JPH0670248B2 - Manufacturing method of ultra-high-strength steel plate for welding with excellent homogeneity in the thickness direction - Google Patents
Manufacturing method of ultra-high-strength steel plate for welding with excellent homogeneity in the thickness directionInfo
- Publication number
- JPH0670248B2 JPH0670248B2 JP22759888A JP22759888A JPH0670248B2 JP H0670248 B2 JPH0670248 B2 JP H0670248B2 JP 22759888 A JP22759888 A JP 22759888A JP 22759888 A JP22759888 A JP 22759888A JP H0670248 B2 JPH0670248 B2 JP H0670248B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- reduction
- thickness direction
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 title claims description 5
- 238000003466 welding Methods 0.000 title claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 38
- 239000010959 steel Substances 0.000 claims description 38
- 238000005096 rolling process Methods 0.000 claims description 25
- 238000010791 quenching Methods 0.000 claims description 15
- 230000000171 quenching effect Effects 0.000 claims description 15
- 230000001186 cumulative effect Effects 0.000 claims description 11
- 238000005496 tempering Methods 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims 2
- 230000000694 effects Effects 0.000 description 18
- 238000000034 method Methods 0.000 description 11
- 229910001566 austenite Inorganic materials 0.000 description 10
- 239000002344 surface layer Substances 0.000 description 10
- 229910000734 martensite Inorganic materials 0.000 description 4
- 229910001563 bainite Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は直接焼入れ焼戻し処理による厚鋼板の製造方法
に係り、特に板厚方向の均質性と溶接性に優れ、かつ異
方性の少ない引張強さ100kgf/mm2級の超高張力高靭性鋼
板の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for manufacturing a thick steel sheet by direct quenching and tempering treatment, and particularly to a tensile steel sheet having excellent homogeneity and weldability in the sheet thickness direction and little anisotropy. The present invention relates to a method for producing an ultrahigh tensile strength and toughness steel sheet having a strength of 100 kgf / mm 2 .
<従来の技術> 近年、ペンストック,圧力容器や海洋構造物等の大型
化,高性能化に対応し、使用鋼板も引張強さ100kgf/mm2
級の超高張力を有する厚肉鋼板の適用が検討されるよう
になっている。<Prior art> In recent years, the penstock, pressure vessels, marine structures, etc. have become larger and have higher performance, and the steel sheets used have a tensile strength of 100 kgf / mm 2
The application of thick-walled steel sheets having a super high tensile strength has been studied.
これまで、この種の超高張力鋼の製造にあたっては熱間
圧延後の再加熱,焼入れ焼戻し処理が適用されており、
厚鋼板の中心部に強度・靭性を満足させるため添加合金
元素量を多くせざるを得なかった。そのため、焼入れ時
の冷却速度が早い表層部近傍では過剰焼入れとなり靭性
がが低下し、板厚方向の不均質が問題となっていた。Until now, reheating after hot rolling and quenching and tempering have been applied in the production of this type of ultra-high strength steel.
In order to satisfy the strength and toughness of the central part of the thick steel plate, it was necessary to increase the amount of additive alloy elements. Therefore, in the vicinity of the surface layer portion where the cooling rate at the time of quenching is high, excessive quenching occurs and the toughness deteriorates, causing non-uniformity in the plate thickness direction.
この問題を解決すべく、再加熱焼入れ処理を2回以上繰
り返したり、Nb添加を行ってオーステナイト粒を細粒化
させる方法などがとられていた。In order to solve this problem, reheating and quenching treatment is repeated twice or more, or Nb is added to make austenite grains finer.
しかし近年、熱間圧延後室温まで空冷することなく直ち
に焼入れを行い、その後焼戻し処理を施す直接焼入れ焼
戻し処理法が開発され、この方法を利用した板厚方向の
均質な鋼板製造法について、いくつか提案がなされてい
る。However, in recent years, a direct quenching and tempering method has been developed in which quenching is performed immediately after hot rolling without air cooling to room temperature, and then tempering is performed, and there are several methods for producing a homogeneous steel sheet in the thickness direction using this method. Proposals have been made.
