JPH0669148A - Heater - Google Patents
HeaterInfo
- Publication number
- JPH0669148A JPH0669148A JP22239092A JP22239092A JPH0669148A JP H0669148 A JPH0669148 A JP H0669148A JP 22239092 A JP22239092 A JP 22239092A JP 22239092 A JP22239092 A JP 22239092A JP H0669148 A JPH0669148 A JP H0669148A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor wafer
- heated
- light source
- infrared rays
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 48
- 238000005338 heat storage Methods 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 abstract description 90
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 239000010703 silicon Substances 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 238000000137 annealing Methods 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000010453 quartz Substances 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 10
- 239000012535 impurity Substances 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Resistance Heating (AREA)
- Furnace Details (AREA)
- Control Of Resistance Heating (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ランプ光源の赤外線で
半導体ウェーハ等の被加熱体を均一な温度分布で加熱す
る加熱装置に関し、半導体ウェーハの不純物押込み拡散
工程などで使用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device for heating an object to be heated such as a semiconductor wafer with a uniform temperature distribution by means of infrared rays from a lamp light source, and is used in a step of impurity diffusion and diffusion of a semiconductor wafer.
【0002】[0002]
【従来の技術】加熱装置として、例えば半導体ウェーハ
にイオン注入された不純物を押込み拡散する際に使用さ
れる半導体ウェーハのランプアニール装置は、図5に示
されるようなリフレクタ(4)と石英の縦型チャンバー
(6)を使った装置や、図6に示されるような石英の横
型チャンバー(7)を使った装置がある。2. Description of the Related Art As a heating device, for example, a lamp annealing device for a semiconductor wafer used for injecting and diffusing impurities ion-implanted into a semiconductor wafer is shown in FIG. There are devices that use a mold chamber (6) and devices that use a horizontal quartz chamber (7) as shown in FIG.
【0003】図5のランプアニール装置は、逆樋状のリ
フレクタ(4)の焦点位置に配置されたアークランプな
どのランプ光源(1)を点灯させ、その赤外線をリフレ
クタ(4)で反射して、リフレクタ(4)の真下に配置さ
れた半導体ウェーハ(3)を加熱する。リフレクタ(4)
は、石英のチャンバー(6)の真上に設置され、この両
者間に石英の拡散板(5)が配置される。チャンバー
(6)の中に、石英のステージ(8)で保持された半導体
ウェーハ(3)が、拡散板(5)と平行に配置される。ス
テージ(8)上には、3本の石英ピン(8a)が突設さ
れ、この各石英ピン(8a)の先端で半導体ウェーハ
(3)が支持される。ステージ(8)は、チャンバーベー
ス(9)に出入自在に支持される。The lamp annealing apparatus shown in FIG. 5 turns on a lamp light source (1) such as an arc lamp arranged at the focal position of a retro-gutter-shaped reflector (4), and reflects its infrared rays by the reflector (4). , Heating the semiconductor wafer (3) located directly below the reflector (4). Reflectors (4)
Is installed directly above the quartz chamber (6), and a quartz diffusion plate (5) is placed between the two. A semiconductor wafer (3) held by a quartz stage (8) is placed in a chamber (6) in parallel with a diffusion plate (5). Three quartz pins (8a) are projectingly provided on the stage (8), and the tip of each quartz pin (8a) supports the semiconductor wafer (3). The stage (8) is supported by the chamber base (9) so that it can move in and out freely.
【0004】チャンバー(6)の内部を、窒素ガス流な
どのガス雰囲気に保って、ランプ光源(1)を点灯させ
ると、その一部の赤外線は拡散板(5)を透過して半導
体ウェーハ(3)に直接的に照射され、残りの赤外線は
リフレクタ(4)で反射して拡散板(5)を透過し、半導
体ウェーハ(3)にほぼ垂直に照射される。半導体ウェ
ーハ(3)の全体の面内にランプ光源(1)の赤外線が平
均的に照射されて吸収され、半導体ウェーハ(3)の全
体がほぼ均一な温度分布で加熱され、半導体ウェーハ
(3)の全体で不純物押込み拡散が進行する。When the lamp light source (1) is turned on while keeping the inside of the chamber (6) in a gas atmosphere such as a nitrogen gas flow, a part of the infrared rays passes through the diffuser plate (5) and the semiconductor wafer ( The remaining infrared rays are reflected by the reflector (4), transmitted through the diffuser plate (5), and are irradiated almost vertically on the semiconductor wafer (3). Infrared rays of the lamp light source (1) are evenly irradiated and absorbed in the entire surface of the semiconductor wafer (3), and the entire semiconductor wafer (3) is heated with a substantially uniform temperature distribution. As a whole, the impurity indentation diffusion proceeds.
【0005】図6のランプアニール装置は、横型チャン
バー(7)の外周にタングステンランプなどのランプ光
源(2)を配置している。チャンバー(7)内に、ステー
ジ(8')で3点支持された半導体ウェーハ(3)が配置
される。チャンバー(7)内を所定のガス雰囲気に保っ
て、ランプ光源(2)を点灯させると、ランプ光源(2)
の熱線がチャンバー(6)を透過して半導体ウェーハ
(3)の面内に平均的に照射され、半導体ウェーハ(3)
の全体が雰囲気と共にほぼ均一な温度分布で加熱され
る。In the lamp annealing apparatus shown in FIG. 6, a lamp light source (2) such as a tungsten lamp is arranged around the outer periphery of the horizontal chamber (7). A semiconductor wafer (3) supported at three points by a stage (8 ') is placed in a chamber (7). When the lamp light source (2) is turned on with the inside of the chamber (7) kept in a predetermined gas atmosphere, the lamp light source (2)
Of the semiconductor wafer (3) penetrates through the chamber (6) and is uniformly irradiated on the surface of the semiconductor wafer (3).
Is heated with the atmosphere in a substantially uniform temperature distribution.
【0006】[0006]
【発明が解決しようとする課題】図5のランプアニール
装置においては、ランプ光源(1)の赤外線が半導体ウ
ェーハ(3)全体に平均的に照射されるようにリフレク
タ(4)、拡散板(5)が使用されているが、半導体ウェ
ーハ(3)の中央部(3a)と周縁端部(3b)に、端部
(3b)が低い温度差がある。この半導体ウェーハ(3)
の温度分布のバラツキの原因は、半導体ウェーハ(3)
の端部(3b)の放熱量が他より多いこと、および、半
導体ウェーハ(3)の端部(3b)が中央部(3a)より
ランプ光源(1)から離れていて、端部(3b)に照射さ
れる赤外線の光量が中央部(3a)より減少することに
ある。In the lamp annealing apparatus of FIG. 5, the reflector (4) and the diffuser plate (5) are so arranged that the infrared rays of the lamp light source (1) are uniformly irradiated on the entire semiconductor wafer (3). ) Is used, there is a low temperature difference between the central portion (3a) and the peripheral edge portion (3b) of the semiconductor wafer (3) at the edge portion (3b). This semiconductor wafer (3)
The cause of the variation in the temperature distribution of the semiconductor wafer (3)
The end portion (3b) of the semiconductor wafer (3b) has a larger amount of heat radiation, and the end portion (3b) of the semiconductor wafer (3) is farther from the lamp light source (1) than the central portion (3a), and the end portion (3b) This is because the amount of infrared light radiated to the area is less than that in the central part (3a).
【0007】その結果、半導体ウェーハ(3)を加熱し
て不純物押込み拡散する場合、半導体ウェーハ(3)の
端部(3b)の温度が不足して、端部(3b)での不純物
押込み拡散の進行が遅れ、半導体ウェーハ(3)に形成
される複数の半導体素子の品質にバラツキが発生する不
具合があった。As a result, when the semiconductor wafer (3) is heated to perform impurity push-in diffusion, the temperature of the end portion (3b) of the semiconductor wafer (3) becomes insufficient, and the impurity push-in diffusion at the end portion (3b) occurs. There was a problem that the progress was delayed and the quality of a plurality of semiconductor elements formed on the semiconductor wafer (3) varied.
【0008】また、図6のランプアニール装置の場合、
半導体ウェーハ(3)の全体に赤外線が平均して照射さ
れるが、半導体ウェーハ(3)の周縁端部(3b)の放熱
量が中央部(3a)より多くなる結果、上記同様に半導
体ウェーハ(3)の温度は、端部(3b)の温度が中央部
(3a)より低い分布となっている。そのため、上記同
様に半導体ウェーハ(3)での半導体素子の品質にバラ
ツキが発生する不具合があった。Further, in the case of the lamp annealing apparatus of FIG.
The whole semiconductor wafer (3) is irradiated with infrared rays on average, but the heat radiation amount at the peripheral edge portion (3b) of the semiconductor wafer (3) becomes larger than that at the central portion (3a), and as a result, the semiconductor wafer (3 Regarding the temperature of 3), the temperature of the end portion (3b) is lower than that of the central portion (3a). Therefore, similarly to the above, there is a problem that the quality of the semiconductor elements on the semiconductor wafer (3) varies.
【0009】それ故に、本発明の目的とするところは、
半導体ウェーハの全体をより均一に加熱して、半導体ウ
ェーハに形成される半導体素子の品質のバラツキを少な
くするランプアニール装置を提供することにある。Therefore, the object of the present invention is to
It is an object of the present invention to provide a lamp annealing apparatus that heats the entire semiconductor wafer more uniformly to reduce variations in the quality of semiconductor elements formed on the semiconductor wafer.
【0010】[0010]
【課題を解決するための手段】本発明は、ランプ光源か
らの赤外線を被加熱体(半導体ウェーハ)全体に均一に
照射して加熱する装置であって、被加熱体の端部に他よ
りランプ光源の赤外線を多く集中させて照射する局部加
熱用光学手段を付設したことにより、上記目的を達成す
るものである。DISCLOSURE OF THE INVENTION The present invention is an apparatus for uniformly irradiating infrared rays from a lamp light source to a whole object to be heated (semiconductor wafer) to heat the object to be heated, and a lamp is provided at the end of the object to be heated by another lamp. The above object is achieved by additionally providing local heating optical means for irradiating the infrared rays of the light source in a concentrated manner.
【0011】上記局部加熱用光学手段は、ランプ光源か
らの赤外線を屈折して被加熱体端部に照射するプリズ
ム、或いは、ランプ光源からの赤外線を被加熱体端部に
反射する反射鏡であることが、実用上に望ましい。The local heating optical means is a prism that refracts infrared rays from the lamp light source and irradiates the heated object end portion, or a reflecting mirror that reflects the infrared ray from the lamp light source to the heated object end portion. Is practically desirable.
【0012】また、本発明は、ランプ光源からの赤外線
を被加熱体全体に均一に照射して、被加熱体を加熱する
装置において、被加熱体の端部近傍に、ランプ光源の赤
外線で加熱される熱容量の大きな蓄熱部材を配置したこ
とによっても、上記目的を達成する。Further, according to the present invention, in an apparatus for heating an object to be heated by uniformly irradiating the object to be heated with infrared rays from a lamp light source, the infrared light of the lamp light source is heated near the end of the object to be heated. The above object is also achieved by disposing a heat storage member having a large heat capacity.
【0013】[0013]
【作用】ランプ光源の赤外線が全体に平均的に照射され
る被加熱体に対して、その端部にプリズムや反射鏡で他
より多く集中的に照射される赤外線の照射量を、被加熱
体端部の通常の赤外線加熱時の放熱に伴う温度低下量を
補う値に設定しておくことで、被加熱体は、端部の温度
低下無くして、全体が均一な温度分布で加熱される。[Function] For an object to be heated which is uniformly irradiated with infrared rays from the lamp light source, the amount of infrared rays that is more intensively applied to the end of the object to be heated is increased by a prism or a reflecting mirror. By setting a value that compensates for the amount of temperature decrease due to heat radiation during normal infrared heating of the end portion, the entire body of the object to be heated is heated with a uniform temperature distribution without the temperature decrease at the end portion.
【0014】[0014]
【実施例】以下、本発明の各種実施例を図1乃至図4に
示し、順に説明する。なお、図1〜図3は図5のランプ
アニール装置に適用した第1〜第3の実施例が、図4は
図6のランプアニール装置に適用した第4の実施例が示
してある。これら各実施例の図5および図6と同一、又
は相当部分には同一符号を付して、説明は省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to FIGS. 1 to 3 show the first to third embodiments applied to the lamp annealing apparatus of FIG. 5, and FIG. 4 shows the fourth embodiment applied to the lamp annealing apparatus of FIG. 5 and FIG. 6 of each of these embodiments, the same or corresponding parts are designated by the same reference numerals, and the description thereof will be omitted.
【0015】図1〜図3の各実施例に示されるランプア
ニール装置は、点灯したランプ光源(1)からの赤外線
をリフレクタ(4)で反射し、拡散板(5)を透過させて
半導体ウェーハ(3)にほぼ垂直に照射して、半導体ウ
ェーハ(3)の全体を平均的に加熱する。これら装置の
従来装置との相違点は、ランプ光源(1)の赤外線の一
部を半導体ウェーハ(3)の端部(3b)に集中的に照射
する局部加熱用光学手段(10)を付設したことである。
局部加熱用光学手段(10)の具体的三例が、図1〜図3
に示してある。The lamp annealing apparatus shown in each of the embodiments of FIGS. 1 to 3 is a semiconductor wafer in which infrared rays from the lit lamp light source (1) are reflected by a reflector (4) and transmitted through a diffuser plate (5). Irradiate almost perpendicularly to (3) to heat the entire semiconductor wafer (3) on average. The difference between these devices and the conventional device is that a local heating optical means (10) for irradiating a part of infrared rays of the lamp light source (1) to the end (3b) of the semiconductor wafer (3) in a concentrated manner is additionally provided. That is.
Three specific examples of the local heating optical means (10) are shown in FIGS.
It is shown in.
【0016】図1の第1の実施例のランプアニール装置
に示される局部加熱用光学手段(10)は、拡散板(5)
上に設置されたプリズム(10a)である。プリズム(10
a)は、半導体ウェーハ(3)の端部(3b)の真上より
少し外側に、所定の傾斜角で固定配置される。The local heating optical means (10) shown in the lamp annealing apparatus of the first embodiment of FIG. 1 is a diffusion plate (5).
It is the prism (10a) installed above. Prism (10
(a) is fixedly arranged at a predetermined inclination angle, slightly outside the end (3b) of the semiconductor wafer (3).
【0017】図1装置で半導体ウェーハ(3)は、次の
ように加熱される。ランプ光源(1)の赤外線が直接に
拡散板(5)を透過し、および、リフレクタ(4)を反射
して拡散板(5)を透過して、半導体ウェーハ(3)を図
5装置と同様に加熱する。同時に、リフレクタ(4)を
反射した赤外線の一部がプリズム(10a)の上向きの一
面に入射し、屈折して下向きの一面から出て拡散板
(5)を透過し、半導体ウェーハ(3)の端部(3b)に
集中的に照射される。また、このように半導体ウェーハ
(3)の端部(3b)に赤外線が集中照射されるように、
プリズム(10a)が配置される。In the apparatus shown in FIG. 1, the semiconductor wafer (3) is heated as follows. Infrared rays from the lamp light source (1) directly pass through the diffuser plate (5), and also reflect off the reflector (4) and then pass through the diffuser plate (5), so that the semiconductor wafer (3) can be transferred to the same device as in FIG. Heat to. At the same time, a part of the infrared light reflected by the reflector (4) is incident on the upper surface of the prism (10a), refracted, exits from the lower surface, passes through the diffuser plate (5), and passes through the semiconductor wafer (3). The end (3b) is irradiated intensively. Further, in this way, the infrared rays are intensively applied to the end portion (3b) of the semiconductor wafer (3),
A prism (10a) is arranged.
【0018】仮にプリズム(10a)が無い場合、半導体
ウェーハ(3)は図5装置と同様に加熱されて、その端
部(3b)の温度が中央部(3a)より低くなる。ところ
が、プリズム(10a)で半導体ウェーハ(3)の端部(3
b)に赤外線を余分に集中させると、その分、端部(3
b)の温度が上昇する。したがって、半導体ウェーハ
(3)の端部(3b)の通常加熱時の温度低下分に見合う
量の赤外線をプリズム(10a)で補うと、半導体ウェー
ハ(3)の中央部(3a)と端部(3b)の全体が均一な
温度で加熱される。If there is no prism (10a), the semiconductor wafer (3) is heated as in the apparatus shown in FIG. 5, and the temperature of the end portion (3b) becomes lower than that of the central portion (3a). However, with the prism (10a), the edge (3
If infrared rays are concentrated excessively on b), the end portion (3
The temperature of b) rises. Therefore, by supplementing the prism (10a) with an amount of infrared rays commensurate with the temperature decrease of the end portion (3b) of the semiconductor wafer (3) during normal heating, the central portion (3a) and the end portion (3a) of the semiconductor wafer (3) are The whole of 3b) is heated at a uniform temperature.
【0019】プリズム(10a)を屈折して半導体ウェー
ハ(3)の端部(3b)に照射される赤外線の大部分は、
プリズム(10a)が無い場合に半導体ウェーハ(3)か
ら外れて、半導体ウェーハ(3)の加熱にほとんど寄与
しない、いわゆる無駄な赤外線である。この元来無駄で
あった赤外線がプリズム(10a)で半導体ウェーハ
(3)の加熱に有効利用されることになる。その結果、
ランプ光源(1)の赤外線の有効利用率が上がり、電力
無駄が少なくなる。このことは、以下の第2〜第4の実
施例においても同様である。Most of infrared rays refracted by the prism (10a) and applied to the end (3b) of the semiconductor wafer (3) are
When there is no prism (10a), it is a so-called useless infrared ray that comes off the semiconductor wafer (3) and hardly contributes to heating of the semiconductor wafer (3). This useless infrared ray is effectively utilized by the prism (10a) for heating the semiconductor wafer (3). as a result,
The effective utilization rate of infrared rays of the lamp light source (1) is increased, and the waste of power is reduced. This also applies to the following second to fourth embodiments.
【0020】図1装置の場合、プリズム(10a)がリフ
レクタ(4)と拡散板(5)で囲まれたクリーンな空間に
配置されるので、プリズム(10a)が曇って屈折率が変
化するといった心配が無く、保守管理が容易である。In the case of the apparatus shown in FIG. 1, since the prism (10a) is arranged in a clean space surrounded by the reflector (4) and the diffusion plate (5), the prism (10a) becomes cloudy and the refractive index changes. No worries and easy maintenance.
【0021】図2の第2の実施例に示されるランプアニ
ール装置における局部加熱用光学手段(10)は、チャン
バー(6)の内部に配置された反射鏡(10b)である。
反射鏡(10b)は、ウェーハステージ(8)で支持され
たウェーハ(3)の端部(3b)の外側下方に、端部(3
b)の下面に向けて斜め配置される。反射鏡(10b)
は、リフレクタ(4)を反射し拡散板(5)を透過して半
導体ウェーハ(3)の端近くに外れた赤外線を、半導体
ウェーハ(3)の端部(3b)下面に向けて反射し、端部
(3b)を局部加熱する。The local heating optical means (10) in the lamp annealing apparatus shown in the second embodiment of FIG. 2 is a reflecting mirror (10b) arranged inside the chamber (6).
The reflecting mirror (10b) has an end portion (3) below the end portion (3b) of the wafer (3) supported by the wafer stage (8).
It is arranged obliquely toward the lower surface of b). Reflector (10b)
Reflects infrared rays reflected from the reflector (4), transmitted through the diffuser plate (5) and near the edge of the semiconductor wafer (3) toward the lower surface of the edge (3b) of the semiconductor wafer (3), Locally heat the end (3b).
【0022】図2装置は、半導体ウェーハ(3)の上面
全域にランプ光源(1)の赤外線を図5装置と同様に照
射して、半導体ウェーハ(3)を加熱すると同時に、こ
の通常加熱時に半導体ウェーハ(3)を外れる赤外線を
反射鏡(10b)が反射して、半導体ウェーハ(3)の端
部(3b)に集中的に照射し、端部(3b)を局部加熱す
る。この場合も、半導体ウェーハ(3)の端部(3b)の
通常加熱時での温度低下分に見合う量の赤外線を反射鏡
(10b)で補うようにすると、半導体ウェーハ(3)の
中央部(3a)と端部(3b)の全体が均一な温度で加熱
される。半導体ウェーハ(3)の端部(3b)を下面から
加熱する赤外線は、元来無駄になっていたものであり、
これが有効利用される。The apparatus shown in FIG. 2 irradiates infrared rays from the lamp light source (1) onto the entire upper surface of the semiconductor wafer (3) in the same manner as the apparatus shown in FIG. 5 to heat the semiconductor wafer (3), and at the same time, the semiconductor wafer (3) is heated during the normal heating. Infrared rays leaving the wafer (3) are reflected by the reflecting mirror (10b) and concentratedly irradiate the end portion (3b) of the semiconductor wafer (3) to locally heat the end portion (3b). Also in this case, if the reflection mirror (10b) compensates for the amount of infrared rays that corresponds to the temperature drop during the normal heating of the end portion (3b) of the semiconductor wafer (3), the central portion of the semiconductor wafer (3) ( The entire 3a) and the end (3b) are heated at a uniform temperature. The infrared rays that heat the end portion (3b) of the semiconductor wafer (3) from the lower surface were originally wasted,
This is effectively used.
【0023】図3の第3の実施例のランプアニール装置
の局部加熱用光学手段(10)は、拡散板(5)上に配置
した反射鏡(10c)である。反射鏡(10c)は、リフレ
クタ(4)で反射されたランプ光源(1)の赤外線の内
の、半導体ウェーハ(3)の加熱に寄与しない元来無駄
となっていた赤外線をリフレクタ(4)に向けて反射す
る。反射鏡(10c)で反射された赤外線は、リフレクタ
(4)を反射して最終的に半導体ウェーハ(3)の端部
(3b)に照射されて、端部(3b)を局部加熱する。The local heating optical means (10) of the lamp annealing apparatus of the third embodiment of FIG. 3 is a reflecting mirror (10c) arranged on the diffusion plate (5). The reflecting mirror (10c) uses the infrared rays of the lamp light source (1) reflected by the reflector (4), which are originally wasted and do not contribute to the heating of the semiconductor wafer (3), to the reflector (4). Reflect towards. The infrared light reflected by the reflecting mirror (10c) is reflected by the reflector (4) and finally applied to the end portion (3b) of the semiconductor wafer (3) to locally heat the end portion (3b).
【0024】図3装置は、半導体ウェーハ(3)の上面
全域にランプ光源(1)の赤外線を図5装置と同様に照
射して、半導体ウェーハ(3)を加熱すると同時に、こ
の通常加熱時に半導体ウェーハ(3)を外れて元来無駄
となっていた赤外線を反射鏡(10c)が反射し、この赤
外線で半導体ウェーハ(3)の端部(3b)が局部加熱さ
れる。したがって、反射鏡(10c)による半導体ウェー
ハ(3)の端部(3b)の赤外線照射量を、端部(3b)
の通常加熱時での温度低下分に見合う量に設定しておく
と、半導体ウェーハ(3)は全体が均一な温度で加熱さ
れる。The apparatus shown in FIG. 3 irradiates infrared rays from the lamp light source (1) onto the entire upper surface of the semiconductor wafer (3) in the same manner as the apparatus shown in FIG. The reflecting mirror (10c) reflects the infrared rays that have been originally wasted after they have come off the wafer (3), and the infrared rays locally heat the end portion (3b) of the semiconductor wafer (3). Therefore, the infrared ray irradiation amount of the end portion (3b) of the semiconductor wafer (3) by the reflecting mirror (10c) can be calculated as follows.
The semiconductor wafer (3) is heated at a uniform temperature when the amount is set to correspond to the temperature decrease during normal heating.
【0025】図3装置の場合も、反射鏡(10c)がリフ
レクタ(4)と拡散板(5)で囲まれたクリーンな空間に
在るので、反射鏡(10c)が曇って反射率が変化すると
いった心配が無く、保守管理が容易である。Also in the case of the apparatus shown in FIG. 3, since the reflecting mirror (10c) is in a clean space surrounded by the reflector (4) and the diffuser plate (5), the reflecting mirror (10c) becomes cloudy and the reflectance changes. It is easy to maintain and manage without worrying about it.
【0026】図4の第4の実施例に示されるランプアニ
ール装置は、図6装置におけるチャンバー(7)内の半
導体ウェーハ(3)の端部(3b)近傍に、特定の蓄熱部
材(11)を追加設置したものである。蓄熱部材(11)
は、チャンバー(7)の外周のランプ光源(2)からの熱
線で加熱される熱容量大なる石英ブロックなどである。
蓄熱部材(11)が石英ブロックの場合、石英のステージ
(8')と一体物にすることが可能である。The lamp annealing apparatus shown in the fourth embodiment of FIG. 4 has a specific heat storage member (11) near the end (3b) of the semiconductor wafer (3) in the chamber (7) of the apparatus shown in FIG. Is additionally installed. Heat storage member (11)
Is a quartz block or the like having a large heat capacity, which is heated by heat rays from the lamp light source (2) on the outer periphery of the chamber (7).
When the heat storage member (11) is a quartz block, it can be integrated with the quartz stage (8 ').
【0027】ステージ(8')に半導体ウェーハ(3)
と、この半導体ウェーハ(3)の端部(3b)近くに蓄熱
部材(11)を載せたものをチャンバー(7)に入れ、チ
ャンバー(7)内を所定のガス雰囲気にしておいて、ラ
ンプ光源(2)を点灯させ、半導体ウェーハ(3)を加熱
すると同時に蓄熱部材(11)も加熱する。加熱された半
導体ウェーハ(3)の端部(3b)は、放熱により温度低
下しようとするが、端部(3b)近傍の空間が蓄熱部材
(11)で高温雰囲気に保たれているので、端部(3b)
の放熱が抑制され、端部(3b)の温度低下が抑制され
る。その結果、半導体ウェーハ(3)は、全体に均一な
温度分布で加熱される。The semiconductor wafer (3) on the stage (8 ')
And a semiconductor wafer (3) on which a heat storage member (11) is mounted near the end (3b) is placed in a chamber (7) and the inside of the chamber (7) is kept in a predetermined gas atmosphere. (2) is turned on to heat the semiconductor wafer (3) and simultaneously heat the heat storage member (11). Although the temperature of the end portion (3b) of the heated semiconductor wafer (3) tends to decrease due to heat radiation, since the space near the end portion (3b) is kept in a high temperature atmosphere by the heat storage member (11), Part (3b)
Of heat is suppressed, and the temperature decrease of the end portion (3b) is suppressed. As a result, the semiconductor wafer (3) is heated with a uniform temperature distribution throughout.
【0028】又、石英ブロックは酸化シリコンからな
り、半導体ウェーハ(3)と同様、赤外線を吸収するた
め、ランプ光源(1)のアークランプによって加熱され
る。そこで、石英ブロックの蓄熱部材(11)を図1及び
図2装置における半導体ウェーハ(3)の端部近傍にそれ
ぞれプリズム(10a)及び反射鏡(10b)に付加して設置
すると、プリズム(10a)及び反射鏡(10b)によって集
光される共に、蓄熱部材(11)によって放熱を防止し、
端部(3b)の部分加熱が更に促進される。又、半導体
ウェーハ(3)と同じシリコンに近い蓄熱部材(11)を選択
しても良い。The quartz block is made of silicon oxide and absorbs infrared rays like the semiconductor wafer (3), and is therefore heated by the arc lamp of the lamp light source (1). Therefore, when the heat storage member (11) of the quartz block is added to the prism (10a) and the reflecting mirror (10b) near the end of the semiconductor wafer (3) in the apparatus shown in FIGS. 1 and 2, respectively, the prism (10a) And the light is condensed by the reflecting mirror (10b), and heat is prevented by the heat storage member (11),
Partial heating of the end (3b) is further promoted. Also, the heat storage member (11), which is similar to silicon as the semiconductor wafer (3), may be selected.
【0029】尚、半導体ウェーハ(3)だけでなく、それ
以外の被加熱体を一枚ずつ加熱する場合にも、本発明を
適用出来る。The present invention can be applied not only to the semiconductor wafer (3) but also to heating other objects to be heated one by one.
【0030】[0030]
【発明の効果】本発明は、以上の構成にしたので、次な
る効果を奏する。Since the present invention has the above-mentioned structure, it has the following effects.
【0031】請求項1乃至3記載の加熱装置(ランプア
ニール装置)によれば、ランプ光源の赤外線で全体に平
均的に加熱される半導体ウェーハの端部は、放熱で温度
低下しようとするが、この端部をプリズムや反射鏡の局
部加熱用光学手段で赤外線を、他より多く集中的に照射
して局部加熱したので、半導体ウェーハ端部の温度低下
が抑制されて、半導体ウェーハの全体を均一な温度分布
で加熱できるようになり、半導体ウェーハ全体に均一に
不純物押込み拡散を行うなどの熱処理が可能となり、半
導体ウェーハに形成される半導体素子の品質の均一化、
歩留まり向上化に効果がある。According to the heating device (lamp annealing device) of the first to third aspects, the temperature of the end portion of the semiconductor wafer, which is uniformly heated by the infrared rays of the lamp light source, tends to decrease due to heat radiation. This end is locally heated by irradiating infrared rays more intensively than the others with the local heating optical means such as a prism or a reflecting mirror, so that the temperature drop at the end of the semiconductor wafer is suppressed and the entire semiconductor wafer is made uniform. It becomes possible to heat with a uniform temperature distribution, and it becomes possible to perform heat treatment such as uniformly pushing impurities into the entire semiconductor wafer, and to make the quality of the semiconductor elements formed on the semiconductor wafer uniform.
It is effective in improving the yield.
【0032】請求項4記載の加熱装置(ランプアニール
装置)においても、半導体ウェーハの端部近傍に配置し
た蓄熱部材が半導体ウェーハ端部の放熱を抑制し、半導
体ウェーハ全体の均一な加熱を容易にするので、半導体
ウェーハに形成される半導体素子の品質の均一化、歩留
まり向上化に効果がある。Also in the heating device (lamp annealing device) according to the fourth aspect, the heat storage member arranged near the end of the semiconductor wafer suppresses the heat radiation at the end of the semiconductor wafer and facilitates uniform heating of the entire semiconductor wafer. Therefore, it is effective in making the quality of the semiconductor elements formed on the semiconductor wafer uniform and improving the yield.
【図1】本発明の第1の実施例の加熱装置の概略を示す
要部の縦断面図FIG. 1 is a vertical cross-sectional view of a main part showing an outline of a heating device according to a first embodiment of the present invention.
【図2】本発明の第2の実施例の加熱装置の概略を示す
要部の縦断面図FIG. 2 is a vertical cross-sectional view of a main part showing an outline of a heating device according to a second embodiment of the present invention.
【図3】本発明の第3の実施例の加熱装置の概略を示す
要部の縦断面図FIG. 3 is a vertical cross-sectional view of a main part showing an outline of a heating device according to a third embodiment of the present invention.
【図4】本発明の第4の実施例の加熱装置の概略を示す
要部の縦断面図FIG. 4 is a vertical cross-sectional view of a main part showing an outline of a heating device according to a fourth embodiment of the present invention.
【図5】従来の加熱装置の概略を示す要部の縦断面図FIG. 5 is a vertical cross-sectional view of a main part showing an outline of a conventional heating device.
【図6】他の従来の加熱装置の概略を示す要部の縦断面
図FIG. 6 is a vertical cross-sectional view of an essential part showing an outline of another conventional heating device.
1 ランプ光源 2 ランプ光源 3 半導体ウェーハ 10 局部加熱用光学手段 10a プリズム 10b 反射鏡 10c 反射鏡 11 蓄熱部材 1 lamp light source 2 lamp light source 3 semiconductor wafer 10 optical means for local heating 10a prism 10b reflecting mirror 10c reflecting mirror 11 heat storage member
Claims (4)
に均一に照射して加熱する装置であって、 上記被加熱体の端部に他よりランプ光源の赤外線を多く
集中させて照射する局部加熱用光学手段を付設したこと
を特徴とする加熱装置。1. An apparatus for uniformly irradiating and heating infrared rays from a lamp light source to an entire object to be heated, wherein the infrared rays of the lamp light source are concentrated and applied to the end of the object to be heated more than others. A heating device having a heating optical means.
の赤外線を屈折して被加熱体端部に照射するプリズムで
ある請求項1記載の加熱装置。2. The heating device according to claim 1, wherein the local heating optical means is a prism for refracting infrared rays from the lamp light source and irradiating the infrared rays to the end of the object to be heated.
の赤外線を被加熱体端部に反射する反射鏡である請求項
1記載の加熱装置。3. The heating device according to claim 1, wherein the local heating optical means is a reflecting mirror that reflects infrared rays from the lamp light source to the end portion of the object to be heated.
に均一に照射して加熱する装置であって、 被加熱体の端部近傍に、ランプ光源の赤外線で加熱され
る熱容量の大きな蓄熱部材を配置したことを特徴とする
加熱装置。4. An apparatus for uniformly irradiating and heating infrared rays from a lamp light source on a whole body to be heated, the heat storage member having a large heat capacity to be heated by the infrared rays of the lamp light source in the vicinity of an end of the body to be heated. The heating device is characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22239092A JPH0669148A (en) | 1992-08-21 | 1992-08-21 | Heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22239092A JPH0669148A (en) | 1992-08-21 | 1992-08-21 | Heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0669148A true JPH0669148A (en) | 1994-03-11 |
Family
ID=16781617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22239092A Withdrawn JPH0669148A (en) | 1992-08-21 | 1992-08-21 | Heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0669148A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012064742A (en) * | 2010-09-16 | 2012-03-29 | Dainippon Screen Mfg Co Ltd | Heat treatment apparatus |
JP2014514734A (en) * | 2011-03-11 | 2014-06-19 | アプライド マテリアルズ インコーポレイテッド | Off-angle heating of the underside of the substrate using a lamp assembly |
KR20190104726A (en) * | 2018-03-02 | 2019-09-11 | 주성엔지니어링(주) | Apparatus for treating substrate |
-
1992
- 1992-08-21 JP JP22239092A patent/JPH0669148A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012064742A (en) * | 2010-09-16 | 2012-03-29 | Dainippon Screen Mfg Co Ltd | Heat treatment apparatus |
JP2014514734A (en) * | 2011-03-11 | 2014-06-19 | アプライド マテリアルズ インコーポレイテッド | Off-angle heating of the underside of the substrate using a lamp assembly |
US9818587B2 (en) | 2011-03-11 | 2017-11-14 | Applied Materials, Inc. | Off-angled heating of the underside of a substrate using a lamp assembly |
US9863038B2 (en) | 2011-03-11 | 2018-01-09 | Applied Materials, Inc. | Off-angled heating of the underside of a substrate using a lamp assembly |
KR20190104726A (en) * | 2018-03-02 | 2019-09-11 | 주성엔지니어링(주) | Apparatus for treating substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8138451B2 (en) | Heating device for heating semiconductor wafers in thermal processing chambers | |
JP5055756B2 (en) | Heat treatment apparatus and storage medium | |
JP3215155B2 (en) | Method for rapid heat treatment of semiconductor wafer by irradiation | |
US7269343B2 (en) | Heating configuration for use in thermal processing chambers | |
US6570134B2 (en) | Heat treatment device of the light irradiation type and heat treatment process of the irradiation type | |
US20080008460A1 (en) | System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy | |
US5719991A (en) | System for compensating against wafer edge heat loss in rapid thermal processing | |
US20130323936A1 (en) | Apparatus and methods for rapid thermal processing | |
KR100970013B1 (en) | Heat treatment device | |
JP2012178576A (en) | Heat treatment device and storage medium | |
JPH0669148A (en) | Heater | |
JP2008117892A (en) | Semiconductor manufacturing device and manufacturing method of semiconductor device | |
JPH10321547A (en) | Heat treatment equipment | |
JP2003022982A (en) | Heat treatment device | |
TW540121B (en) | Heat treatment device and process with light irradiation | |
JP2003264157A (en) | Wafer heating device | |
TW546679B (en) | Heating method | |
JPS63260018A (en) | Lamp annealing equipment | |
JP4419377B2 (en) | Flash lamp light irradiation device | |
JPS63257221A (en) | Lamp annealing apparatus | |
JP5274846B2 (en) | Heat treatment equipment | |
KR100395661B1 (en) | Rapid thermal processing apparatus | |
JP2716116B2 (en) | Light irradiation heating furnace | |
JPH0864548A (en) | Wafer lamp annealing method and apparatus | |
JPH0351091B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991102 |