en) | Flame polishing method for glass base material | |
CN114573226A (en) | Active optical fiber and preparation method thereof | |
JP6979000B2 (en) | Manufacturing method of glass base material for optical fiber | |
JPH04231336A (en) | Production of optical fiber preform | |
JPH0525818B2 (en) | ||
JP2960714B2 (en) | Preform for optical fiber, method for stretching the same, and apparatus for stretching the same | |
JP2000203860A (en) | Large quartz glass preform | |
KR20040093186A (en) | Method for producing an optical fiber and an optical fiber | |
JPH0710580A (en) | Production of optical fiber preform | |
JP4056778B2 (en) | Manufacturing method of optical fiber preform | |
JP2517095B2 (en) | Optical fiber preform manufacturing method | |
JPH0656448A (en) | Production of optical fiber preform |