例えば、特開昭61-56268号公報においては溶体処理後の
スラブを用い、熱間圧延時の930〜800℃の低温域で累積
圧下率40%以上の熱間圧延を施し、続いて直接焼入れ焼
戻し処理し、表層部近傍を焼戻しマルテンサイト組織、
中心部を焼戻しマルテンサイトと下部ベイナイト混合組
織とした鋼板とする方法が開示されている。また、特開
昭62-196326号公報においてはTi添加によりBの焼入性
向上効果を確保し、さらに900℃以下の低温域(オース
テナイト粒の未再結晶領域)で軽圧下を加えることによ
り表層部近傍のみに加工歪を蓄積し、焼入性を中心部と
同程度に低下させる方法が開示されている。For example, in JP-A-61-56268, a slab after solution treatment is used, hot rolling with a cumulative reduction of 40% or more is performed in a low temperature range of 930 to 800 ° C during hot rolling, and then direct quenching. Tempered, tempered martensite structure near the surface layer,
A method is disclosed in which a steel sheet having a mixed structure of tempered martensite and lower bainite in the central portion is used. Further, in JP-A-62-196326, the addition of Ti secures the effect of improving the hardenability of B, and a light reduction is applied in the low temperature region of 900 ° C. or lower (the unrecrystallized region of austenite grains) to form the surface layer. A method is disclosed in which work strain is accumulated only in the vicinity of the portion to reduce the hardenability to the same extent as in the central portion.
しかし、前者においては溶体化処理が必須でありコスト
的に不利であり、また両者とも低温減圧延のみに着目し
ているため、このうち前者では鋼板の異方性が大きくな
り、また後者では安定製造と生産性に不利になることを
予想される。さらに、溶接部の軟化や衝撃特性について
の配慮もなく完成された技術とは言い難い。However, the former requires solution treatment, which is disadvantageous in terms of cost, and both focus only on low-temperature decompression rolling.Therefore, the anisotropy of the steel sheet is large in the former and stable in the latter. Expected to penalize manufacturing and productivity. Furthermore, it cannot be said that the technology was completed without consideration of softening and impact characteristics of the welded part.
<発明が解決しようとする課題> 本発明の目的は、直接焼入れ焼戻し処理による経済的な
鋼板製造に当たり、高強度でしかも板厚方向の均質性が
優れ、かつ異方性が少ないことに加えて溶接部の軟化が
少なく高靭性を具備した鋼板の製造方法を提供すること
にある。<Problems to be Solved by the Invention> An object of the present invention is to produce an economical steel sheet by direct quenching and tempering treatment, in addition to having high strength, excellent homogeneity in the sheet thickness direction, and little anisotropy. It is an object of the present invention to provide a method of manufacturing a steel sheet having high toughness with less softening of a welded portion.
<課題を解決するための手段> 本発明は、C:0.05〜0.16wt%,Si:0.05〜0.20wt%,Mn:0.
60〜1.50wt%,Cr:0.30〜0.80wt%,Mo:0.20〜0.80wt%,N
i:0.80〜3.00wt%,V:0.030〜0.100wt%,Al:0.010〜0.08
0wt%,B:0.0005〜0.0025wt%,N:0.0040wt%以下を含有
し、さらに必要に応じてCu:1.0wt%以下,Nb:0.050wt%
以下,Ca:0.0100wt%以下の1種又は2種以上を含み、下
記の式で定義される炭素当量Ceq.が0.52〜0.60%であ
り、残部Fe及び不可避的不純物からなる鋼を、1050〜12
00℃に加熱・均熱後、1000〜900℃の温度範囲で類積圧
下率が50%以上の熱間圧延を施し、引き続き900℃未満8
10℃以上の温度範囲にて、1パス当たりの圧下率が10%
未満の軽圧下圧延により累積圧下率を10〜30%とした
後、直ちに焼入れし、その後Ac1点以下の温度で焼戻す
ことを特徴とする板厚方向の均質性に優れた溶接用超高
張力鋼板の製造方法である。<Means for Solving the Problems> In the present invention, C: 0.05 to 0.16 wt%, Si: 0.05 to 0.20 wt%, Mn: 0.
60 to 1.50 wt%, Cr: 0.30 to 0.80 wt%, Mo: 0.20 to 0.80 wt%, N
i: 0.80 to 3.00 wt%, V: 0.030 to 0.100 wt%, Al: 0.010 to 0.08
0 wt%, B: 0.0005 to 0.0025 wt%, N: 0.0040 wt% or less, and if necessary Cu: 1.0 wt% or less, Nb: 0.050 wt%
Below, Ca: 0.0100 wt% or less of one or more, the carbon equivalent Ceq. Defined by the following formula is 0.52-0.60%, the balance Fe and unavoidable impurities steel 1050- 12
After heating and soaking to 00 ° C, hot rolling with a volume reduction of 50% or more is performed in the temperature range of 1000 to 900 ° C.
