[go: up one dir, main page]

JPH0670783A - Decomposition of polyolefin polymer compound - Google Patents

Decomposition of polyolefin polymer compound

Info

Publication number
JPH0670783A
JPH0670783A JP31155091A JP31155091A JPH0670783A JP H0670783 A JPH0670783 A JP H0670783A JP 31155091 A JP31155091 A JP 31155091A JP 31155091 A JP31155091 A JP 31155091A JP H0670783 A JPH0670783 A JP H0670783A
Authority
JP
Japan
Prior art keywords
polymer compound
polyolefin polymer
polyolefin
wood
basidiomycete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31155091A
Other languages
Japanese (ja)
Inventor
Tetsuya Deguchi
口 哲 也 出
Tomoaki Nishida
田 友 昭 西
Yoshimasa Takahara
原 義 昌 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31155091A priority Critical patent/JPH0670783A/en
Priority to EP92922386A priority patent/EP0596123A4/en
Priority to PCT/JP1992/001411 priority patent/WO1993009184A1/en
Priority to US08/078,296 priority patent/US5378738A/en
Priority to CA002099773A priority patent/CA2099773A1/en
Publication of JPH0670783A publication Critical patent/JPH0670783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To provide an economical industrial process for decomposing a polyolefin polymer compound which causes substantial social problem for its disposal by treating a polyolefin polymer compound with wood-decaying basidiomycete, its cultured product, treated material, etc. CONSTITUTION:A polyolefin polymer compound (e.g. polyethylene film) is made to contact with wood-decaying basidiomycete (e.g. Phanerochaete chrysosporium ATCC 34541), its cultured product and/or treated product under a cultivation condition having restricted nitrogen and/or carbon contents and subjected to static culture at 20-28 deg.C for 20 days. The GPC analysis of the molecular weight of the treated polyolefin polymer compound revealed the lowering of the weight- average molecular weight from 125,000 to 10,300. Accordingly, the present process is effective in decomposing a polyolefin polymer compound in high efficiency without causing secondary pollution and is useful for the treatment of plastic wastes causing substantial social problems.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリオレフィン系高分
子化合物の分解法に関するものであり、更に詳細には、
高分子ポリエチレン等を強力に分解できる新しい工業的
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing a polyolefin polymer compound, more specifically,
The present invention relates to a new industrial method capable of strongly decomposing high-molecular polyethylene and the like.

【0002】したがって本発明は、現在その処理が大き
な社会問題となっているプラスチック廃棄物の処理に大
きな貢献をなすのみでなく、その分解メカニズムを解明
することにより、生分解性高分子化合物のデザインにも
大きな期待をつなぐものである。
Therefore, the present invention not only makes a great contribution to the treatment of plastic waste, whose treatment is now a major social problem, but also elucidates the decomposition mechanism to design biodegradable polymer compounds. It is also a great expectation.

【0003】[0003]

【従来の技術】従来、ポリオレフィン系高分子化合物は
生分解を受けないとされており、ポリオレフィン系高分
子化合物の一つであるポリエチレンは、10年間菌処理
を受けても1%程度しか分解されないことが知られてい
る(Journal of Applied Poly
mer Science,35,1289−1302
(1988))。
2. Description of the Related Art Hitherto, it has been said that polyolefin-based polymer compounds are not biodegradable, and polyethylene, which is one of the polyolefin-based polymer compounds, is degraded only to about 1% even after being treated with bacteria for 10 years. Is known (Journal of Applied Poly)
mer Science, 35 , 1289-1302.
(1988)).

【0004】[0004]

【発明が解決しようとする課題】プラスチック廃棄物処
理で問題となるのは、速やかにプラスチック廃棄物を分
解せしめることであって、従来法では上記したことから
も明らかなように、目的を達成することは出来ない。
A problem in the treatment of plastic waste is to promptly decompose the plastic waste, and the conventional method achieves the object, as is clear from the above. I can't do that.

【0005】[0005]

【課題を解決するための手段】本発明は、このような技
術の現状に鑑み、プラスチック公害の防止を目的として
なされたものであって、従来法では実質的に分解するこ
とのできなかったポリオレフィン系高分子化合物を効率
よく分解することのできる方法を開発する目的でなされ
たものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the present state of the art in order to prevent plastic pollution, and is a polyolefin that cannot be substantially decomposed by conventional methods. It was made for the purpose of developing a method capable of efficiently decomposing a polymer compound.

【0006】上記目的を達成するために検討を行い、二
次公害を防止するという観点から、種々の微生物を用い
る生物処理に着目した。しかしながら、所期の目的を達
成するには至らなかったので、微生物の選択、培養条
件、処理条件等について発想の大転換の必要性を認め
た。
[0006] In order to achieve the above object, studies have been conducted, and attention has been paid to biological treatment using various microorganisms from the viewpoint of preventing secondary pollution. However, it was not possible to achieve the intended purpose, and therefore, it was necessary to make a big change in idea regarding selection of microorganisms, culture conditions, treatment conditions and the like.

【0007】そこで、微生物の生育やその処理に必要な
栄養成分である窒素源及び/または炭素源について、従
来の常識とは全く逆にこれをカットし、また、ポリオレ
フィン系高分子化合物を親水化して微生物処理したとこ
ろ、木材腐朽性担子菌が効率よくポリオレフィン系高分
子化合物を分解することを認め、本発明を完成するに至
った。以下本発明を詳述するが、本明細書において、ポ
リオレフィン系高分子化合物をポリエチレンという場合
もある。
Therefore, nitrogen sources and / or carbon sources, which are nutrient components necessary for the growth and treatment of microorganisms, are cut completely contrary to the conventional wisdom, and the polyolefin polymer compound is hydrophilized. As a result of the microbial treatment, it was confirmed that the wood-destroying basidiomycete efficiently decomposed the polyolefin polymer compound, and the present invention was completed. The present invention is described in detail below, but in this specification, the polyolefin-based polymer compound may be referred to as polyethylene.

【0008】本発明を実施するには、分解処理しようと
するポリオレフィン系高分子化合物を、木材腐朽性担子
菌と接触させる必要があるが、その場合、窒素及び/ま
たは炭素を制限した環境下におくと更に効率的に分解処
理が行われる。
In order to carry out the present invention, it is necessary to bring the polyolefin polymer compound to be decomposed into contact with wood-destroying basidiomycetes, but in that case, under an environment in which nitrogen and / or carbon is restricted. If it is set, the decomposition process is performed more efficiently.

【0009】本発明においては、マツオウジ(Lent
inus lepideus)等褐色腐朽性担子菌を含
む木材腐朽性担子菌が広く使用できるが、特に白色腐朽
性担子菌つまりリグニン分解菌が有利に利用できる。
In the present invention, pine tree (Lent)
Wood-destroying basidiomycetes including brown-rot-destroying basidiomycetes such as inus lepideus) can be widely used, and particularly white-rotting basidiomycetes, that is, lignin-degrading bacteria can be advantageously used.

【0010】これら木材腐朽性担子菌としては、次のよ
うな各属に属する微生物が広く例示される:コリオラス
属(Coriolus versicolor IFO
7043等)、ファネロケーテ属(Phaneroc
haete chrysosporium ATCC
34541等)、トラメデス属(Trametesdi
ckinsii IFO 6488等)、ポリポラス属
(Polyporus mikadoi IFO 65
17等)ステレウム属(Stereum frustu
losum IFO 4932等)、ガノデルマ属(G
anoderma applanatum IFO 6
499等)、レンチテス属(Lenzites bet
ulina IFO 8714等)、ホーメス属(Fo
mesfomentarius IFO 30371
等)、ポロディスキュラス属(Porodisculu
s pendulus IFO 4967等)、レンチ
ヌス属(Lentinus edodes IFO 3
1336、L.lepideus IFO 7043
等)、セルプラ属(Serpula lacryman
s IFO 8697等)その他。
As these wood-destroying basidiomycetes, microorganisms belonging to the following genera are widely exemplified: Coriolus versicolor IFO.
7043 etc.), genus Phanelocete (Phaneroc)
haete chrysosporium ATCC
34541), and the genus Trametes (Trametesdi
ckinsii IFO 6488 etc., Polyporus genus (Polyporus mikadoi IFO 65
17 etc.) Stereum fruitus
losum IFO 4932 etc.), Ganoderma (G
anoderoma applanatum IFO 6
499), Lentites bet
ulina IFO 8714 etc.), genus (Fo)
mesfomentarius IFO 30371
Etc.), Porodisculus (Porodisculus)
s pendulus IFO 4967, etc., Lentinus edodes IFO 3
1336, L.S. lepideus IFO 7043
Etc.), genus Serpula (Serpula lacryman)
s IFO 8697 etc.) Others.

【0011】本発明において使用可能な木材腐朽性担子
菌としては、上記した微生物のほか、NK−1148株
(FERM BP−1859)も使用することができ、
本菌株はポリオレフィン系高分子化合物を高度に分解す
ることができる。このNK−1148株の菌学的性質の
詳細については、特開平2−259180号に開示され
ている。
As the wood-destroying basidiomycetes usable in the present invention, in addition to the above-mentioned microorganisms, NK-1148 strain (FERM BP-1859) can be used.
This strain is capable of highly decomposing polyolefin polymer compounds. Details of the mycological properties of the NK-1148 strain are disclosed in JP-A-2-259180.

【0012】本発明においては、ポリオレフィン系高分
子化合物を上記した1種またはそれ以上の木材腐朽性担
子菌で処理して分解することを特徴とするのであるが、
この場合、窒素及び/または炭素制限下において処理す
ると更に効率的である。
The present invention is characterized in that a polyolefin polymer compound is treated with one or more of the above-mentioned wood-destroying basidiomycetes and decomposed.
In this case, it is more efficient to treat under nitrogen and / or carbon limitation.

【0013】具体的にはポリオレフィン系高分子化合物
を、好ましくは窒素及び/または炭素を制限した状態
で、木材腐朽性担子菌と接触させ、至適温度例えば15
〜35℃で放置すれば、5〜30日間程度でポリオレフ
ィン系高分子化合物をきわめて効率的に分解することが
できるのである。
Specifically, the polyolefin-based polymer compound is contacted with a wood-destroying basidiomycete, preferably in a state where nitrogen and / or carbon is restricted, and the optimum temperature is, for example, 15
If left at ˜35 ° C., the polyolefin polymer compound can be decomposed very efficiently in about 5 to 30 days.

【0014】この場合、微生物で処理するにもかかわら
ず、窒素及び/または炭素を制限することが重要であ
る。窒素及び/または炭素を可及的少量、好ましくは含
有しないのが良い。窒素および炭素以外の栄養源につい
ては、格別の制限はなく、木材腐朽性担子菌の生育に常
用される各成分が適宜使用される。本発明においては上
記の窒素及び/または炭素に関する条件が満たされれ
ば、初期の目的が達成されるので、窒素源や炭素源を完
全にカット状態、例えば水に(必要あれば寒天及び/ま
たはpH調節剤等は添加する)ポリオレフィン系高分子
化合物と木材腐朽性担子菌を加えてインキュベートする
ことによっても、ポリオレフィン系高分子化合物を分解
することができる。
In this case, it is important to limit nitrogen and / or carbon despite treatment with microorganisms. It is preferable not to contain nitrogen and / or carbon in the smallest possible amount, and preferably to contain no carbon. There are no particular restrictions on nutrient sources other than nitrogen and carbon, and each component commonly used for growing wood-destroying basidiomycetes is appropriately used. In the present invention, if the above-mentioned conditions concerning nitrogen and / or carbon are satisfied, the initial purpose can be achieved, so that the nitrogen source and the carbon source are completely cut, for example, in water (agar and / or pH if necessary). The polyolefin-based polymer compound can also be decomposed by adding and incubating the polyolefin-based polymer compound and wood-destroying basidiomycete.

【0015】また、本発明においては、木材腐朽性担子
菌を使用するのであるが、菌自体のほか、その培養物及
び/またはその処理物も使用することができる。該培養
物とは、菌を培養して得た菌体及び培養液の混合物を広
く指すが、本発明においては、菌体培養物から分離した
ウェットケーキ等の菌体、その残渣、及び、固体物をす
べて除去した後の培養液を利用することもできる。また
その処理物とは、上記したものを濃縮、乾燥、または希
釈したものをすべて指すものである。
In the present invention, the wood-destroying basidiomycetes are used, but in addition to the fungi themselves, cultures and / or processed products thereof can also be used. The culture broadly refers to a mixture of cells and a culture solution obtained by culturing a bacterium, but in the present invention, cells such as wet cake separated from the cell culture, its residue, and solids. It is also possible to use the culture medium after removing all the substances. Further, the processed product refers to all of the above-mentioned products which are concentrated, dried or diluted.

【0016】本発明にしたがってポリオレフィン系高分
子化合物を分解処理するに際して、微生物やそれから生
産される酵素等と接触しやすくするために、親水化して
用いるのが好適である。ポリオレフィン系高分子化合物
の親水化処理は、常用される界面活性剤等を塗布及び/
または混合する方法、無機物あるいは有機物を塗布及び
/または混合する方法などを用いることができる。な
お、これらのポリオレフィン系化合物を細砕、粉末化し
たり、あるいは細孔膜化すると更に好適である。
When the polyolefin polymer compound is decomposed according to the present invention, it is preferably hydrophilized for easy contact with microorganisms and enzymes produced therefrom. The hydrophilic treatment of the polyolefin-based polymer compound is performed by applying and / or applying a commonly used surfactant or the like.
Alternatively, a mixing method, a method of applying and / or mixing an inorganic material or an organic material, or the like can be used. It is more preferable to pulverize or powderize these polyolefin-based compounds, or to form a porous film.

【0017】本発明によれば、高圧ポリエチレン、低中
圧ポリエチレンその他各種のポリエチレン、アイソタク
チックその他各種のポリプロピレンのほか、ポリオレフ
ィン系高分子化合物であればすべて分解することができ
る。もちろん、これらの混合物も生分解可能である。以
下、本発明の実施例について述べる。
According to the present invention, in addition to high-pressure polyethylene, low-medium-pressure polyethylene and other types of polyethylene, isotactic and other types of polypropylene, any polyolefin-based polymer compound can be decomposed. Of course, these mixtures are also biodegradable. Examples of the present invention will be described below.

【0018】[0018]

【実施例1】親水性を有するポリエチレン膜(旭化成社
製ハイポアPE−1100)を窒素を含まない固体培地
(KH2PO4 1.0g、NaH2PO4 0.2g、M
gSO4・7H2O 0.1g、ZnSO4・7H2
0.01mg、CuSO4・5H2O 0.02mg、g
lucose 20g、寒天30g、水1リットル)上
に置き各種微生物(白色腐朽性担子菌;Phanero
chaete chrysosporium ATCC
34541、Coriolus versicolo
r IFO 7043、NK−1148 FERM B
P−1859、褐色腐朽性担子菌;Lentinus
lepideus IFO 7043、Serpula
lacrymans IFO EPRI 6352、
不完全菌;Aspergillus niger IF
O 6341、Penicillium citrin
um IFO 6352、細菌;Bacillus s
ubtillis IFO 3134、Pseudom
onas paucimobillis SYK−6)
を接種し20〜28℃で20日間静置培養した。培養
後、ポリエチレン膜を水中に懸濁させ、その分散状態を
観察して、生分解性を評価した。また、高度に分解が認
められたポリエチレン膜については、GPC(昭和電工
製カラムKS−80M;溶離液TCB;流速1ml/m
in;温度130℃;検出器RI)で分析し、平均分子
量の変化で生分解性を評価した。その結果を下記の表1
に示す。
Example 1 A polyethylene membrane having hydrophilicity (Hypore PE-1100 manufactured by Asahi Kasei Corp.) was used as a solid medium (KH 2 PO 4 1.0 g, NaH 2 PO 4 0.2 g, M) containing no nitrogen.
gSO 4 · 7H 2 O 0.1g, ZnSO 4 · 7H 2 O
0.01mg, CuSO 4 · 5H 2 O 0.02mg, g
Lucose 20 g, agar 30 g, water 1 liter) and put on various microorganisms (white rot basidiomycetes; Phanero
chaete chrysosporium ATCC
34541, Coriolus versicolor
r IFO 7043, NK-1148 FERM B
P-1859, brown-rot basidiomycete; Lentinus
lepideus IFO 7043, Serpula
lacrymans IFO EPRI 6352,
Imperfect bacteria; Aspergillus niger IF
O 6341, Penicillium citrin
um IFO 6352, bacteria; Bacillus
subtilis IFO 3134, Pseudom
onas paucimobillis SYK-6)
Was inoculated and statically cultivated at 20 to 28 ° C. for 20 days. After culturing, the polyethylene membrane was suspended in water and the dispersed state was observed to evaluate biodegradability. Further, regarding the polyethylene membrane which was highly decomposed, GPC (Showa Denko column KS-80M; eluent TCB; flow rate 1 ml / m)
in; temperature 130 ° C .; detector RI), and biodegradability was evaluated by the change in average molecular weight. The results are shown in Table 1 below.
Shown in.

【0019】表1から明らかなように木材腐朽性担子菌
はポリエチレン膜を分解することができることが確認さ
れた。特にNK−1148株を用いた場合が高度に分解
しており、GPCで分析した結果、従来全く分解するこ
とができなかった重量平均分子量125,000のポリ
エチレンが重量平均分子量10,300に分解された。
As is clear from Table 1, it was confirmed that wood-destroying basidiomycetes were capable of decomposing polyethylene membranes. Particularly when NK-1148 strain was used, it was highly degraded, and as a result of GPC analysis, polyethylene having a weight average molecular weight of 125,000, which could not be degraded at all, was degraded to a weight average molecular weight of 10,300. It was

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【実施例2】実施例1によって認められた白色腐朽菌
(NK−1148)を用いて実施例1の処理条件に準
じ、窒素濃度の異なる固体培地(窒素濃度を硫酸アンモ
ニウムを用いて0g/リットル、0.05g/リット
ル、0.10g/リットル、0.15g/リットルとし
他は実施例1と同様の培地組成である)で静置培養し、
実施例1に準じて分解性を評価した。その結果を表2に
示す。
[Example 2] Using the white-rot fungus (NK-1148) recognized in Example 1, solid media having different nitrogen concentrations were used according to the treatment conditions of Example 1 (nitrogen concentration was 0 g / l using ammonium sulfate, Static culture at 0.05 g / liter, 0.10 g / liter, and 0.15 g / liter except that the medium composition is the same as in Example 1),
The degradability was evaluated according to Example 1. The results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【実施例3】実施例1によって分解が認められた白色腐
朽菌(NK−1148)を用いて実施例1の処理条件に
準じ、炭素濃度の異なる固体培地(炭素濃度が0g/リ
ットル、0.2g/リットル、0.4g/リットル、
8.0g/リットルとなるようにグルコースをそれぞれ
添加し、硫酸アンモニウムを0.58g(N濃度0.1
5g/リットル)とした以外は実施例1と同様の培地組
成である)で静置培養し、実施例1に準じて分解性を評
価した。その結果を下記の表3に示す。
[Example 3] Using the white-rot fungus (NK-1148) whose decomposition was observed in Example 1, according to the treatment conditions of Example 1, solid media with different carbon concentrations (carbon concentration 0 g / liter, 0. 2 g / liter, 0.4 g / liter,
Glucose was added so that the concentration would be 8.0 g / liter, and 0.58 g of ammonium sulfate (N concentration: 0.1
5 g / liter) except that the medium composition was the same as in Example 1), and stationary culture was performed, and the degradability was evaluated according to Example 1. The results are shown in Table 3 below.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【実施例4】実施例1によって分解が認められた白色腐
朽菌(NK−1148)を用いて実施例1の処理条件に
準じ、窒素源及び炭素源を共に含まない固体培地(グル
コースを0gとした以外は実施例1と同様の培地組成で
ある)、および実施例1の培地から栄養源をすべて除い
た固体培地(寒天30g、水1リットル)の2種類の固
体培地で静置培養し、実施例1に準じて分解性を評価し
た。その結果を表4に示す。
[Example 4] Using a white-rot fungus (NK-1148) whose decomposition was observed in Example 1, according to the treatment conditions of Example 1, a solid medium containing neither a nitrogen source nor a carbon source (glucose: 0 g Other than the above, the medium composition is the same as that in Example 1), and static culture is performed in two types of solid medium (30 g of agar, 1 liter of water) obtained by removing all nutrients from the medium of Example 1, The degradability was evaluated according to Example 1. The results are shown in Table 4.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【実施例5】実施例2において最大の分解能力を示した
窒素濃度の固体培地(硫酸アンモニウム0g/リット
ル、他の条件は実施例1に準じる)で、白色腐朽菌(N
K−1148)を用い、ポリエチレン膜の親水化が分解
に及ぼす影響を調べた。試料として疎水性のポリエチレ
ン膜(旭化成製ハイポアPE−2100)およびこれを
界面活性剤処理(疎水性ポリエチレン膜を0.1%Tw
een80水溶液に24時間浸漬)して親水性を付与し
たポリエチレン膜を用いた。なお、分解性は実施例1に
準じてGPCで調べた。
Example 5 In a solid medium having a nitrogen concentration that showed the maximum decomposing ability in Example 2 (ammonium sulfate 0 g / liter, other conditions are the same as in Example 1), white rot fungus (N
K-1148) was used to examine the effect of hydrophilization of the polyethylene membrane on the decomposition. As a sample, a hydrophobic polyethylene film (Hypore PE-2100 manufactured by Asahi Kasei) and a surfactant treatment (hydrophobic polyethylene film of 0.1% Tw) were used.
A polyethylene film having a hydrophilic property was obtained by immersion in an een80 aqueous solution for 24 hours). The degradability was examined by GPC according to Example 1.

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【発明の効果】本発明によれば、ポリオレフィン系高分
子化合物を効率的に分解処理することができ、しかもそ
の際二次公害を引き起こすこともないので、本発明は、
現在その処理が世界的にも大きな社会問題となっている
プラスチック廃棄物の処理に大きな貢献をなすものであ
る。
EFFECTS OF THE INVENTION According to the present invention, a polyolefin-based polymer compound can be efficiently decomposed, and at the same time, it does not cause secondary pollution.
At present, the treatment makes a great contribution to the treatment of plastic waste, which is a major social problem in the world.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 (C12P 5/02 C12R 1:07) (C12P 5/02 C12R 1:38) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location (C12P 5/02 C12R 1:07) (C12P 5/02 C12R 1:38)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 木材腐朽性担子菌、その培養物、及び/
またはその処理物により、ポリオレフィン系高分子化合
物を分解することを特徴とするポリオレフィン系高分子
化合物の分解法。
1. A wood-destroying basidiomycete, a culture thereof, and / or
Alternatively, a polyolefin polymer compound is decomposed by a treated product thereof, which is a method for decomposing a polyolefin polymer compound.
【請求項2】 ポリオレフィン系高分子化合物を窒素及
び/または炭素を制限した培養条件下において、木材腐
朽性担子菌で処理することを特徴とするポリオレフィン
系高分子化合物の分解法。
2. A method for decomposing a polyolefin-based polymer, which comprises treating the polyolefin-based polymer with a wood-destroying basidiomycete under a culture condition in which nitrogen and / or carbon is restricted.
【請求項3】 木材腐朽性担子菌が白色腐朽性担子菌で
あることを特徴とする請求項1〜請求項2のいずれか1
項の分解法。
3. The wood-rotting basidiomycete is a white-rotting basidiomycete according to any one of claims 1 to 2.
Term decomposition method.
【請求項4】 ポリオレフィン系高分子化合物として、
親水化及び/または粉末化、細孔膜化したものを使用す
ることを特徴とする請求項1〜請求項3のいずれか1項
の分解法。
4. A polyolefin-based polymer compound,
The decomposition method according to any one of claims 1 to 3, wherein a hydrophilized and / or powdered material and a porous film is used.
JP31155091A 1991-10-31 1991-10-31 Decomposition of polyolefin polymer compound Pending JPH0670783A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP31155091A JPH0670783A (en) 1991-10-31 1991-10-31 Decomposition of polyolefin polymer compound
EP92922386A EP0596123A4 (en) 1991-10-31 1992-10-30 Biodegradable plastic.
PCT/JP1992/001411 WO1993009184A1 (en) 1991-10-31 1992-10-30 Biodegradable plastic
US08/078,296 US5378738A (en) 1991-10-31 1992-10-30 Biodegradable plastic
CA002099773A CA2099773A1 (en) 1991-10-31 1992-10-30 Biodegradable plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31155091A JPH0670783A (en) 1991-10-31 1991-10-31 Decomposition of polyolefin polymer compound

Publications (1)

Publication Number Publication Date
JPH0670783A true JPH0670783A (en) 1994-03-15

Family

ID=18018592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31155091A Pending JPH0670783A (en) 1991-10-31 1991-10-31 Decomposition of polyolefin polymer compound

Country Status (1)

Country Link
JP (1) JPH0670783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305205B1 (en) * 2006-03-16 2013-09-12 소니 주식회사 Data transfer device and data transfer system
CN117018530A (en) * 2023-06-06 2023-11-10 天津大学 Use of overexpression of genes encoding alkane hydroxylase and genes encoding yeast endogenous transport proteins in degradation of polyethylene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305205B1 (en) * 2006-03-16 2013-09-12 소니 주식회사 Data transfer device and data transfer system
CN117018530A (en) * 2023-06-06 2023-11-10 天津大学 Use of overexpression of genes encoding alkane hydroxylase and genes encoding yeast endogenous transport proteins in degradation of polyethylene

Similar Documents

Publication Publication Date Title
Bergbauer et al. Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes versicolor
Stahl et al. Biodegradation of superabsorbent polymers in soil
Blackall et al. Nocardia pinensis sp. nov., an actinomycete found in activated sludge foams in Australia
Moghimi et al. Assessing the biodegradation of polycyclic aromatic hydrocarbons and laccase production by new fungus Trematophoma sp. UTMC 5003
Da Re et al. Black liquor decolorization by selected white-rot fungi
Mollea et al. Natural rubber biodegradation by Alternaria alternata and Penicillium chrysogenum isolates
US5378738A (en) Biodegradable plastic
Rameshaiah et al. Applications of Ligninolytic Enzymes from a White-Rot Fungus Trametes versicolor.
JP3510629B2 (en) Microbial degradation of chemical pollutants
JPH0670783A (en) Decomposition of polyolefin polymer compound
EP0569555A1 (en) Solid state culture of white rot fungi
Ayu et al. Biological treatment of Naphthol Yellow S and batik effluent using aspergillus tamarii and aspergillus sclerotiorum
CN112608857B (en) Salt-tolerant bacillus pumilus SZG-NY-001 capable of repairing polluted water and application thereof
JPH05230273A (en) Method for decomposing polyamide
US5431820A (en) Method for treating liquid waste after pulp bleaching
EP0596123A1 (en) Biodegradable plastic
CA2078859C (en) Method of decomposing polyamide type high polymer compounds
US6485952B1 (en) Method of cultivating white-rot fungi on a sugar beet pulp substrate
Al-Shammari et al. Amoxicillin and Favipiravir Bio-Degradation by Aspergillus Flavus Fungus
Rastimeşina et al. Characterization of microbial consortia isolated from the surface of low density polyethylene films
CN112574909B (en) Salt-tolerant bacillus pumilus SZG-NY-002 capable of repairing polluted water body, composite microbial inoculum and application
Emmanuel et al. Effect of industrial tannery effluent on soil fungi and fungal protease/cellulase activity on modified rice husk/modified sawdust medium (MRHM/MSDM)
Ashour et al. Optimization of environmental parameters on the decolorization of Reactive Brilliant Blue dye by yeast isolates from textile effluent
Ranjini et al. Differential phenol tolerance and degradation by Lentinula edodes cultured in differing levels of carbon and nitrogen
Liu et al. Biodeterioration of polyethylene by Bacillus cereus and Rhodococcus equi isolated from soil