JPH0670956B2 - Static controller for charged beam - Google Patents
Static controller for charged beamInfo
- Publication number
- JPH0670956B2 JPH0670956B2 JP62005633A JP563387A JPH0670956B2 JP H0670956 B2 JPH0670956 B2 JP H0670956B2 JP 62005633 A JP62005633 A JP 62005633A JP 563387 A JP563387 A JP 563387A JP H0670956 B2 JPH0670956 B2 JP H0670956B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- deflection
- electrode support
- charged beam
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003068 static effect Effects 0.000 title 1
- 239000004065 semiconductor Substances 0.000 claims description 9
- 230000005684 electric field Effects 0.000 description 18
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 7
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Electron Beam Exposure (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、荷電ビームを利用して微細加工、元素分析
等を行なう各種装置において、電界によって、ビームを
偏向しまたはビーム径やビーム断面形状を変更するなど
該荷電ビームの制御を行なうのに用いられる、荷電ビー
ム用静電制御器の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to various devices for performing microfabrication, elemental analysis, etc. using a charged beam to deflect a beam by an electric field or to obtain a beam diameter or a beam sectional shape. The present invention relates to an improvement of the electrostatic controller for a charged beam, which is used for controlling the charged beam by changing, for example.
(従来技術とその問題点) 従来の荷電ビーム用静電偏向器では、(以下、静電制御
器を静電偏向器で代表させて説明する)、その主部は、
導電性の偏向用電極(例えば、銅,ステンレス等)と、
それを支える絶縁性の電極支持体(例えば、アルミナ,
ガラス等)で構成され、前記導電性の偏向用電極に偏向
電圧を印加することにより、電界を形成させて荷電ビー
ムを偏向していた。(Prior Art and its Problems) In a conventional electrostatic deflector for a charged beam (hereinafter, an electrostatic controller is represented by an electrostatic deflector), its main part is
A conductive deflection electrode (eg, copper, stainless steel, etc.),
An insulating electrode support that supports it (eg, alumina,
By applying a deflection voltage to the conductive deflection electrode made of glass or the like), an electric field is formed to deflect the charged beam.
従来の静電偏向器は、例えばその正面断面図を第4図
A、平面断面図を第4図Bに示すように、銅製の偏向用
電極2がアルミナ(Al2O3)がガラス(SiO2)で作られ
た絶縁物の電極支持体1に気密にロー付けされ、さらに
この電極支持体1が、接地されたステンレス鋼製フレー
ム4に気密にロー付けされて固定される構成を採用して
いる。このようにした偏向用電極2が、X,Y軸の両方向
に1対宛設けられ、それらに印加される偏向電圧によっ
て荷電ビーム3をX,Y両方向に静電偏向するようになっ
ている。偏向用電極2へのリード線5は、フレーム4に
明けられた穴40と電極支持体1にあけられた穴10の両者
を通って、偏向用電極2の裏面にロー付けされている。In a conventional electrostatic deflector, for example, as shown in a front sectional view of FIG. 4A and a plan sectional view of FIG. 4B, the deflection electrode 2 made of copper is made of alumina (Al 2 O 3 ) and made of glass (SiO 2 ). 2 ) An electrode support 1 made of an insulating material is airtightly brazed, and this electrode support 1 is airtightly brazed and fixed to a grounded stainless steel frame 4. ing. A pair of such deflection electrodes 2 are provided in both directions of the X and Y axes, and the charged beam 3 is electrostatically deflected in both the X and Y directions by a deflection voltage applied thereto. The lead wire 5 to the deflection electrode 2 passes through both the hole 40 formed in the frame 4 and the hole 10 formed in the electrode support 1 and is brazed to the back surface of the deflection electrode 2.
第4図Cに示すのは、そのうちの1つの偏向用電極2に
対する電圧印加の等価回路である。偏向用電極2には制
御電源9からリード線5を経由して偏向用電圧が印加さ
れているが、電極支持体1の前記材料の体積抵抗率が非
常に高く1012乃至1014Ωcmもあるため、その抵抗値は通
常1012乃至1014Ω台の高い接地抵抗値を示し、従って、
接地されたフレーム4と偏向用電極2の間に挿入される
電極支持体1の等価抵抗R1は絶縁に近い高抵抗である。FIG. 4C shows an equivalent circuit of voltage application to one of the deflection electrodes 2 among them. A deflection voltage is applied to the deflection electrode 2 from the control power source 9 via the lead wire 5, but the volume resistivity of the material of the electrode support 1 is very high, and is 10 12 to 10 14 Ωcm. Therefore, its resistance value usually shows a high ground resistance value in the order of 10 12 to 10 14 Ω, and therefore,
The equivalent resistance R1 of the electrode support 1 inserted between the grounded frame 4 and the deflection electrode 2 is a high resistance close to insulation.
さて、上記の構成の静電偏向器で荷電ビーム3の偏向を
行なって、試料(図示せず)上の任意の位置にビーム照
射を行ない、微細な加工や分析を行なう訳であるが、ビ
ーム照射には非常に高い位置精度が要求される。例え
ば、露光装置では10mm程度の偏向幅に対し0.1μm以下
の精度、即ち10-5程度と言う高精度が要求されている。By the way, the charged beam 3 is deflected by the electrostatic deflector having the above-mentioned configuration to irradiate the beam to an arbitrary position on the sample (not shown) for fine processing and analysis. Very high position accuracy is required for irradiation. For example, an exposure apparatus is required to have an accuracy of 0.1 μm or less for a deflection width of about 10 mm, that is, a high accuracy of about 10 −5 .
従って、偏向用電極2に印加される電圧値の変動の許容
値は非常に小さく厳しいものとなり、外乱ノイズその他
に対しては深刻に対処せざるを得なくなっている。Therefore, the permissible value of the fluctuation of the voltage value applied to the deflection electrode 2 is very small and severe, and it is unavoidable to seriously deal with disturbance noise and the like.
上記の従来の静電偏向器の構成は次の不具合を生む。The configuration of the conventional electrostatic deflector described above causes the following problems.
その1つは、静電偏向器へのリード線5が外界のノイズ
を拾い易いことであり、リード線から侵入する外乱のノ
イズ電圧が偏向用電圧に重畳し、これに禍されて、荷電
ビーム3が不正規に振動乃至動揺することである。One is that the lead wire 5 to the electrostatic deflector easily picks up external noise, and the noise voltage of the disturbance that intrudes from the lead wire is superimposed on the deflection voltage. 3 is irregular vibration or shaking.
他の1つは、荷電ビーム3の一部が散乱して電極支持体
1の表面11に付着する現象(チャージアップ)のあるこ
とであり、荷電ビームの散乱は到底除き切れるものでな
いため、電極支持体の表面11の電位は荷電粒子の付着、
剥落によって大きく変動し、これが荷電ビーム3の偏向
用電圧を歪ませて偏向に不測の浮動を生じたり、荷電ビ
ーム3の収束を妨げたりする不都合を生じていた。The other is that there is a phenomenon in which part of the charged beam 3 is scattered and adheres to the surface 11 of the electrode support 1 (charge-up). The potential of the surface 11 of the support is the adhesion of charged particles,
The peeling causes a large fluctuation, which distorts the deflection voltage of the charged beam 3 and causes an unexpected floating in the deflection, or hinders the convergence of the charged beam 3.
これらに対する従来の対策としては次記のものがあっ
た。The conventional measures against these problems are as follows.
即ち、前者に対しては、リード線5を厳重にシールド
(51)すると共に、放電時の電源保護対策を兼ねて、適
宜の抵抗R5を偏向用電極2の近くに付加する処置が採ら
れた。しかし、その成果はあまり上がっていない。That is, in the former case, the lead wire 5 is strictly shielded (51), and an appropriate resistor R5 is added near the deflection electrode 2 in order to protect the power supply during discharge. . However, the result is not so good.
後者に対しては、第5図Aに示すように、偏向用電極の
一部21で電極支持体1を覆うなどして、電極支持体の表
面を露出させないようにする対策が採られた。しかし、
これも実施してみると、小型の装置で偏向の精度が高度
に要求されるような場合には、大方の場合対策が不十分
であることが判明した。As for the latter, as shown in FIG. 5A, a measure was taken to prevent the surface of the electrode support body from being exposed by covering the electrode support body 1 with a part 21 of the deflection electrode. But,
When this is also carried out, it has been found that in most cases, when the precision of the deflection is required to be high in a small device, the countermeasure is insufficient.