Rolling rate per pass is 10% in the temperature range of 10 ℃ or more
Ultra-high for welding with excellent homogeneity in the plate thickness direction, characterized by immediately quenching after tempering at a cumulative rolling reduction of 10 to 30% by light reduction rolling of less than 1 and then tempering at a temperature of 1 point or less of Ac. It is a manufacturing method of a tension steel plate.
Ceq.=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
(%) <作用> 以下に本発明における鋼組成および圧延条件の限定理由
を述べる。Ceq. = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
(%) <Operation> The reasons for limiting the steel composition and rolling conditions in the present invention will be described below.
Cは、所望の強度を得るため0.08wt%以上必要である
が、0.16wt%を超えると母材および溶接部の靭性が劣化
するため0.08〜0.16wt%の範囲とする。C is required to be 0.08 wt% or more in order to obtain the desired strength, but if it exceeds 0.16 wt%, the toughness of the base material and the welded portion deteriorates, so the range is 0.08 to 0.16 wt%.
Siは、製鋼時の脱酸剤として、また固溶強化による強度
確保のため必要であるが、第1図に示すように溶接部の
ボンド靭性に及ぼすSiの影響は顕著であり、溶接部の高
靭性を確保するためその添加量範囲を0.05〜0.20wt%と
する。Si is necessary as a deoxidizing agent during steelmaking and for securing strength by solid solution strengthening, but as shown in Fig. 1, the effect of Si on the bond toughness of the weld is significant, and In order to secure high toughness, the addition amount range is 0.05 to 0.20 wt%.
なお、第1図は0.11wt%C−0.90wt%Mn−1.50wt%Ni−
0.50wt%Cr−0.50wt%Mo−0.065wt%V−B系でSi添加
量を変化させ、サブマージドアーク溶接部(入熱量:50k
J/cm)の衝撃特性を調べたものである。Fig. 1 shows 0.11wt% C-0.90wt% Mn-1.50wt% Ni-
0.50wt% Cr-0.50wt% Mo-0.065wt% V-B system with different amount of Si added, submerged arc weld (heat input: 50k
J / cm) impact characteristics.
Mnは、焼入性を向上させ強度を確保するために0.60wt%
以上必要であるが、1.50wt%を超えると鋼板及び溶接部
の靭性が劣化するため0.60〜1.50wt%の範囲とする。Mn is 0.60wt% to improve hardenability and ensure strength.
The above is required, but if it exceeds 1.50 wt%, the toughness of the steel plate and welds deteriorates, so the range is 0.60 to 1.50 wt%.
Crは、焼入性を向上させ強度上昇に効果があり0.40wt%
以上必要であるが、0.80wt%を超えると溶接性の低下お
よびSR割れ感受性が高まるため0.40〜0.80wt%の範囲と
する。Cr has the effect of improving hardenability and strength, and is 0.40 wt%
The above is required, but if it exceeds 0.80 wt%, the weldability decreases and SR crack susceptibility increases, so the range is 0.40 to 0.80 wt%.
Moは、焼入性を向上したまま焼戻し軟化抵抗や耐SR割れ
性向上に効果があり0.30wt%以上必要であるが、0.80wt
%を超えると溶接性や靭性が劣化し、また経済的にも不
利となるため0.30〜0.80wt%の範囲とする。Mo has the effect of improving temper softening resistance and SR crack resistance while improving hardenability, and 0.30 wt% or more is required, but 0.80 wt
%, The weldability and toughness deteriorate, and it becomes economically disadvantageous. Therefore, the range is 0.30 to 0.80 wt%.
Vは、焼入性を向上しかつ焼戻し軟化抵抗を増大させる
元素であり強度確保の点から0.030wt%以上必要である
が、0.100wt%を超えると溶接部の靭性が劣化するため
0.030〜0.100wt%の範囲とする。V is an element that improves hardenability and increases temper softening resistance and is required to be 0.030 wt% or more from the viewpoint of securing strength, but if it exceeds 0.100 wt%, the toughness of the welded portion deteriorates.
The range is 0.030 to 0.100 wt%.
Niは、鋼板および溶接部の強度,靭性の向上に効果があ
り、0.60wt%以上必要であるが、3.00wt%を超えるとそ
の効果が飽和し、また経済的にも不利となることから0.
60〜3.00wt%の範囲とする。Ni is effective in improving the strength and toughness of steel plates and welds, and is required to be 0.60 wt% or more. However, if it exceeds 3.00 wt%, the effect saturates and it is economically disadvantageous. .
The range is 60 to 3.00 wt%.
Alは、脱酸作用があり0.010wt%以上必要であるが、0.0
80wt%を超えると鋼板および溶接部の靭性が劣化するた
め、0.010〜0.080wt%の範囲とする。Al has a deoxidizing effect and is required to be 0.010 wt% or more.
If it exceeds 80 wt%, the toughness of the steel plate and welded part deteriorates, so the range is 0.010 to 0.080 wt%.
Bは、微量で焼入性を向上させ強度,靭性の確保に有効
であり0.0005wt%以上必要であるが、0.0025wt%を超え
ると鋼板および溶接部の靭性を劣化させるため0.0005〜
0.0025wt%の範囲とする。A small amount of B improves the hardenability and is effective in securing the strength and toughness, and is required to be 0.0005 wt% or more, but if it exceeds 0.0025 wt%, the toughness of the steel plate and the welded portion is deteriorated, so 0.0005-
The range is 0.0025wt%.
Nは、圧延中にBと結合しBNを析出してBの焼入性向上
効果を低減させるので0.0040wt%以下にする必要があ
る。N combines with B during rolling to precipitate BN and reduces the effect of improving the hardenability of B, so N must be 0.0040 wt% or less.
さらに上記成分に加えて鋼板および溶接部の軟化防止お
よび靭性の改善を目的とし、以下の成分を1種又は2種
以上添加できる。Further, in addition to the above components, one or more of the following components may be added for the purpose of preventing softening of the steel plate and the weld and improving toughness.
Cuは、鋼板の強度上昇に効果があるが、多過ぎると熱間
加工性および溶接性が低下するためその上限を1.0wt%
とする。Cu has the effect of increasing the strength of the steel sheet, but if it is too much, the hot workability and weldability deteriorate, so the upper limit is 1.0 wt%.
And
Nbは、強度を上昇しまたオーステナイト粒を微細にして
靭性改善に効果があるが、多過ぎると溶接部の靭性が著
しく劣化するためその上限を0.050wt%とする。Nb has the effect of increasing the strength and making the austenite grains finer and improving the toughness, but if it is too large, the toughness of the welded portion is significantly deteriorated, so its upper limit is made 0.050 wt%.
Caは、硫化物の形態制御(球状化)効果をもち異方性の
改善に効果をもつが、多過ぎると清浄度が低下し靭性は
劣化するためその上限を0.0100wt%とする。Ca has the effect of controlling the morphology (spheroidizing) of sulfides and has the effect of improving anisotropy, but if it is too large, the cleanliness decreases and the toughness deteriorates, so its upper limit is made 0.0100 wt%.
さらに、溶接部の軟化防止および靭性確保のため、Ceq.
=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14(%)で
表される炭素当量Ceq.を0.52〜0.60%の範囲になるよう
に、これら各種添加元素を量的に勘案しなければならな
い。これは0.52%未満では溶接部の軟化が大きいため継
手強度が不足し、また0.60%を超えると溶接部の硬さが
上昇し溶接割れ感受性を高めるためである。In addition, Ceq.
= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (%) The carbon equivalent Ceq. Should be quantitatively considered so that the carbon equivalent Ceq. Is in the range of 0.52 to 0.60%. . This is because if it is less than 0.52%, the joint strength is insufficient because the softening of the weld is large, and if it exceeds 0.60%, the hardness of the weld increases and the weld crack susceptibility is increased.
次に加熱、圧延条件の限定理由について述べる。Next, the reasons for limiting the heating and rolling conditions will be described.
上記の組成鋼を連続鋳造法あるいは造塊法でスラブ鋼塊
とし、1050〜1200℃に加熱,均熱後、熱間圧延を行う。
ここで加速温度の限定理由は以下の通りである。すなわ
ち、1050℃未満では後述する熱間圧延が困難となり、ま
た1200℃を超えるとオーステナイト粒の成長,粗大化が
著しく、その解消(粒の微細化)のためには圧延パス数
の増加が必要となり、生産性が阻害され好ましくない。The above composition steel is made into a slab steel ingot by a continuous casting method or an ingot making method, heated to 1050 to 1200 ° C, soaked, and then hot rolled.
Here, the reason for limiting the acceleration temperature is as follows. That is, if the temperature is lower than 1050 ° C, the hot rolling described later becomes difficult, and if the temperature exceeds 1200 ° C, the growth and coarsening of austenite grains are remarkable, and it is necessary to increase the number of rolling passes to eliminate them (fine grain). And productivity is hindered, which is not preferable.
次に、1000〜900℃の温度範囲での高温再結晶域での圧
延は、圧延−再結晶の繰り返しによるオーステナイト粒
の等方的微細化に非常に有効である。しかし、累積圧下
率が50%未満ではその効果が十分でなく、その後の圧延
で混粒,伸展オーステナイト粒となり鋼板の異方性が生
じやすくなるため、50%以上の累積圧下率が必要であ
る。第2図は0.11wt%C-0.90wt%Mn-0.12wt%Si-1.50wt
%Ni-0.50wt%Cr-0.50wt%Mo-0.065wt%V−B系の鋼を
用い、1000〜900℃の温度域での圧下量のみを変化させ
た場合のL,C方向の特性の相違について調べた結果であ
る。図から、累積圧下率を50%以上とすることにより、
異方性(L,C方向による材質変化)は軽減されることが
わかる。Next, rolling in the high temperature recrystallization region in the temperature range of 1000 to 900 ° C. is very effective for isotropic refining of austenite grains by repeating rolling-recrystallization. However, if the cumulative rolling reduction is less than 50%, the effect is not sufficient, and subsequent rolling causes mixed grains and expanded austenite grains to easily cause anisotropy of the steel sheet, so a cumulative rolling reduction of 50% or more is required. . Fig.2 shows 0.11wt% C-0.90wt% Mn-0.12wt% Si-1.50wt
% Ni-0.50wt% Cr-0.50wt% Mo-0.065wt% Using V-B steel, the characteristics in the L and C directions when only the amount of reduction in the temperature range of 1000 to 900 ° C is changed It is the result of examining the difference. From the figure, by setting the cumulative reduction rate to 50% or more,
It can be seen that anisotropy (material change due to L and C directions) is reduced.
さらに、900℃未満810℃以上の低温域における圧延条件
の限定理由は以下の通りである。すなわち、1パスあた
りの圧下率を10%以下とした軽圧下圧延で、中心部に比
べ表層部近傍がより一層微細に展伸されたオーステナイ
ト粒となり、そのため表層部の焼入性は抑制される。し
かし、この時の累積圧下率が10%未満では効果は少な
く、また30%を超えると変形帯がはいりすぎて焼入性が
低下しすぎ、Bによる焼入性効果が期待できなくなり、
中心部の強度靭性が不良となり異方性も顕著となってく
るため累積圧下率は10〜30%の範囲とすることが必要で
ある。Further, the reasons for limiting the rolling conditions in the low temperature range of less than 900 ° C and 810 ° C or more are as follows. That is, in the light reduction rolling with a reduction rate of 10% or less per pass, the austenite grains in the vicinity of the surface layer are more finely expanded than in the central portion, so that the hardenability of the surface layer is suppressed. . However, if the cumulative reduction ratio at this time is less than 10%, the effect is small, and if it exceeds 30%, the deformation zone is excessive and the hardenability deteriorates too much, and the hardenability effect due to B cannot be expected.
Since the strength and toughness of the central part becomes poor and the anisotropy becomes remarkable, the cumulative rolling reduction must be within the range of 10 to 30%.
さらに、この圧延効果をより有効に発揮する温度域は90
0℃未満810℃以上である。すなわち、900℃以上の高温
では再結晶領域であるためオーステナイト粒の微細展伸
化が期待できず、かつ焼入れ過剰となる。また、810℃
未満では焼入性が低下しすぎ表層部近傍及び中心部とも
所望の強度,靭性が確保できなくなってしまう。Furthermore, the temperature range where this rolling effect is more effectively exhibited is 90.
Below 0 ℃ and above 810 ℃. That is, at a high temperature of 900 ° C. or higher, since it is in the recrystallization region, fine expansion of austenite grains cannot be expected and quenching becomes excessive. Also, 810 ℃
If the amount is less than the above value, the hardenability becomes too low and desired strength and toughness cannot be secured in the vicinity of the surface layer and the center.
以上の熱間圧延後、直ちに焼入れを行い所定の性能を具
備させる。なお、前述の圧延条件,焼入れ処理により鋼
板のミクロ組織は表層部近傍,中心部ともマルテンサイ
ト+下部ベイナイト混合組織であり、オーステナイト粒
形状は中心部が微細,展伸粒となり、表層部近傍は中心
部のそれより一層展伸されかつ変形帯も多く導入された
ものとなる。Immediately after the above hot rolling, quenching is performed so as to have predetermined performance. Note that the microstructure of the steel sheet is a martensite + lower bainite mixed microstructure in the vicinity of the surface layer portion and the center portion due to the above-described rolling conditions and quenching treatment, and the austenite grain shape is fine in the center portion and expanded grain, and the vicinity of the surface layer portion It is more expanded than that of the central part and many deformation zones are introduced.
その後、板厚方向のより一層の均質化と高靭性化を主目
的としAc1点以下の焼戻し処理を行う必要がある。After that, it is necessary to carry out a tempering treatment at a point of Ac 1 or less with the main purpose of further homogenizing and toughening in the plate thickness direction.
以上の本発明の骨子を換言すれば以下の如くである。す
なわち溶接継手部の軟化防止と高靭性の確保に留意した
成分系を用い、板厚方向の各位置でマルテンサイト+下
部ベイナイト混合組織となるよう圧延条件を設定する。
すなわち、高温域での圧下率を十分確保し微細整粒オー
ステナイト粒を得、さらに低温域で軽圧下圧延を施し、
表層部近傍の焼入性を抑制し板厚方向の均質性を確保す
る。In other words, the gist of the present invention is as follows. That is, the rolling conditions are set so that a mixed structure of martensite and lower bainite is formed at each position in the plate thickness direction by using a component system that takes into consideration softening prevention of the welded joint and ensuring high toughness.
That is, to obtain a finely sized austenite grains with a sufficient reduction ratio in the high temperature region, and further subject to light reduction rolling in the low temperature region,
Suppresses hardenability near the surface layer and ensures homogeneity in the plate thickness direction.
本発明の鋼は転炉あるいは電気炉で溶製し、連続鋳造法
あるいは造塊法でスラブ又は鋼塊としたのち分塊圧延あ
るいはそのまま厚板圧延により鋼板とすることができ
る。The steel of the present invention can be melted in a converter or an electric furnace, made into a slab or a steel ingot by a continuous casting method or an ingot making method, and then subjected to slab rolling or thick plate rolling as it is to obtain a steel sheet.
<実施例> 表1に示す各組成の5トン鋼塊を造塊法で溶製し、表2
に示す各製造条件で50〜75mm厚鋼板を製造した後、その
機械的性質を調査した。<Example> A 5 ton steel ingot of each composition shown in Table 1 was melted by the ingot making method, and Table 2
After manufacturing a steel plate with a thickness of 50 to 75 mm under the respective manufacturing conditions shown in, the mechanical properties were investigated.
得られた結果を表3に示す。表3から本発明範囲の圧延
条件の適用で異方性の少ない均質性の優れた超高張力鋼
板が安定して製造可能であることがわかる。しかし、添
加合金量が少ない場合(A鋼)は強度が不足し、また多
い場合(E綱)は表層下の靭性確保が困難となることが
わかる。加えて表4に示すように溶接継手部の硬さ測定
結果からA綱は溶接部の軟化、またE綱は溶接部の硬さ
が高く溶接割れが懸念されるのに対し、本発明成分綱B,
C,Dは溶接部の最高硬さもHT−80鋼並みであり、十分な
溶接性を有していることがわかる。The results obtained are shown in Table 3. It can be seen from Table 3 that by applying rolling conditions within the scope of the present invention, an ultra-high-strength steel sheet with little anisotropy and excellent homogeneity can be stably produced. However, it is understood that when the added alloy amount is small (A steel), the strength is insufficient, and when it is large (E class), it is difficult to secure the toughness under the surface layer. In addition, as shown in Table 4, from the results of hardness measurement of the welded joint, the A class is softened at the welded part, and the E class is concerned that the hardness of the welded part is high and weld cracking may occur. B,
The maximum hardness of welded parts of C and D is similar to HT-80 steel, and it is clear that they have sufficient weldability.
<発明の効果> 本発明によりペンストック,圧力容器や海洋構造物用鋼
として、HT−80キロ鋼と同等の溶接性を有し板厚方向の
均質性に優れた超高張力鋼板が安価に提供できることに
なりその意義は大きい。 <Effects of the Invention> According to the present invention, as a penstock, a pressure vessel, and a steel for offshore structures, an ultra-high-strength steel sheet that has the same weldability as HT-80 kg steel and is excellent in the homogeneity in the plate thickness direction is inexpensive. It can be provided, and its significance is great.
【図面の簡単な説明】 第1図は溶接部の衝撃特性に及ぼすSi添加量の影響を示
すグラフ、第2図は鋼材の異方性に及ぼす高温域での圧
下量の影響を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the effect of the amount of Si added on the impact properties of welds, and FIG. 2 is a graph showing the effect of the amount of reduction at high temperatures on the anisotropy of steel materials. is there.
Claims (2)
0.60〜1.50wt%,Cr:0.30〜0.80wt%,Mo:0.20〜0.80wt
%,Ni:0.80〜3.00wt%,V:0.030〜0.100wt%,Al:0.010〜
0.080wt%,B:0.0005〜0.0025wt%,N:0.0040wt%以下を
含有し、下記の式で定義される炭素当量Ceq.が0.52〜0.
60%であり、残部Fe及び不可避的不純物からなる鋼を、
1050〜1200℃に加熱・均熱後、1000〜900℃の温度範囲
で累積圧下率が50%以上の熱間圧延を施し、引き続き90
0℃未満810℃以上の温度範囲にて、1パス当たりの圧下
率が10%未満の軽圧下圧延により累積圧下率を10〜30%
とした後、直ちに焼入れし、その後Ac1点以下の温度で
焼戻すことを特徴とする板厚方向の均質性に優れた溶接
用超高張力鋼板の製造方法。 Ceq.=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
(%)1. C: 0.05 to 0.16 wt%, Si: 0.05 to 0.20 wt%, Mn:
0.60 to 1.50 wt%, Cr: 0.30 to 0.80 wt%, Mo: 0.20 to 0.80 wt
%, Ni: 0.80 to 3.00 wt%, V: 0.030 to 0.100 wt%, Al: 0.010 to
0.080 wt%, B: 0.0005 to 0.0025 wt%, N: contains 0.0040 wt% or less, the carbon equivalent Ceq. Defined by the following formula is 0.52 to 0.
Steel containing 60% and balance Fe and unavoidable impurities,
After heating and soaking to 1050 to 1200 ℃, hot rolling with cumulative rolling reduction of 50% or more is performed in the temperature range of 1000 to 900 ℃, and then 90
Cumulative reduction of 10 to 30% by light reduction rolling with a reduction of less than 10% per pass in the temperature range of less than 0 ℃ and 810 ℃ or more.
After that, quenching is performed immediately, and then tempering is performed at a temperature of 1 point or less of Ac, and a method for producing an ultra-high-strength steel plate for welding having excellent homogeneity in the plate thickness direction. Ceq. = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
(%)
0.60〜1.50wt%,Cr:0.30〜0.80wt%,Mo:0.20〜0.80wt
%,Ni:0.80〜3.00wt%,V:0.030〜0.100wt%,Al:0.010〜
0.080wt%,B:0.0005〜0.0025wt%,N:0.0040wt%以下を
含有し、さらにCu:1.0wt%以下,Nb:0.050wt%以下,Ca:
0.0100wt%以下の1種又は2種以上を含み、下記の式で
定義される炭素当量Ceq.が0.52〜0.60%であり、残部Fe
及び不可避的不純物からなる鋼を、1050〜1200℃に加熱
・均熱後、1000〜900℃の温度範囲で累積圧下率が50%
以上の熱間圧延を施し、引き続き900℃未満810℃以上の
温度範囲にて、1パス当たりの圧下率が10%未満の軽圧
下圧延により累積圧下率を10〜30%とした後、直ちに焼
入れし、その後Ac1点以下の温度で焼戻すことを特徴と
する板厚方向の均質性に優れた溶接用超高張力鋼板の製
造方法。 Ceq.=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
(%)2. C: 0.05 to 0.16 wt%, Si: 0.05 to 0.20 wt%, Mn:
0.60 to 1.50 wt%, Cr: 0.30 to 0.80 wt%, Mo: 0.20 to 0.80 wt
%, Ni: 0.80 to 3.00 wt%, V: 0.030 to 0.100 wt%, Al: 0.010 to
0.080 wt%, B: 0.0005 to 0.0025 wt%, N: 0.0040 wt% or less, further Cu: 1.0 wt% or less, Nb: 0.050 wt% or less, Ca:
It contains one or more of 0.0100 wt% or less, the carbon equivalent Ceq. Defined by the following formula is 0.52 to 0.60%, and the balance Fe
And steel made of unavoidable impurities is heated to 1050 to 1200 ℃ and soaked, and then the cumulative rolling reduction is 50% in the temperature range of 1000 to 900 ℃.
After the above hot rolling, and subsequently in the temperature range of less than 900 ° C and 810 ° C or more, the reduction ratio per pass is less than 10% by light reduction rolling to make the cumulative reduction ratio 10 to 30%, and then immediately quenching. And then tempering at a temperature not higher than the Ac 1 point, which is a method for producing a super-high-strength steel plate for welding having excellent homogeneity in the plate thickness direction. Ceq. = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
(%)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22759888A JPH0670248B2 (en) | 1988-09-13 | 1988-09-13 | Manufacturing method of ultra-high-strength steel plate for welding with excellent homogeneity in the thickness direction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22759888A JPH0670248B2 (en) | 1988-09-13 | 1988-09-13 | Manufacturing method of ultra-high-strength steel plate for welding with excellent homogeneity in the thickness direction |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0277521A JPH0277521A (en) | 1990-03-16 |
JPH0670248B2 true JPH0670248B2 (en) | 1994-09-07 |
Family
ID=16863441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22759888A Expired - Fee Related JPH0670248B2 (en) | 1988-09-13 | 1988-09-13 | Manufacturing method of ultra-high-strength steel plate for welding with excellent homogeneity in the thickness direction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0670248B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006111918A (en) * | 2004-10-14 | 2006-04-27 | Jfe Steel Kk | Manufacturing method of extra-thick high-tensile steel sheet with excellent uniformity in the thickness direction |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0794687B2 (en) * | 1989-03-29 | 1995-10-11 | 新日本製鐵株式会社 | Method for producing HT80 steel excellent in high weldability, stress corrosion cracking resistance and low temperature toughness |
JP2633743B2 (en) * | 1991-05-09 | 1997-07-23 | 新日本製鐵株式会社 | Manufacturing method of thick steel plate with fine grain size |
ATE284977T1 (en) * | 1999-05-08 | 2005-01-15 | Thyssenkrupp Stahl Ag | USE OF A STEEL FOR PRODUCING ARMOR SHEET |
US10036079B2 (en) | 2013-03-12 | 2018-07-31 | Jfe Steel Corporation | Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet |
EP2975148B1 (en) * | 2013-03-12 | 2019-02-27 | JFE Steel Corporation | Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet |
-
1988
- 1988-09-13 JP JP22759888A patent/JPH0670248B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006111918A (en) * | 2004-10-14 | 2006-04-27 | Jfe Steel Kk | Manufacturing method of extra-thick high-tensile steel sheet with excellent uniformity in the thickness direction |
JP4715156B2 (en) * | 2004-10-14 | 2011-07-06 | Jfeスチール株式会社 | Manufacturing method of extra-thick high-tensile steel sheet with excellent uniformity in the thickness direction |
Also Published As
Publication number | Publication date |
---|---|
JPH0277521A (en) | 1990-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10509768A (en) | High strength secondary hardened steel with excellent toughness and weldability | |
JP2876968B2 (en) | High-strength steel sheet having high ductility and method for producing the same | |
JPH07278656A (en) | Method of manufacturing low yield ratio high strength steel | |
JPH0615689B2 (en) | Method of manufacturing low yield ratio high strength steel | |
KR20230041060A (en) | Thick steel plate and its manufacturing method | |
JPH0670248B2 (en) | Manufacturing method of ultra-high-strength steel plate for welding with excellent homogeneity in the thickness direction | |
JPH0781164B2 (en) | Method for manufacturing high-strength and high-toughness steel sheet | |
KR102372546B1 (en) | Ultra high-strength steel sheet having excellent elongation and method of manufacturing the same | |
JPH0693332A (en) | Manufacturing method of high strength and high toughness fine bainitic steel | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
JP2692523B2 (en) | Method for producing 780 MPa class high strength steel with excellent weldability and low temperature toughness | |
JP2706159B2 (en) | Method for producing low yield ratio high strength steel with good weldability | |
JPS63183123A (en) | Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating | |
JP2828755B2 (en) | Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability | |
JPH059570A (en) | Manufacturing method of high weldability and high strength steel | |
JP2652538B2 (en) | Method for producing high-strength steel with excellent weldability and low-temperature toughness | |
JPH0717947B2 (en) | Low yield ratio high strength steel sheet manufacturing method | |
JPH06264185A (en) | Hot-rolled steel sheet with excellent fatigue properties and method for producing the same | |
JPS63179019A (en) | Manufacturing method of low yield ratio high tensile strength steel plate | |
JPH01159316A (en) | Production of low yielding ratio high tensile steel having softened surface layer | |
JPH05163527A (en) | Method for producing high-strength steel with excellent weldability | |
JPS62149845A (en) | Cu precipitation type steel products having excellent toughness of welded zone and its production | |
JPH0967620A (en) | Manufacturing method of tempered high-strength steel sheet excellent in brittle crack propagation stopping property | |
JP3208495B2 (en) | Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability | |
JP2708540B2 (en) | Method for producing high-strength steel sheet mainly composed of ferrite structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |