JPH0669524A - Photovoltaic device - Google Patents
Photovoltaic deviceInfo
- Publication number
- JPH0669524A JPH0669524A JP4221683A JP22168392A JPH0669524A JP H0669524 A JPH0669524 A JP H0669524A JP 4221683 A JP4221683 A JP 4221683A JP 22168392 A JP22168392 A JP 22168392A JP H0669524 A JPH0669524 A JP H0669524A
- Authority
- JP
- Japan
- Prior art keywords
- conductive powder
- melting point
- conductive
- electrode
- gold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 claims abstract description 24
- 230000008018 melting Effects 0.000 claims abstract description 20
- 238000002844 melting Methods 0.000 claims abstract description 20
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052737 gold Inorganic materials 0.000 claims abstract description 19
- 239000010931 gold Substances 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000004065 semiconductor Substances 0.000 claims abstract description 12
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 7
- 239000000956 alloy Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 19
- 239000011230 binding agent Substances 0.000 claims description 2
- 238000010248 power generation Methods 0.000 claims description 2
- 229910000679 solder Inorganic materials 0.000 description 25
- 239000002245 particle Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 12
- 230000004907 flux Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002923 metal particle Substances 0.000 description 7
- 239000006071 cream Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光発電素子に係わり、
特に高い光電変換効率を有する光発電素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device,
Particularly, it relates to a photovoltaic device having a high photoelectric conversion efficiency.
【0002】[0002]
【従来の技術】従来より、光発電素子の集電電極とし
て、図4に示すものが用いられいる。図4の集電電極
は、ポリエステル系、ポリイミド系、エポキシ系、フェ
ノール系等の熱硬化性樹脂もしくはガラスフリット等
に、直径1〜10μm程度の銀の微粒子を単分散させ、
更に粘性を整えるためにセルソルブ等の有機溶剤を混ぜ
た導電性ペースト材料44をステンシルスクリーンを用
いて光発電素子の電極形成面41に印刷し、その後加熱
硬化させたものである。この方法のメリットは、極めて
大きな面積をもつ材料に対して高いタクトと、高い材料
収率で電極形成を行える点にあり、現在光発電素子にお
ける最大の問題である製造コストの低減に大きく寄与し
ている。2. Description of the Related Art Conventionally, the one shown in FIG. 4 has been used as a collector electrode of a photovoltaic element. The collector electrode shown in FIG. 4 is obtained by monodispersing silver fine particles having a diameter of about 1 to 10 μm in a thermosetting resin such as polyester, polyimide, epoxy, phenol or glass frit.
Further, a conductive paste material 44 mixed with an organic solvent such as cellosolve is printed on the electrode forming surface 41 of the photovoltaic element using a stencil screen to further adjust the viscosity, and then cured by heating. The merit of this method is that it can form an electrode with a high tact on a material having an extremely large area and a high material yield, and it greatly contributes to the reduction of manufacturing cost, which is currently the biggest problem in photovoltaic devices. ing.
【0003】しかしながら、近年の光発電素子の変換効
率の向上や大面積化により、より損失の少ない集電電極
が求められるようになり、従来の導電性ペーストだけで
構成する集電電極ではこれらのニーズに答えられなくな
ってきている。例えば、前記した熱硬化性樹脂を用いた
導電性ペーストでは、3〜5×10-5の体積抵抗率とな
り、更に電極により生じる遮光ロスを低減するため微細
な印刷を行うと、それに応じて印刷むらの増大や膜厚の
減少が発生し、集電電極の抵抗による電流ロスが大幅に
増大するという問題がある。また、これらの導電性ペー
ストは硬化のために長時間加熱する必要があり、重ね塗
り等に厚盛りする事は実際上困難である。However, due to the recent improvement in conversion efficiency and increase in area of photovoltaic elements, a collector electrode with less loss has been demanded, and in the collector electrode composed only of a conventional conductive paste, these are required. I can no longer answer my needs. For example, the conductive paste using the thermosetting resin has a volume resistivity of 3 to 5 × 10 −5 , and if fine printing is performed to reduce light-shielding loss caused by the electrode, printing is performed accordingly. There is a problem that unevenness increases and the film thickness decreases, and the current loss due to the resistance of the collector electrode increases significantly. In addition, these conductive pastes need to be heated for a long time for curing, and it is practically difficult to apply them thickly for overcoating.
【0004】そこで、より低い体積抵抗率をもつ材料を
前記導電性ペースト上にのせた構造の電極が提案されて
いる。例えば図5は、前記導電性ペースト54を印刷し
た後その上により体積抵抗率の低い半田材料57をのせ
た集電電極であり、この集電電極は導電性ペーストの焼
成後溶融半田の中にディップすることにより形成され
る。しかしこの場合も、電極が微細になると十分な厚さ
の半田層を形成することが困難になるという問題があ
る。Therefore, an electrode having a structure in which a material having a lower volume resistivity is placed on the conductive paste has been proposed. For example, FIG. 5 shows a current collecting electrode on which the conductive paste 54 is printed and then a solder material 57 having a lower volume resistivity is placed thereon, and the current collecting electrode is placed in the molten solder after firing the conductive paste. It is formed by dipping. However, also in this case, there is a problem that it becomes difficult to form a solder layer having a sufficient thickness as the electrodes become finer.
【0005】この他に電極形成法としては、蒸着やスパ
ッタリングによる方法も知られているが、その製造コス
トが高くなることから大面積素子においてはほとんど使
用されていない。In addition to the above, as a method for forming an electrode, a method using vapor deposition or sputtering is also known, but it is rarely used in a large-area element because of its high manufacturing cost.
【0006】[0006]
【発明が解決しようとする課題】以上の現状に鑑み、本
発明は、細線でかつ低抵抗の集電電極を有し、高性能・
低価格の光発電素子を提供することを目的とする。In view of the above circumstances, the present invention has a thin wire and a low resistance collector electrode,
An object is to provide a low cost photovoltaic device.
【0007】[0007]
【課題を解決するための手段】本発明の光発電素子は、
少なくとも光起電力を発生する半導体層と集電電極とか
ら成る光発電素子において、前記集電電極は金または金
を少なくとも含む導電性粉体と、該導電性粉体よりも低
い融点の金属または合金または混合物とからなり、前記
導電性粉体は前記半導体層側に固定されていることを特
徴とする。The photovoltaic device of the present invention comprises:
In a photovoltaic device including at least a semiconductor layer that generates a photovoltaic force and a collecting electrode, the collecting electrode is gold or a conductive powder containing at least gold, and a metal having a melting point lower than that of the conductive powder. It is made of an alloy or a mixture, and the conductive powder is fixed to the semiconductor layer side.
【0008】ここで、前記導電性粉体が導電性の固定材
により該半導体層側に密着して固定されていることが好
ましく、該導電性の固定材は少なくとも導電性の粉体と
結着剤とからなることが好ましい。Here, it is preferable that the conductive powder is adhered and fixed to the semiconductor layer side by a conductive fixing material, and the conductive fixing material is bound to at least the conductive powder. It is preferably composed of an agent.
【0009】本発明の光発電素子の好ましい形態とし
て、前記導電性粉体よりも低い融点の金属または合金ま
たは混合物の融点は、導電性粉体の融点よりも100℃
以上低いことにある。In a preferred form of the photovoltaic element of the present invention, the melting point of the metal, alloy or mixture having a lower melting point than the conductive powder is 100 ° C. higher than the melting point of the conductive powder.
It is lower than that.
【0010】[0010]
【作用】金または金を少なくとも含有する導電性粉体粒
子は、半田材料等の低融点の金属または合金または混合
物(以後、低融点金属という)を吸着する効果を有して
おり、低融点金属の電極層を形成する際、半導体層(ま
たは透明導電層)上にこれら導電性粉体を固定すること
により厚盛りの低融点金属の層を形成することが可能と
なる。The gold or conductive powder particles containing at least gold have the effect of adsorbing a low melting point metal or alloy or mixture (hereinafter referred to as low melting point metal) such as a solder material. When forming the electrode layer, the conductive powder is fixed on the semiconductor layer (or the transparent conductive layer), whereby a thick layer of low melting point metal can be formed.
【0011】そのため、電極の抵抗を下げることがで
き、結果的に光発電素子の効率を上げることができる。
更に、厚盛りによる抵抗減少分を細線化に振り向けれ
ば、集電電極による遮光ロスをより減少させることがで
き、更に光発電素子の変換効率をあげることが可能とな
る。Therefore, the resistance of the electrode can be reduced, and as a result, the efficiency of the photovoltaic device can be increased.
Further, if the amount of decrease in resistance due to the thickening is directed to the thinning, the light-shielding loss due to the collector electrode can be further reduced, and the conversion efficiency of the photovoltaic element can be further improved.
【0012】また半導体層(または透明導電層)と低融
点金属の中間に導電性粉体を固定する導電性の固定材を
設けることにより、半導体層(または透明導電層)と導
電性粉体及び低融点金属の結合が強固になり、長期間に
わたり出力の経時的安定性より高めることができる。By providing a conductive fixing material for fixing the conductive powder between the semiconductor layer (or the transparent conductive layer) and the low melting point metal, the semiconductor layer (or the transparent conductive layer) and the conductive powder and The bond of the low melting point metal is strengthened, and the output stability over time can be improved over a long period of time.
【0013】本発明の光起電力素子の構成を図1及び2
を用いて詳細に説明する。The structure of the photovoltaic element of the present invention is shown in FIGS.
Will be described in detail.
【0014】図1において、11は透明導電膜、12は
半導体層、13は基板、14は金または金を含有する導
電体粉体15を固定する導電性の固定材、17は低融点
金属である。In FIG. 1, 11 is a transparent conductive film, 12 is a semiconductor layer, 13 is a substrate, 14 is a conductive fixing material for fixing gold or a conductor powder 15 containing gold, and 17 is a low melting point metal. is there.
【0015】本発明の低融点金属は、導電性粉体よりも
低い融点のものであれば、いずれの金属または合金を用
いることができるが、導電性粉体と融点の違いが100
℃以上あるものが、より厚盛りの電極層が形成できるた
め一層好ましいものである。低融点金属の具体例として
は、例えば半田があげられる。半田材料は、例えばSn
−Pb系、Sn−Ag系,Pb基,In基のものがあげ
られる。また、クリーム半田を用いることも可能であ
り、その場合は半田の盛り量のコントロールができるメ
リットがあるためより好ましいものである。As the low melting point metal of the present invention, any metal or alloy can be used as long as it has a melting point lower than that of the conductive powder, but the difference in melting point from the conductive powder is 100.
A material having a temperature of not less than 0 ° C. is more preferable because a thicker electrode layer can be formed. A specific example of the low melting point metal is solder. The solder material is, for example, Sn
Examples include -Pb type, Sn-Ag type, Pb group and In group. It is also possible to use cream solder, which is more preferable because it has the advantage of controlling the amount of solder.
【0016】導電性粉体粒子の形状は、球に限るもので
はなく、例えば、りん片状や針状のものも使用できる、
また、大きさは形成する集電電極の幅によって異なる
が、通常0.1〜100μm程度のものが用いられる。The shape of the conductive powder particles is not limited to a sphere, and for example, a flaky shape or a needle shape can be used.
The size varies depending on the width of the collecting electrode to be formed, but a size of about 0.1 to 100 μm is usually used.
【0017】本発明の導電性の固定材は、低融点金属と
濡れ性の高い材料が用いられ、例えば金、銀、銅、ニッ
ケル、鉄等の金属粒子を、エポキシ樹脂、フェノール樹
脂、ポリエステル樹脂、ポリイミド樹脂等の有機樹脂等
の結着剤に分散した導電性ペーストが好適に用いられ
る。また比較的高温処理が許される場合には、前記金属
材料とガラスフリットを混成した焼成ペースト等も用い
ることができる。The conductive fixing material of the present invention is made of a material having a low melting point metal and high wettability. For example, metal particles such as gold, silver, copper, nickel and iron are mixed with an epoxy resin, a phenol resin or a polyester resin. A conductive paste dispersed in a binder such as an organic resin such as a polyimide resin is preferably used. When relatively high temperature treatment is allowed, a firing paste or the like in which the above metal material and glass frit are mixed can be used.
【0018】[0018]
【実施例】以下に実施例を挙げて本発明を詳細に説明す
るが、本発明がこれら実施例に限定されないことは言う
までもない。The present invention will be described in detail below with reference to examples, but it goes without saying that the present invention is not limited to these examples.
【0019】(実施例1)図1に示す構成の光発電素子
の作製工程を図2に示す。(Example 1) FIG. 2 shows a manufacturing process of the photovoltaic device having the structure shown in FIG.
【0020】図2(a)は、電極形成面となるアモルフ
ァス太陽電池を示し、ステンレス基板23上に、アモル
ファスシリコン層22、透明導電膜21形成されてい
る。本実施例の透明導電膜は厚さ64nmのITOであ
る。FIG. 2A shows an amorphous solar cell as an electrode forming surface, in which an amorphous silicon layer 22 and a transparent conductive film 21 are formed on a stainless steel substrate 23. The transparent conductive film of this example is ITO having a thickness of 64 nm.
【0021】ITOは、金属と比べ比抵抗1×10-3Ω
cm程度と高いため、その上に比抵抗値の低い銀のポリ
マーペースト材料を用いて集電電極を形成する。ITO has a specific resistance of 1 × 10 −3 Ω as compared with metal.
Since it is as high as about cm, a collector electrode is formed on it by using a silver polymer paste material having a low specific resistance value.
【0022】図2(b)に示すように、透明導電層21
上に粒径1〜5μmの銀粒子を含むポリマーペースト2
4のパターンを、ステンレス紗400メッシュ、エマル
ジョン厚10μmの刷板を使用してスクリーン印刷で形
成した。この条件で、線幅100μm、厚さ30μm程
度のパターンが形成できた。なお、熱硬化後では厚さは
20μm程度となる。As shown in FIG. 2B, the transparent conductive layer 21
Polymer paste 2 containing silver particles having a particle size of 1 to 5 μm on the top
The pattern 4 was formed by screen printing using a stainless steel mesh 400 mesh and a printing plate having an emulsion thickness of 10 μm. Under these conditions, a pattern having a line width of 100 μm and a thickness of about 30 μm could be formed. The thickness after heat curing is about 20 μm.
【0023】次に、この電極形成面に対して、粒径0.
1〜100μm程度の金を含む金属粒子25を吹きつけ
た。図2(c)にその様子を示す。吹きつけられた金属
粒子25はポリマーペースト24上だけでなく、透明導
電膜21上にも付着するため、空気流を吹きつけ、ポリ
マーペースト上にない金属粒子を吹きとばして除去し
た。その後、160℃で空気中で熱乾燥を行った。ポリ
マーペーストは収縮しながら金属粒子を巻き込み硬化し
た。図2(d)にその様子を示す。Next, a grain size of 0.
The metal particles 25 containing gold of about 1 to 100 μm were sprayed. This is shown in FIG. 2 (c). Since the sprayed metal particles 25 adhere not only on the polymer paste 24 but also on the transparent conductive film 21, an air flow was sprayed and the metal particles not on the polymer paste were blown away. Then, heat drying was performed in air at 160 ° C. The polymer paste was shrunk and hardened by incorporating metal particles. This is shown in FIG. 2 (d).
【0024】次に電極形成面全体にフラックス26を塗
布した(図2(e))。Next, the flux 26 was applied to the entire electrode formation surface (FIG. 2 (e)).
【0025】更にフラックスを塗布された電極形成面を
序々に加熱しながら溶融半田槽にディピングし、10〜
30秒間浸した後、加熱をしながらゆっくりとひきあ
げ、除冷してポリマーペースト上に半田層を形成する。
フラックスを塗布することにより、ポリマーペースト及
び金属粒子と半田の濡れを促進させる他、ポリマーペー
ストのない電極形成面への半田の付着防止をより一層完
全とすることができる。Further, the electrode forming surface coated with the flux is gradually heated while being dipped into the molten solder bath,
After soaking for 30 seconds, the material is slowly pulled up while heating and then cooled to form a solder layer on the polymer paste.
By applying the flux, it is possible to promote the wetting of the solder with the polymer paste and the metal particles, and it is possible to more completely prevent the adhesion of the solder to the electrode forming surface without the polymer paste.
【0026】図2(f)は半田槽にディップした後の電
極形成面であり、この状態ではポリマーペースト24上
に半田層27が形成され、電極形成面には多量のフラッ
クス26が残存する。残存するフラックスを温水による
シャワー水洗で洗浄除去した。洗浄終了後、乾燥して集
電電極の作製を終了した(図2(g))。FIG. 2 (f) shows an electrode forming surface after dipping into a solder bath. In this state, a solder layer 27 is formed on the polymer paste 24, and a large amount of flux 26 remains on the electrode forming surface. The residual flux was washed off with a shower of warm water. After the completion of washing, it was dried to complete the production of the collecting electrode (FIG. 2 (g)).
【0027】フラックスには前記空気流でとりきれなか
った残存金属粒子も含まれており、またフラックスは酸
性もしくはアルカリ性でありため、放置しておくと透明
導電膜を浸食したり、入射光を遮光することから洗浄を
行う必要がある。The flux also contains residual metal particles that cannot be completely removed by the air flow. Since the flux is acidic or alkaline, it may erode the transparent conductive film or block incident light if left unattended. Therefore, it is necessary to perform cleaning.
【0028】以上のようにして、100μm細線であり
ながら厚さ40μmの低抵抗な集電電極が精度良く作製
できることが確認された。As described above, it was confirmed that it is possible to accurately manufacture a low resistance collector electrode having a thickness of 40 μm even though it is a fine wire of 100 μm.
【0029】(実施例2)本発明の第2の実施例を図3
を用いて説明する。(Embodiment 2) A second embodiment of the present invention is shown in FIG.
Will be explained.
【0030】図3は、クリーム半田を用いた電極形成工
程を示している。図3(a)において、34はフェノー
ル系樹脂に粒径5〜20μmの銅粒子を単分散させた銅
ペーストを用いて形成したパターンである。31は透明
導電膜ITO、32は光発電層であるアモルファスシリ
コン層である。ここで、電極形成面はITO膜31表面
である。FIG. 3 shows an electrode forming process using cream solder. In FIG. 3A, 34 is a pattern formed by using a copper paste in which copper particles having a particle size of 5 to 20 μm are monodispersed in a phenol resin. Reference numeral 31 is a transparent conductive film ITO, and 32 is an amorphous silicon layer which is a photovoltaic layer. Here, the electrode formation surface is the surface of the ITO film 31.
【0031】よく洗浄乾燥された表面に、まずスクリー
ン印刷機により線幅約100μmの線を銅ペーストで形
成した。On the well-washed and dried surface, a wire having a line width of about 100 μm was first formed with a copper paste by a screen printer.
【0032】次に、図3(b)に示すように、電極形成
面に金粒子35を吹きつけた。金粒子は電極形成面全体
に散乱した状態で吹き付けられた。Next, as shown in FIG. 3B, gold particles 35 were sprayed on the electrode formation surface. The gold particles were sprayed in a scattered state on the entire electrode formation surface.
【0033】この散乱した電極形成面に対して水平に空
気流を流し、ポリマーペースト上以外の金粒子を除去
し、ポリマーペースト上に金粒子に残した。図3(c)
はこの状態を示している。An air stream was made to flow horizontally with respect to the scattered electrode forming surface to remove the gold particles other than those on the polymer paste, leaving the gold particles on the polymer paste. Figure 3 (c)
Indicates this state.
【0034】続いて、熱乾燥炉で加熱した。銅ペースト
は収縮し、金粒子をまきこんだ形で硬化した。ここでは
硬化条件としては160℃、30分とした。硬化後の状
態を図3(d)に示す。Then, it was heated in a heat drying furnace. The copper paste shrank and hardened with the gold particles encased. Here, the curing conditions were 160 ° C. and 30 minutes. The state after curing is shown in FIG.
【0035】こうして金粒子をちりばめた集電電極上
に、スクリーン印刷によりクリーム半田37’を付着さ
せた(図3(e))。Thus, the cream solder 37 'was adhered by screen printing on the current collecting electrode in which the gold particles were studded (FIG. 3 (e)).
【0036】クリーム半田37’にはフラックス36も
含まれており、また、電極形成面であるITOは半田と
の濡れ性が悪いため、このまま赤外加熱炉等で220℃
に加熱すると、図3(f)に示すように、半田は半田濡
れ性を良い導電性ペースト側に集まり、更に導電性ペー
スト上にある金粒子は半田材料を吸着し、導電性ペース
ト上に盛りあがった状態となった。The cream solder 37 'also contains the flux 36, and since ITO, which is the electrode forming surface, has poor wettability with the solder, it is left at 220 ° C. in an infrared heating furnace or the like as it is.
When heated to, as shown in FIG. 3 (f), the solder gathers on the side of the conductive paste having good solder wettability, and the gold particles on the conductive paste adsorb the solder material and rise up on the conductive paste. It became a state of
【0037】最後に、にじみでたフラックス36は温水
洗浄等により洗浄され、乾燥されて、工程は終了した
(図3(g))。Finally, the bleeding flux 36 was washed by washing with warm water and dried, and the process was completed (FIG. 3 (g)).
【0038】以上のようにして、100μm幅、40μ
m厚の集電電極が精度良く作製できることが確認され
た。また、クリーム半田を用いることにより、半田層の
厚さの均一性は一層増加した。As described above, 100 μm width, 40 μm
It was confirmed that the m-thick current collecting electrode can be accurately manufactured. Further, by using the cream solder, the uniformity of the thickness of the solder layer was further increased.
【0039】[0039]
【発明の効果】本発明により、細線でありながら厚盛り
の集電電極を形成することが可能となり、その結果、集
電電極の抵抗を大幅に下げることができ、光電変換効率
の高い光発電素子を安価に提供することが可能となる。According to the present invention, it is possible to form a thick collecting electrode even though it is a thin wire. As a result, the resistance of the collecting electrode can be significantly reduced, and the photovoltaic power generation with high photoelectric conversion efficiency can be achieved. It is possible to provide the element at low cost.
【図1】本発明の光発電素子を示す概念図。FIG. 1 is a conceptual diagram showing a photovoltaic device of the present invention.
【図2】本発明の実施例1の光発電素子の製造プロセス
を説明する概念図。FIG. 2 is a conceptual diagram illustrating a manufacturing process of the photovoltaic device of Example 1 of the present invention.
【図3】本発明の実施例2の光発電素子の製造プロセス
を説明する概念図。FIG. 3 is a conceptual diagram illustrating a manufacturing process of the photovoltaic device of Example 2 of the present invention.
【図4】従来の光発電素子の一例を示す概念図。FIG. 4 is a conceptual diagram showing an example of a conventional photovoltaic device.
【図5】従来の光発電素子の他の例を示す概念図。FIG. 5 is a conceptual diagram showing another example of a conventional photovoltaic device.
11,21,31,41,51 透明導電膜、 12,22,32 アモルファスシリコン層、 13,23 ステンレス基板、 14,24,34,44,54 ポリマーペースト、 15,25,35 導電性粒子、 17,27,37,57 半田、 26 フラックス、 37’ クリーム半田。 11, 21, 31, 41, 51 transparent conductive film, 12, 22, 32 amorphous silicon layer, 13, 23 stainless steel substrate, 14, 24, 34, 44, 54 polymer paste, 15, 25, 35 conductive particles, 17 , 27, 37, 57 solder, 26 flux, 37 'cream solder.
Claims (4)
と集電電極とから成る光発電素子において、前記集電電
極は金または金を少なくとも含む導電性粉体と、該導電
性粉体よりも低い融点の金属または合金または混合物と
からなり、前記導電性粉体は前記半導体層側に固定され
ていることを特徴とする光発電素子。1. A photovoltaic element comprising at least a semiconductor layer for generating a photovoltaic power and a collector electrode, wherein the collector electrode is gold or a conductive powder containing at least gold, and more than the conductive powder. A photovoltaic element, comprising a metal or alloy or mixture having a low melting point, wherein the conductive powder is fixed to the semiconductor layer side.
り該半導体層側に密着して固定されていることを特徴と
する請求項1記載の光発電素子。2. The photovoltaic element according to claim 1, wherein the conductive powder is closely fixed to the semiconductor layer side by a conductive fixing material.
性の粉体と結着材とから成ることを特徴とする請求項1
または2に記載の光発電素子。3. The electrically conductive fixing material comprises at least electrically conductive powder and a binder.
Alternatively, the photovoltaic element according to item 2.
物は、前記導電性粉体の融点より100℃以上低い融点
を有することを特徴とする請求項1〜3のいずれか1項
に記載の光発電素子4. The light according to claim 1, wherein the low melting point metal or alloy or mixture has a melting point lower than the melting point of the conductive powder by 100 ° C. or more. Power generation element
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4221683A JPH0669524A (en) | 1992-08-20 | 1992-08-20 | Photovoltaic device |
US08/089,585 US5428249A (en) | 1992-07-15 | 1993-07-12 | Photovoltaic device with improved collector electrode |
AT97103454T ATE239303T1 (en) | 1992-07-15 | 1993-07-14 | PHOTOVOLTAIC DEVICE AND METHOD FOR PRODUCING THE SAME |
AU41959/93A AU671639B2 (en) | 1992-07-15 | 1993-07-14 | Photovoltaic device and method of manufacturing the same |
DE69332933T DE69332933T2 (en) | 1992-07-15 | 1993-07-14 | Photovoltaic device and process for its manufacture |
EP93111278A EP0579199B1 (en) | 1992-07-15 | 1993-07-14 | photovoltaic device and method of manufacturing the same |
EP97103454A EP0778624B1 (en) | 1992-07-15 | 1993-07-14 | Photovoltaic device and method of manufacturing the same |
DE69330925T DE69330925T2 (en) | 1992-07-15 | 1993-07-14 | Photovoltaic device and its manufacturing process |
AT93111278T ATE207244T1 (en) | 1992-07-15 | 1993-07-14 | PHOTOVOLTAIC DEVICE AND METHOD OF PRODUCTION THEREOF |
KR1019930013319A KR100190800B1 (en) | 1992-07-15 | 1993-07-15 | Photovoltaic device and method of manufacturing the same |
US08/999,790 US6214636B1 (en) | 1992-07-15 | 1997-10-29 | Photovoltaic device with improved collector electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4221683A JPH0669524A (en) | 1992-08-20 | 1992-08-20 | Photovoltaic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0669524A true JPH0669524A (en) | 1994-03-11 |
Family
ID=16770644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4221683A Pending JPH0669524A (en) | 1992-07-15 | 1992-08-20 | Photovoltaic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0669524A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6214636B1 (en) * | 1992-07-15 | 2001-04-10 | Canon Kabushiki Kaisha | Photovoltaic device with improved collector electrode |
US6279382B1 (en) | 1998-02-10 | 2001-08-28 | Nec Corporation | Sealed vessel and method of testing the same |
CN115377232A (en) * | 2022-10-24 | 2022-11-22 | 浙江晶科能源有限公司 | Solar cells and photovoltaic modules |
US12080819B2 (en) | 2022-10-24 | 2024-09-03 | Zhejiang Jinko Solar Co., Ltd. | Solar cell and photovoltaic module |
-
1992
- 1992-08-20 JP JP4221683A patent/JPH0669524A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6214636B1 (en) * | 1992-07-15 | 2001-04-10 | Canon Kabushiki Kaisha | Photovoltaic device with improved collector electrode |
US6279382B1 (en) | 1998-02-10 | 2001-08-28 | Nec Corporation | Sealed vessel and method of testing the same |
CN115377232A (en) * | 2022-10-24 | 2022-11-22 | 浙江晶科能源有限公司 | Solar cells and photovoltaic modules |
CN115377232B (en) * | 2022-10-24 | 2023-10-27 | 浙江晶科能源有限公司 | Solar cells and photovoltaic modules |
US12080819B2 (en) | 2022-10-24 | 2024-09-03 | Zhejiang Jinko Solar Co., Ltd. | Solar cell and photovoltaic module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6214636B1 (en) | Photovoltaic device with improved collector electrode | |
JPH036867A (en) | Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof | |
US20080185039A1 (en) | Conductor fabrication for optical element | |
JPH0273648A (en) | Electronic circuit and its manufacture | |
WO2017073299A1 (en) | Ultrasonic soldering method and ultrasonic soldering device | |
JP2007149633A (en) | Method of manufacturing translucent conductive film substrate | |
JPH0669524A (en) | Photovoltaic device | |
CN106782748A (en) | A kind of method for making nano silver wire flexible transparent conductive film | |
JP2716641B2 (en) | Current collecting electrode of photovoltaic element and method of manufacturing the same | |
JP2716630B2 (en) | Current collecting electrode of photovoltaic element and method of manufacturing the same | |
CN118201381A (en) | A perovskite single crystal X-ray detector and a method for preparing the same | |
JPH0892506A (en) | Electrically conductive paste, method of electrode formation and solar cell | |
JPH06334203A (en) | Formation of photovoltaic element | |
JPH06151913A (en) | Electrode formation method | |
JP2948142B2 (en) | Collector electrode forming method | |
JPH09306231A (en) | Conductive particulate and substrate | |
JP3925770B2 (en) | Manufacturing method of solar cell | |
JPH0799331A (en) | Photoelectric transducer and forming method thereof | |
JPH06132551A (en) | Photocell and forming method of electrodes thereof | |
JPH07221338A (en) | Manufacture or solar battery | |
JP3347403B2 (en) | Current collecting electrode and electrode forming method | |
JP3218514B2 (en) | Circuit device and manufacturing method thereof | |
JPS61158163A (en) | Formation of bump | |
JPS59115523A (en) | Formation of electrode for semiconductor device | |
JPH01238044A (en) | Semiconductor device |