一般に、静電偏向器は小型に高精度に仕上げされ組み立
てられ、また、第5図Bに示すように、偏向の精度を高
める目的で8極以上の構成にしたり、更に、こうしたも
のを軸方向に幾段も重ねたりすることが多く、非常に加
工に手間がかかり、高価に成り易いものである。第5図
Aの対策は実際上仲々煩雑で、実施は困難であった。Generally, the electrostatic deflector is assembled in a small size with high precision and assembled, and as shown in FIG. 5B, the electrostatic deflector has a structure of 8 poles or more for the purpose of improving the accuracy of deflection. In many cases, many layers are stacked on top of each other, which is very time-consuming to process and tends to be expensive. The measures shown in FIG. 5A were actually complicated and difficult to implement.
念のため、第5図Cには、第5図Bの各偏向用電極に印
加する電圧の配分法を示している。X,Y軸方向の偏向用
電圧±Vx,±Vyは、抵抗rで作られる抵抗回路網の四方
のノードに印加され、その他の各ノード部の電圧が偏向
用電極2に印加される。As a precaution, FIG. 5C shows a distribution method of the voltage applied to each deflection electrode in FIG. 5B. The deflection voltages ± Vx and ± Vy in the X and Y axis directions are applied to the four nodes of the resistance network formed by the resistor r, and the voltages of the other node portions are applied to the deflection electrode 2.
さらに次の2つのことも問題として取り上げることが出
来る。即ち、 1つは、導電性の電極の表面電位は一定である。このこ
とは、任意の希望する電界強度分布を表面に沿って形成
させることが不可能であることを意味する。(もしこれ
を実現しようとすれば、数多くの小電極を並べて、その
それぞれに適宜の電圧を印加するという方法しか無い
が、前記同様、事実上この加工は不可能である。) 他の1つは、静電偏向器の構造が複雑であり、電極の取
り付け精度を出すことが仲々困難なことである。The following two issues can also be taken up as problems. That is, one is that the surface potential of the conductive electrode is constant. This means that it is not possible to create any desired field strength distribution along the surface. (If this is to be realized, there is only a method of arranging a large number of small electrodes and applying an appropriate voltage to each of them, but this processing is practically impossible as in the above.) Another one That is, the structure of the electrostatic deflector is complicated, and it is difficult to obtain the electrode mounting accuracy.
などがあった。There was such a thing.
(発明の目的) 本発明は、上記の問題を解決し、外乱ノイズの影響を受
け難く、かつ、ビームの収束を妨げるような電位の変動
等を生ずることがなく、構造が簡単である上に荷電ビー
ムの制御を正確にかつ高精度に行なうこと出来る、荷電
ビーム用静電制御器の提供を目的とする。(Object of the Invention) The present invention solves the above problems, is not easily affected by disturbance noise, and does not cause potential fluctuations that hinder the convergence of a beam, and has a simple structure. It is an object of the present invention to provide an electrostatic controller for a charged beam, which can control the charged beam accurately and highly accurately.
(発明の構成) 本発明は、制御用電極と電極支持体とで構成される静電
制御器において、該電極支持体の全部または一部を半導
体で構成するとともに、荷電ビームを中心にして、該制
御用電極を該電極支持体の外側に設置したことを特徴と
する荷電ビーム用静電制御器。(Structure of the Invention) The present invention relates to an electrostatic controller composed of a control electrode and an electrode support, in which all or part of the electrode support is composed of a semiconductor, and a charged beam is mainly used, An electrostatic controller for a charged beam, wherein the control electrode is provided outside the electrode support.
(実施例) 第1図Aは本発明の第1の実施例の静電偏向器の正面断
面図である。第4図A,Bに対応する部材には、同じ符号
を付して説明を省略する。(Embodiment) FIG. 1A is a front sectional view of an electrostatic deflector according to a first embodiment of the present invention. Members corresponding to those in FIGS. 4A and 4B are designated by the same reference numerals, and description thereof will be omitted.
電極支持体1はSiC等の半導体材料で作られており、そ
の体積抵抗値は106Ωcm程度である。The electrode support 1 is made of a semiconductor material such as SiC and has a volume resistance value of about 10 6 Ωcm.
偏向用電極2に偏向用電圧が印加されて発生した電界
は、電極支持体1を通して荷電ビーム3に作用する。
(やゝ詳しく言えば、偏向用電極2から、接地されたフ
レーム4に電極支持体1を通して電流が流れ、電極支持
体1の表面が偏向用電極2の電位とアース電位との中間
の電位となり、この電位により中央の空間に電界が発生
して荷電ビーム3が偏向する。) 荷電ビーム用静電偏向器が上記の構成をとるときは、炭
化シリコン(SiC)製電極支持体1で生ずる、第1図C
の偏向用電極2の接地抵抗R1は106Ω程度である。R1が1
06程度の抵抗値であれば、制御電源から偏向用電極へ流
れ込む電流は10-4A程度であって、制御電源6の負担に
は殆どならない。The electric field generated by applying the deflection voltage to the deflection electrode 2 acts on the charged beam 3 through the electrode support 1.
(To be more specific, a current flows from the deflection electrode 2 to the grounded frame 4 through the electrode support 1 and the surface of the electrode support 1 becomes an intermediate potential between the potential of the deflection electrode 2 and the ground potential. , This potential causes an electric field to be generated in the central space to deflect the charged beam 3.) When the electrostatic deflector for the charged beam has the above configuration, it occurs in the silicon carbide (SiC) electrode support 1. Figure 1C
The ground resistance R1 of the deflecting electrode 2 is about 10 6 Ω. R1 is 1
If the resistance value is about 0 6, the current flowing from the control power supply to the deflection electrode is about 10 −4 A, which is hardly a burden on the control power supply 6.
この接地抵抗R1の絶縁に近い高抵抗から106Ω程度への
大幅な低下によって、リード線5を経由する外乱ノイズ
の影響は、従来に比べて格段に減少し、リード線5に付
加する抵抗R5の効果も著しく上昇する。Due to the large decrease of the ground resistance R1 from the high resistance close to the insulation to about 10 6 Ω, the influence of disturbance noise passing through the lead wire 5 is significantly reduced compared to the conventional one, and the resistance added to the lead wire 5 is reduced. The effect of R5 is also significantly increased.
さらに、電極支持体1の表面に荷電粒子が衝突しても、
電極支持体1が半導体であるためにチャージアップは全
く発生しない。従って、非常に正確なビーム制御が可能
となる。Furthermore, even if charged particles collide with the surface of the electrode support 1,
Since the electrode support 1 is a semiconductor, no charge up occurs. Therefore, very accurate beam control is possible.
但し、この効果を可能にする条件は次の通りである。However, the conditions that enable this effect are as follows.
先ず、荷電ビーム3の位置に所望通りの電界が発生する
ためには、電極支持体1の抵抗値が、偏向用電源(図示
しない)から偏向用電極2に流す電流によって、設計通
りの電位を持つだけの値を持たなければならない。First, in order to generate a desired electric field at the position of the charged beam 3, the resistance value of the electrode support 1 is set to a potential as designed by the current flowing from the deflection power source (not shown) to the deflection electrode 2. You must have as many values as you have.
電位の現実的な数値は102V程度、電流のそれは10-4A程
度なので、その抵抗値は106Ω以上が必要となる。もし
電極支持体1が一様な抵抗値を持ち、寸法が断面積1c
m2、長さ1cmとすると、その体積抵抗率は106Ωcmとな
る。実際的には、電気的に2桁、寸法的に2桁程度の変
更が許容可能として、電界発生に必要とされる体積抵抗
率は102Ωcm以上と判断することができる。Since the realistic value of electric potential is about 10 2 V and that of electric current is about 10 -4 A, its resistance value needs to be 10 6 Ω or more. If the electrode support 1 has a uniform resistance value, the dimensions are 1c
Assuming m 2 and a length of 1 cm, the volume resistivity is 10 6 Ωcm. Practically, it is possible to judge that the volume resistivity required for generating an electric field is 10 2 Ωcm or more, while it is possible to electrically change it by about 2 digits and dimensionally about 2 digits.
次に、電荷の蓄積(チャージアップ)の影響を防止する
ためには、荷電ビーム3の一部の微少電流が電極支持体
1に衝突しても、その電流量では荷電ビームに影響を与
えるような電圧は発生しない低い抵抗値でなければなら
ない。現実的な数値として、衝突する電流は10-6A、ビ
ームに影響を与えない電圧は100と推定されるので、抵
抗値は106Ω以下が必要となる。そしてこれにも上記と
同様に、電気的、寸法的許容幅を適用すると体積抵抗率
は1010Ωcm以下が必要となる。Next, in order to prevent the influence of charge accumulation (charge-up), even if a small amount of the current of the charged beam 3 collides with the electrode support 1, the amount of the current should affect the charged beam. It must have a low resistance that does not generate a significant voltage. As a practical numerical, current conflict 10 -6 A, since the voltage does not affect the beam is estimated to 10 0, the resistance value is required less 10 6 Omega. Similarly to the above, if electrical and dimensional tolerances are applied, the volume resistivity needs to be 10 10 Ωcm or less.
以上2つの条件から、電極支持体は、全体としてほぼ10
2〜1010Ωcm程度の体積抵抗率を持つ必要がある。Based on the above two conditions, the electrode support as a whole has about 10
It is necessary to have a volume resistivity of about 2 to 10 10 Ωcm.
第1図Bは本発明の第2の実施例の静電偏向器の正面断
面図である。FIG. 1B is a front sectional view of an electrostatic deflector according to a second embodiment of the present invention.
この実施例では、偏向用電極2は、電極支持体1に付着
された単純な導電性膜2′となっている。この導電性膜
2′の製作法には、メタライズ法によって電極支持体1
に金属膜を塗布する方法、または例えば、SiCの電極支
持体1を焼成で作ったとき電極支持体1の表面に現れる
導電性析出層をそのまま電極として利用する方法、更に
は配線ケーブルを折り曲げて平面的に敷き詰める方法等
がある。In this embodiment, the deflection electrode 2 is a simple conductive film 2'attached to the electrode support 1. The conductive film 2'is manufactured by metallizing the electrode support 1
A method of applying a metal film to the electrode, or, for example, a method of directly using the conductive deposition layer appearing on the surface of the electrode support 1 when the electrode support 1 of SiC is made by firing as an electrode, and further bending the wiring cable. There is a method of laying it in a plane.
半導体である電極支持体1には、電荷の移動によって自
から電界を均一にしようとする働きがあるため、本発明
の偏向用電極2はその取り付け精度についての条件が可
成り緩和される。これは本発明の副次的効果である。Since the electrode support 1 which is a semiconductor has a function of making the electric field uniform by itself by the movement of electric charges, the deflection electrode 2 of the present invention has a considerably relaxed condition for its mounting accuracy. This is a side effect of the present invention.
第2図A(正面断面図)、第2図B(平面断面図)は本
発明の第3の実施例の静電偏向器の図である。FIG. 2A (front sectional view) and FIG. 2B (plan sectional view) are views of an electrostatic deflector according to a third embodiment of the present invention.
この実施例では、第1にフレーム4を廃止し、電極支持
体1そのものがフレームの役割を兼ねている。従来は、
こうした静電偏向器の部分には、ドリフトチューブと呼
ばれる導電性のチューブを設置するか、接地されたフレ
ーム4を設けるかで荷電ビームを完全に囲むようにして
いた。しかし、本発明では、電極支持体1が半導体であ
るため、これにドリフトチューブの役目をさせることが
可能となり、そのため構造を非常に簡略化出来たもので
ある。In this embodiment, first, the frame 4 is eliminated and the electrode support 1 itself also serves as a frame. conventionally,
In such an electrostatic deflector, a conductive tube called a drift tube is installed or a grounded frame 4 is provided to completely surround the charged beam. However, in the present invention, since the electrode support 1 is a semiconductor, it can serve as a drift tube, and therefore the structure can be greatly simplified.
静電偏向器は通常、1個の偏向器に8極(第2図B参
照)、または16極の偏向用電極を使用し(マルチポール
偏向)、更にこうした偏向器を軸方向に2段重ね(第2
図A参照)とし荷電ビームの偏向を振り戻す(ダブル偏
向)方式を採用するため、この構造の簡素化は重大な意
味を持つ。電極支持体2とフレーム4の接合部が無くな
るため、特別なシール技術を全く必要とせず、電極支持
体そのものが真空隔壁となり得るのも大きい長所であ
る。Electrostatic deflectors usually use deflecting electrodes with 8 poles (see FIG. 2B) or 16 poles (multipole deflection) for one deflector, and further stack these deflectors in two axial stages. (Second
As shown in FIG. A), the method of reversing the deflection of the charged beam (double deflection) is adopted, so that simplification of this structure is important. Since the joint between the electrode support 2 and the frame 4 is eliminated, no special sealing technique is required, and the electrode support itself can be a vacuum partition, which is a great advantage.
さらにまた、偏向用電極2の位置の精度はその機械的加
工精度で一意的に決定され、しかも機械加工は殆ど外径
側で行なわれることになるため、容易に高精度を生み出
すことが出来る。電極支持体1によるの電界の分布の均
一化作用も期待できる。Furthermore, the precision of the position of the deflection electrode 2 is uniquely determined by its mechanical processing precision, and since the machining is performed almost on the outer diameter side, high precision can be easily produced. A uniformizing effect of the electric field distribution by the electrode support 1 can also be expected.
第2図Cは、本発明の第4の実施例の平面断面図であ
る。FIG. 2C is a plan sectional view of the fourth embodiment of the present invention.
上記の実施例の第2図Bでは、発生する電界の電界強度
の分布を、従来同様空間的には段階的とするため、電極
間に切欠き(水平方向の切欠き7)を入れてあり、隣接
する電極に電流が流れ込み難いようにしてある。この実
施例はこの配慮を無用にするとともに、更に高精度の制
御を行なうものである。即ちXとYの偏向用電極相互間
で、半導体の電極支持体1を流れる電流によって、第5
図Cで述べたと同様の電界を分布定数的に発生せしめ
る。電界の強度は空間的に連続的になだらかに変化し、
高度の荷電ビームの制御を行なうに適したものとなる。In FIG. 2B of the above embodiment, a notch (horizontal notch 7) is provided between the electrodes in order to make the distribution of the electric field strength of the generated electric field spatially stepwise as in the conventional case. The current is made difficult to flow into the adjacent electrodes. In this embodiment, this consideration is unnecessary, and more precise control is performed. That is, the current flowing in the semiconductor electrode support 1 between the X and Y deflection electrodes causes the fifth
An electric field similar to that described in FIG. C is generated in a distributed constant manner. The electric field strength changes spatially and continuously,
It is suitable for high-level charged beam control.
もともと、8極または16極の偏向用電極を使用するのは
X,Y方向の中間の電界の乱れを補正するためである。こ
の実施例の構成によれば、X,Yの偏向用電圧がその場合
々々に応じて適当に混じり合うように電極支持体の形状
を工夫することが出来、互いに電流が適当に流れ込むこ
とにより、電極自体は4極であっても、無限数極の静電
偏向器とすることが出来る。Originally, the use of 8- or 16-pole deflection electrodes
This is to correct the disturbance of the electric field in the middle in the X and Y directions. According to the configuration of this embodiment, the shape of the electrode support can be devised so that the X and Y deflection voltages are appropriately mixed in each case, and the currents appropriately flow into each other. Even if the electrode itself has four poles, an electrostatic deflector with an infinite number of poles can be used.
第3図Aは本発明の第5の実施例の正面断面図である。FIG. 3A is a front sectional view of the fifth embodiment of the present invention.
前記の実施例が水平方向の電界分布の改善であったのに
対して、本実施例では鉛直方向の電界分布の改善を行な
うものである。即ち先の第2図Dに示した段階的な空間
分布を第3図Bに示すような、連続的な電界強度の空間
分布に変え、ダブル偏向に伴う収差を低減している。本
発明により電極支持体の形状をかえることにより、3次
元方向の殆どあらゆる態様の電界分布を実現することが
出来る。In contrast to the improvement of the electric field distribution in the horizontal direction in the above embodiment, in the present embodiment, the electric field distribution in the vertical direction is improved. That is, the stepwise spatial distribution shown in FIG. 2D above is changed to the spatial distribution of continuous electric field strength as shown in FIG. 3B, and the aberration associated with double deflection is reduced. By changing the shape of the electrode support according to the present invention, it is possible to realize almost any mode of electric field distribution in the three-dimensional direction.
なお、上記実施例では、半導体電極支持体としてSiCを
用い、一様な体積抵抗率をもつ材料の場合で説明した
が、これは絶対的な条件ではなく、絶縁物の表面に半導
体膜が存在するような、組合わせ型の電極支持体であっ
ても、その抵抗値が前記の値に入るものであれば、上記
と同様の効果が得られる。In the above examples, SiC was used as the semiconductor electrode support, and the case where the material had a uniform volume resistivity was explained, but this is not an absolute condition, and a semiconductor film exists on the surface of the insulator. Even in such a combination type electrode support, if the resistance value thereof is within the above range, the same effect as described above can be obtained.
また上記実施例では、荷電ビームの制御器としてビーム
軌道の方向を変えるDeflector機能のものだけを取り上
げて説明したが、本発明の適用はこれに限定されるもの
ではなく、ビームの形状を変えるStigmator機能や、ビ
ームの径の大きさを変えるLens機能のものに於ても大き
い効果を現すことは明かである。Further, in the above-mentioned embodiment, only the one having the deflector function for changing the direction of the beam orbit is taken as the controller of the charged beam, but the application of the present invention is not limited to this, and the stigmator for changing the shape of the beam is used. It is clear that the function and the Lens function that changes the size of the beam diameter also have a great effect.
さらに、炭化シリコンには、酸化アルミニウム等に比べ
て熱伝導率が非常に大きいという長所があり、熱設計も
非常に楽であり、また、酸化アルミニウムと同様に表面
のメタライジングや制御用電極,リード線のロー付け等
も容易であり、曲げ強度、硬度も若干上回っている。こ
のため静電制御器のように非常に高精度に制御用電極を
固定しなければならない場合には最適な電極支持体用材
料と言える。さらに、従来、炭化シリコンはその良好な
耐摩耗性と耐薬品性とにより、軸受け等のシール部やケ
ミカルポンプ用部品として広く利用されており、その材
質の安定性も充分に実証されていて本発明には特に適し
た材料である。Furthermore, silicon carbide has the advantage that its thermal conductivity is much higher than that of aluminum oxide, etc., and its thermal design is also very easy. Also, like aluminum oxide, surface metallization and control electrodes, It is easy to braze lead wires, and the bending strength and hardness are slightly higher. For this reason, it can be said that it is the most suitable material for the electrode support when the control electrode has to be fixed with extremely high accuracy like an electrostatic controller. Further, conventionally, silicon carbide has been widely used as seal parts such as bearings and parts for chemical pumps due to its good wear resistance and chemical resistance, and the stability of its material has been well proven. It is a particularly suitable material for the invention.
ただし、本発明の電極支持体の材料は炭化シリコンに限
られるものではなく、適当な体積抵抗率を持つ物質であ
ればすべて使用できる。例えば、TiC、AlN、BN、更には
金属を混入させた酸化アルミニウムや酸化シリコンなど
の材料も使用できる。However, the material of the electrode support of the present invention is not limited to silicon carbide, and any substance having an appropriate volume resistivity can be used. For example, TiC, AlN, BN, and materials such as aluminum oxide and silicon oxide mixed with a metal can also be used.
(発明の効果) 本発明によれば、従来不可能であった荷電ビームの正確
な制御はもとより、ビームの位置、形状、径の各要素を
高度に制御することの出来る荷電ビーム用静電制御器を
提供することが出来る。(Effect of the Invention) According to the present invention, not only accurate control of a charged beam, which has hitherto been impossible, but also electrostatic control for a charged beam capable of highly controlling each element of the position, shape, and diameter of the beam. Can be provided.
第1図A,B、第2図A、第3図Aは、それぞれ本発明の
実施例の静電制御器の正面断面図。第1図Cは、等価回
路図。第2図B,Cは平面断面図。 第2図Dと第3図Bは、電界強度の分布を示す図。 第4図A,B,Cは、従来の静電偏向器の正面断面図,平面
断面図,等価回路図。 第5図Aは、従来の静電偏向器の部分的正面断面図。 第5図Bは、従来の8極用の静電偏向器の平面断面図
で、第5図Cはそれに用いられ電圧配分用回路図。 1……電極支持体、2……偏向用電極、 3……荷電ビーム,4……フレーム、 5……リード線、6,7……切欠き。1A, 1B, 2A, and 3A are front cross-sectional views of an electrostatic controller according to an embodiment of the present invention. FIG. 1C is an equivalent circuit diagram. 2B and C are plan sectional views. 2D and 3B are diagrams showing the distribution of electric field strength. 4A, B, and C are a front sectional view, a plan sectional view, and an equivalent circuit diagram of a conventional electrostatic deflector. FIG. 5A is a partial front sectional view of a conventional electrostatic deflector. FIG. 5B is a plan sectional view of a conventional eight-pole electrostatic deflector, and FIG. 5C is a voltage distribution circuit diagram used therein. 1 ... electrode support, 2 ... deflecting electrode, 3 ... charged beam, 4 ... frame, 5 ... lead wire, 6,7 ... notch.
Claims (1)
電ビーム用静電制御器において、該電極支持体の全部ま
たは一部を半導体で構成するとともに、荷電ビームを中
心にして、該制御用電極を該電極支持体の外側に設置し
たことを特徴とする荷電ビーム用静電制御器。1. An electrostatic controller for a charged beam comprising a control electrode and an electrode support, wherein the electrode support is wholly or partly made of a semiconductor and the charged beam is used as a center. An electrostatic controller for a charged beam, wherein a control electrode is provided outside the electrode support.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62005633A JPH0670956B2 (en) | 1987-01-13 | 1987-01-13 | Static controller for charged beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62005633A JPH0670956B2 (en) | 1987-01-13 | 1987-01-13 | Static controller for charged beam |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63173325A JPS63173325A (en) | 1988-07-16 |
JPH0670956B2 true JPH0670956B2 (en) | 1994-09-07 |
Family
ID=11616549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62005633A Expired - Lifetime JPH0670956B2 (en) | 1987-01-13 | 1987-01-13 | Static controller for charged beam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0670956B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05190129A (en) * | 1992-01-13 | 1993-07-30 | Toshiba Corp | Electrostatic type lens |
JP5963139B2 (en) * | 2011-10-03 | 2016-08-03 | 株式会社Param | Electron beam drawing method and drawing apparatus |
-
1987
- 1987-01-13 JP JP62005633A patent/JPH0670956B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63173325A (en) | 1988-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5077500A (en) | Air transporting arrangement | |
EP0474723B1 (en) | Charged-particle energy analyzer and mass spectrometer incorporating it | |
CA1041217A (en) | Electron gun with means for expanding the focussing lens field | |
US4686369A (en) | Electric shielding for kinestatic charge detector | |
TW202503805A (en) | X-ray generating device and X-ray imaging device | |
JPH0670956B2 (en) | Static controller for charged beam | |
JP2009076474A (en) | Electro-optical column and method for manufacturing the same | |
US2714679A (en) | High voltage apparatus for generating a substantially well-collimated beam of charged particles | |
US4095132A (en) | Electron multiplier | |
JPH067466B2 (en) | Electrostatic deflector for charged beam | |
US3811062A (en) | Gas discharge panel | |
US4424549A (en) | Corona device | |
US3808498A (en) | Electron beam generating source | |
JPH03504780A (en) | variable dispersion mass spectrometer | |
JP3335798B2 (en) | Electrostatic lens and method of manufacturing the same | |
US4510391A (en) | Gas-discharge position-sensitive ionizing-radiation detector | |
JP3067154B2 (en) | Charged particle beam column | |
SU1112298A1 (en) | Voltage pickup | |
US2913617A (en) | Electron beam discharge device | |
US4930137A (en) | Inorganic triple point screen | |
JP3409799B2 (en) | Traveling wave deflector | |
JPS61235786A (en) | Drift chamber | |
JPH02201855A (en) | Wien filter | |
JPH07123031B2 (en) | Cathode ray tube | |
JPS5911258A (en) | Electrostatic latent image writing apparatus for electrostatic recording |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |