[go: up one dir, main page]

JPH0666532B2 - Method for manufacturing glass-ceramic composite substrate - Google Patents

Method for manufacturing glass-ceramic composite substrate

Info

Publication number
JPH0666532B2
JPH0666532B2 JP59070373A JP7037384A JPH0666532B2 JP H0666532 B2 JPH0666532 B2 JP H0666532B2 JP 59070373 A JP59070373 A JP 59070373A JP 7037384 A JP7037384 A JP 7037384A JP H0666532 B2 JPH0666532 B2 JP H0666532B2
Authority
JP
Japan
Prior art keywords
glass
alkoxide
substrate
forming
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59070373A
Other languages
Japanese (ja)
Other versions
JPS60215569A (en
Inventor
一典 山中
悠一 鈴木
紘一 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59070373A priority Critical patent/JPH0666532B2/en
Publication of JPS60215569A publication Critical patent/JPS60215569A/en
Publication of JPH0666532B2 publication Critical patent/JPH0666532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明はセラミック粒子とガラスとが均一に分散した配
線基板の製造方法に関する。
Description: (a) Technical Field of the Invention The present invention relates to a method for manufacturing a wiring board in which ceramic particles and glass are uniformly dispersed.

(b)技術の背景 情報処理の高速化と大容量化を達成するため、電算機に
使用されているIC,LSIなどの半導体素子は集積度が増す
と共にこれを構成する単位素子は益々小型化されつつあ
る。
(B) Background of technology In order to achieve high-speed and large-capacity information processing, ICs, LSIs and other semiconductor elements used in computers are becoming more integrated, and the unit elements that make them up are becoming smaller and smaller. Is being done.

例えば集積度を増す方法としてVLSIが実用化され、また
半導体素子へのパッシベーション法の改良により、従来
のハーメチック外装に代わって複数個の半導体チップを
そのまゝ耐熱性基板に装着し、これを取替え単位として
プリント配線基板に装着する実装法が採られようとして
いる。
For example, VLSI has been put to practical use as a method for increasing the degree of integration, and due to improvements in the passivation method for semiconductor elements, multiple semiconductor chips have been mounted on the heat-resistant substrate instead of the conventional hermetic exterior and replaced. As a unit, a mounting method of mounting on a printed wiring board is about to be adopted.

またLSIなどを構成する単位素子は益々小型化し、単位
素子間を結ぶ配線パターンを例にとれば約100μm幅に
まで縮小されつつある。
In addition, the unit elements that make up LSI and the like are becoming smaller and smaller, and the wiring pattern connecting the unit elements is being reduced to a width of about 100 μm.

このように半導体素子の集積度が増し小型化が進むのに
対応し、これらの半導体素子を装着する耐熱性基板の性
能も向上が必要である。
As the degree of integration of semiconductor elements increases and miniaturization progresses in this way, it is necessary to improve the performance of the heat resistant substrate on which these semiconductor elements are mounted.

(c)従来技術と問題点 複数個のIC,LSIなどの半導体素子を装着する配線基板は
半導体素子の端子数が多いことから多層配線基板が使わ
れており、この層数は装着する素子の集積度と素子数に
比例して増加している。
(C) Conventional technology and problems A multilayer wiring board is used for a wiring board on which a plurality of ICs, LSIs, and other semiconductor elements are mounted because the number of terminals of the semiconductor element is large. It is increasing in proportion to the degree of integration and the number of elements.

一方多層配線基板において、配線パターンが施されてい
る各層の厚さは構成する層数に反比例して減少する傾向
にある。
On the other hand, in a multilayer wiring board, the thickness of each layer provided with a wiring pattern tends to decrease in inverse proportion to the number of layers included.

さて、従来より半導体チップを装着する基板としてはア
ルミナを構成材料とする多層配線基板が使用されてき
た。
Conventionally, a multilayer wiring board having alumina as a constituent material has been used as a board on which a semiconductor chip is mounted.

この理由は絶縁抵抗が高く且つ耐熱性が優れていること
による。
The reason is that the insulation resistance is high and the heat resistance is excellent.

然し、このようなアルミナ基板は多層として用いる場合
は単層と違い色々な問題点がある。
However, such an alumina substrate has various problems when it is used as a multilayer, unlike a single layer.

すなわちアルミナの焼結温度は千数百℃と極めて高く、
そのため多層配線パターンを形成する金属材料として電
気伝導度の高い金(Au,融点1064℃)や銅(Cu,融点1083
℃)などを使用することができない。
In other words, the sintering temperature of alumina is extremely high at a few thousand hundreds of degrees,
Therefore, gold (Au, melting point 1064 ℃) and copper (Cu, melting point 1083), which have high electrical conductivity, are used as metal materials for forming the multilayer wiring pattern.
Can not be used.

そこで融点が高く、また酸化し難い金属材料としてモリ
ブデン(Mo),タングステン(W)などの高融点金属が
用いられている。
Therefore, high melting point metals such as molybdenum (Mo) and tungsten (W) are used as metal materials having a high melting point and being difficult to oxidize.

然し先に記したように配線パターン幅が100μm程度に
まで縮小されてくると導体抵抗が問題となり、より低い
値を持つ導体材料の使用が必要となる。
However, as described above, when the wiring pattern width is reduced to about 100 μm, the conductor resistance becomes a problem, and it is necessary to use a conductor material having a lower value.

次ぎに多層配線基板の層数が増し、従って配線パターン
間の間隔が狭くなり、また上下のパターンが交叉するか
或いは平行に走る場合は静電容量の増大による漏話が問
題となる。
Next, the number of layers of the multi-layer wiring board increases, so that the distance between the wiring patterns becomes narrower, and when the upper and lower patterns intersect or run in parallel, crosstalk due to an increase in capacitance becomes a problem.

すなわち静電容量値は対向する電極面積の大きさと誘電
材料の誘電率に比例し、電極間距離に反比例する関係が
ある。
That is, the capacitance value is proportional to the size of the opposing electrode area and the dielectric constant of the dielectric material, and is inversely proportional to the distance between the electrodes.

それゆえに多層基板を構成する単位層の厚さが減少する
に従って静電容量は増しており、信号の周波数が高いこ
とゝ相待って漏話量が増し、そのため信号の高速伝播が
困難となる。
Therefore, the capacitance increases as the thickness of the unit layer constituting the multilayer substrate decreases, and the amount of crosstalk increases due to the high frequency of the signal, which makes high-speed signal propagation difficult.

このような問題を解決するには低誘電率で、焼成温度が
低く、且つ絶縁抵抗が高い材料で基板を形成すればよ
い。
To solve such a problem, the substrate may be formed of a material having a low dielectric constant, a low baking temperature, and a high insulation resistance.

そこでこの目的に沿うものとして結晶化ガラス基板,セ
ラミックを分散したガラス基板などについて研究が進め
られている。
Therefore, research has been conducted on crystallized glass substrates, glass substrates in which ceramics are dispersed, etc. to meet this purpose.

例えば硼珪酸ガラスの誘電率は4.1乃至6とアルミナの
7に比べて低く、一方軟化温度は600乃至800℃とアルミ
ナやマグネシアなどのセラミックに比べると遥かに低
い。
For example, the dielectric constant of borosilicate glass is 4.1 to 6 which is lower than that of alumina 7, while the softening temperature is 600 to 800 ° C. which is much lower than that of ceramics such as alumina and magnesia.

そこで結晶化ガラスを使用して機械的強度を向上すると
共にガラス組成を選定して焼成温度を約1000℃とするも
の、アルミナなどのセラミックをガラス基板に混入して
機械的強度を向上したものなどが研究されている。
Therefore, crystallized glass is used to improve the mechanical strength, the glass composition is selected and the firing temperature is set to about 1000 ° C, and ceramics such as alumina is mixed into the glass substrate to improve the mechanical strength. Is being studied.

然し低誘電率で焼成温度が適当であり、機械的強度が優
れ且つ表面荒さが少ないなど多層配線基板に適した基板
は未だ実用化されるに至っていない。
However, a substrate suitable for a multilayer wiring substrate, such as a low dielectric constant, an appropriate firing temperature, excellent mechanical strength, and a small surface roughness, has not yet been put into practical use.

(d)発明の目的 本発明の目的は半導体素子を高密度実装するに適した基
板としてセラミックが均一に分散されており、且つ焼成
を低温で行うことが可能なガラスセラミック基板の製造
方法を提供するにある。
(D) Object of the Invention An object of the present invention is to provide a method for manufacturing a glass ceramic substrate in which ceramics are uniformly dispersed and which can be fired at a low temperature as a substrate suitable for high-density mounting of semiconductor elements. There is.

(e)発明の構成 本発明の目的は硼素アルコキシドと硅素アルコキシドと
の混合液にセラミック粉末を添加し、懸濁させた状態で
アルコキシド法を用いて加水分解を行い、セラミック粉
末の表面が硼珪酸ガラスに対応する組成比の酸化物ゲル
により覆われた泥漿状の沈澱物を形成する工程と、泥漿
状の沈澱物を板状に成型し水分と溶剤とを除去してグリ
ーンシートを作り、このグリーンシートに配線パターン
を印刷して単位層を形成する工程と、 単位層上にガラスペーストを印刷した後、積層して一体
化する工程と、 積層体を焼成してガラスセラミック多層基板を形成する
工程と、 からなることを特徴としてガラスセラミック複合基板の
製造方法を構成することにより解決することができる。
(E) Structure of the Invention The object of the present invention is to add ceramic powder to a mixed solution of boron alkoxide and silicon alkoxide, and in a suspended state, hydrolyze using the alkoxide method so that the surface of the ceramic powder is borosilicate. A step of forming a sludge-like precipitate covered with an oxide gel having a composition ratio corresponding to glass, and molding the sludge-like precipitate into a plate shape to remove water and a solvent to form a green sheet. A step of printing a wiring pattern on the green sheet to form a unit layer, a step of printing a glass paste on the unit layer and then laminating and integrating the layers, and firing the laminated body to form a glass ceramic multilayer substrate. This can be solved by configuring the method for manufacturing a glass-ceramic composite substrate, which is characterized by comprising the following steps:

(f)発明の実施例 本発明は機械的強度が優れ且つ低誘電率を示す基板とし
てアルミナなどの微粉末を低誘電率を示すガラス中に均
一に分散したものを使用するもので、この方法として金
属アルコキシドの加水分解反応と縮合反応により作った
酸化物ゲルを使用する。
(F) Example of the Invention The present invention uses a substrate having excellent mechanical strength and a low dielectric constant in which fine powder such as alumina is uniformly dispersed in glass having a low dielectric constant. As the oxide gel, an oxide gel produced by a hydrolysis reaction and a condensation reaction of a metal alkoxide is used.

従来ガラスとは珪酸塩ガラスを指し、網目構造を形成す
る珪酸基と硼素,燐などの酸化物の基とが共重合して安
定化したもので、ガラス転移点を持ち非晶質構造をとる
ものを指す。
Conventional glass refers to silicate glass, which is a silicate group that forms a network structure and is stabilized by copolymerization with groups of oxides such as boron and phosphorus, and has an amorphous structure with a glass transition point. Refers to something.

また網目構造をとる重合珪酸基の中にナトリウム,カリ
ウムなどのアルカリイオンやカルシウム,マグネシウム
などのアルカリ土類イオンが点々と入って安定化した構
造のものもある。
There is also a structure in which alkali-ion ions such as sodium and potassium and alkaline-earth ions such as calcium and magnesium enter in a stable manner in the polymerized silicic acid group having a network structure and are stabilized.

然し本目的に叶う基板材料は誘電率が低く、絶縁抵抗が
高く,イオン伝導などを生じない材料に限定されてお
り、軟化温度が1000℃以下で目的に沿う材料として硼珪
酸ガラスがある。
However, substrate materials that fulfill this purpose are limited to materials that have a low dielectric constant, high insulation resistance, and do not cause ionic conduction, and borosilicate glass is a material that meets the purpose at a softening temperature of 1000 ° C or less.

さて従来のガラスを作る方法は上記のような酸化物を混
合して融解し、その融液を急冷してガラスが形成されて
いる。
In the conventional method for producing glass, the above oxides are mixed and melted, and the melt is rapidly cooled to form glass.

然しこの方法とは別に室温付近の溶液反応で非晶質構造
のゲルを作り、これを加熱してガラスを製造する方法が
開発されておりその方法は金属−酸素結合を持つ金属ア
ルコキシドを溶液内で加水分解して重合させ酸化物網目
構造をもつゲルを作る方法である。
However, apart from this method, a method has been developed in which a gel having an amorphous structure is formed by a solution reaction near room temperature, and this is heated to produce glass, which is a method in which a metal alkoxide having a metal-oxygen bond is in solution. It is a method of producing a gel having an oxide network structure by hydrolyzing and polymerizing with.

すなわち化学式でM(OR)n但し、Mは金属,Rはアルキ
ル基、nはMの価数に依存、で表される金属アルコキシ
ド溶液を加水分解するとM−O−M結合をもつ化合物が
でき、更に反応を進めると重合してゲルとなる。
That is, in the chemical formula, M (OR) n, where M is a metal, R is an alkyl group, n is dependent on the valence of M, and a metal alkoxide solution represented by is hydrolyzed to form a compound having an MOM bond. As the reaction proceeds further, it polymerizes into a gel.

次ぎにこのゲルは対応するガラス転移温度で加熱するこ
とによりガラスとなる。
The gel is then turned into glass by heating at the corresponding glass transition temperature.

硼珪酸ガラスを作る具体例について言えば、硼素のアル
コキシドB(OC溶液と珪素のアルコキシドS
i(OC溶液とを混合して加水分解すればよ
いが、通常触媒として塩酸(HCl)かアンモニア(NH
OH)の添加が行なわれており、また反応の緩和剤および
粘度調整剤としてアルコール(COH)を加えるこ
とも行われている。
Speaking of a specific example of making a borosilicate glass, a boron alkoxide B (OC 2 H 5 ) 3 solution and a silicon alkoxide S
It may be hydrolyzed by mixing with i (OC 2 H 5 ) 4 solution, but usually hydrochloric acid (HCl) or ammonia (NH 4 ) is used as a catalyst.
OH) is added, and alcohol (C 2 H 5 OH) is added as a reaction modifier and a viscosity modifier.

ここで金属アルコキシドの種類が異なる場合加水分解速
度は必ずしも一定ではないが、この例の場合のように近
似する場合は B−O−Si−O の結合をもつゲルができ、これをガラス転移点付近の温
度で加熱することによつてガラスとすることができ、こ
のようにして作ったものは溶融法で作ったものと熱膨張
係数,密度などの物理的特性が一致することが知られて
いる。
Here, the hydrolysis rate is not always constant when the type of metal alkoxide is different, but in the case of approximating as in the case of this example, a gel having a B--O--Si--O bond is formed, which has a glass transition point. It is known that glass can be made by heating at a temperature in the vicinity. It is known that the glass thus produced has the same physical properties as those produced by the melting method, such as thermal expansion coefficient and density. There is.

本発明はこのようにして作られたゲル状の酸化物の粒径
は1μm以下と極めて小さく、且つガラス組成比に均一
に混合されており、従って従来の酸化物粉末を混合した
ものと比較して遥かに低温の焼成で均一の組成を持つガ
ラスができる点に着目した。そして複数種のアルコキシ
ド混合溶液を加水分解させ縮合反応を起こさせる際にア
ルミナなどのセラミック粉末を一緒に混入しておくこと
により、ガラス組成比の酸化物に覆われたセラミックス
の泥しょうを得るものである。
According to the present invention, the particle size of the gel oxide thus produced is extremely small, 1 μm or less, and is uniformly mixed in the glass composition ratio. Therefore, in comparison with the conventional oxide powder mixed. Attention was paid to the fact that glass with a uniform composition can be produced by firing at a much lower temperature. Then, by mixing ceramic powder such as alumina together when hydrolyzing a condensation reaction by mixing multiple types of alkoxide mixed solutions, a ceramic slurry covered with oxides with a glass composition ratio is obtained. Is.

このように処理したセラミックスの泥しょうは基板状に
成型し100乃至200℃で加圧成型して水分と溶剤を蒸発さ
せたのち、Au或いはCu導体ペーストを用いて配線パター
ンの形成を行って単位層の形成が終わる。
The ceramic sludge treated in this way is molded into a substrate, pressure-molded at 100 to 200 ° C to evaporate water and solvent, and then the wiring pattern is formed using Au or Cu conductor paste. The formation of layers is complete.

次ぎにこのようにして作った複数個の単位層はガラスペ
ーストをバインダとし、スクリーン印刷法で薄く塗布
し、正確に位置合わせし、加圧して一体化したのち焼成
することによりセラミック粉末が均一に分散したガラス
多層基板を得ることができる。
Next, the plurality of unit layers made in this way use glass paste as a binder, apply thinly by screen printing method, align accurately, pressurize and integrate and then fire to make the ceramic powder uniform. A dispersed glass multilayer substrate can be obtained.

以下実施例について説明する。Examples will be described below.

セラミックスとして粒径数μmに粉砕したアルミナを使
用し、一方ガラスとしては硼珪酸ガラスを使用し、これ
は硼素と珪素のアルコキシドすなわちB(OC
Si(OCとを重量比が2:5に混合し塩酸を触
媒として加水分解を行いBOとSiOで被覆されたアルミナ
を作った。
Alumina crushed to a particle size of several μm is used as ceramics, while borosilicate glass is used as glass, which is an alkoxide of boron and silicon, that is, B (OC 2 H 5 )
3 Si (OC 2 H 5 ) 4 was mixed at a weight ratio of 2: 5 and hydrolyzed using hydrochloric acid as a catalyst to produce alumina coated with BO and SiO.

ここでアルミナと酸化物との重量比率は約1:1とした。Here, the weight ratio of alumina to oxide was about 1: 1.

このようにして得た泥しょう状のアルミナは成型し易く
なるまで反応を進行させ、次ぎにこれを加熱して溶剤を
蒸発させ、次ぎに成型型に入れ150℃で20MPaの圧力で成
型してシートを作り、Auペーストを用いて配線パターン
を作り、かかるシートの表面にガラスペーストを印刷し
た後、先と同じ圧力で加圧し一体化した後、900℃で2
時間焼成することにより多層基板を得ることができる。
The sludge-like alumina thus obtained is allowed to undergo a reaction until it becomes easy to mold, then it is heated to evaporate the solvent, then put in a mold and molded at 150 ° C. under a pressure of 20 MPa. Make a sheet, make a wiring pattern using Au paste, print the glass paste on the surface of the sheet, press it with the same pressure as before to integrate it, and then at 900 ℃ 2
A multilayer substrate can be obtained by firing for a time.

なお、かかる基板の複合誘電率は5.5また表面粗度は4
μmであった。
The composite permittivity of the substrate is 5.5 and the surface roughness is 4
was μm.

(g)発明の効果 本発明は誘電率が低く、焼成温度が低く、機械的強度が
優れた多層基板を実用化する目的でなされたもので、本
発明の実施によりアルミナなどセラミック粉末の均一分
散が可能となり、またガラス成分比の酸化物微粉末が均
一に分散しているため焼成温度が低いにも拘わらず高温
で溶融したのと同じガラスを得ることができる。
(G) Effects of the Invention The present invention has been made for the purpose of putting into practical use a multilayer substrate having a low dielectric constant, a low firing temperature, and an excellent mechanical strength. By carrying out the present invention, a ceramic powder such as alumina is uniformly dispersed. In addition, since the oxide fine powder having the glass component ratio is uniformly dispersed, the same glass as that melted at a high temperature can be obtained despite the low firing temperature.

以上のように本発明の実施により、金,銅など誘電率の
良い材料で配線パターンを作ることが出来るとともに電
気的および機械的性質の優れた基板を作ることが可能と
なる。
As described above, by carrying out the present invention, it is possible to form a wiring pattern using a material having a good dielectric constant such as gold or copper, and to form a substrate having excellent electrical and mechanical properties.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C03C 8/02 14/00 H01B 3/02 A 9059−5G (72)発明者 丹羽 紘一 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 昭49−37910(JP,A) 特開 昭59−26966(JP,A) 特開 昭57−175724(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location C03C 8/02 14/00 H01B 3/02 A 9059-5G (72) Inventor Koichi Niwa Kawasaki, Kanagawa Prefecture 1015 Kamiodanaka, Nakahara-ku, Ichi, Fujitsu Limited (56) References JP-A-49-37910 (JP, A) JP-A-59-26966 (JP, A) JP-A-57-175724 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】硼素アルコキシドと硅素アルコキシドとの
混合液にセラミック粉末を添加し、懸濁させた状態でア
ルコキシド法を用いて加水分解を行い、セラミック粉末
の表面が硼硅酸ガラスに対応する組成比の酸化物ゲルに
より覆われた泥漿状の沈澱物を形成する工程と、 該泥漿状の沈澱物を板状に成型し水分と溶剤とを除去し
てグリーンシートを作り、該グリーンシートに配線パタ
ーンを印刷して単位層を形成する工程と、 該単位層上にガラスペーストを印刷した後、積層して加
圧し、一体化する工程と、 該積層体を配線パターンを形成する金属粉末の融点より
低い温度で焼成し、ガラスとセラミックスの複合体より
なるガラスセラミックス多層回路基板を形成する工程
と、 からなることを特徴とするガラス−セラミックス複合基
板の製造方法。
1. A composition in which ceramic powder is added to a mixed solution of boron alkoxide and silicon alkoxide, and the resulting suspension is hydrolyzed by the alkoxide method, and the surface of the ceramic powder corresponds to borosilicate glass. A step of forming a sludge-like precipitate covered with an oxide gel having a specific ratio, forming a green sheet by molding the sludge-like precipitate into a plate shape and removing water and a solvent, and wiring the green sheet. A step of printing a pattern to form a unit layer, a step of printing a glass paste on the unit layer, then laminating and pressurizing to integrate the laminated body, and a melting point of metal powder forming the wiring pattern. A step of firing at a lower temperature to form a glass-ceramic multilayer circuit board made of a composite of glass and ceramics. Build method.
JP59070373A 1984-04-09 1984-04-09 Method for manufacturing glass-ceramic composite substrate Expired - Lifetime JPH0666532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070373A JPH0666532B2 (en) 1984-04-09 1984-04-09 Method for manufacturing glass-ceramic composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070373A JPH0666532B2 (en) 1984-04-09 1984-04-09 Method for manufacturing glass-ceramic composite substrate

Publications (2)

Publication Number Publication Date
JPS60215569A JPS60215569A (en) 1985-10-28
JPH0666532B2 true JPH0666532B2 (en) 1994-08-24

Family

ID=13429571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070373A Expired - Lifetime JPH0666532B2 (en) 1984-04-09 1984-04-09 Method for manufacturing glass-ceramic composite substrate

Country Status (1)

Country Link
JP (1) JPH0666532B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774104B2 (en) * 1986-06-09 1995-08-09 株式会社東芝 Method for manufacturing multifunctional ceramics
JPH02283653A (en) * 1989-04-21 1990-11-21 Matsushita Electric Works Ltd Production of powder-sintered article and coloring method thereof
DE3915496C1 (en) * 1989-05-12 1990-11-15 Bayer Ag, 5090 Leverkusen, De
US5352481A (en) * 1992-05-29 1994-10-04 Hughes Aircraft Company Process for forming particles having a uniform size distribution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937910A (en) * 1972-08-14 1974-04-09
JPS6052083B2 (en) * 1981-04-23 1985-11-18 日本碍子株式会社 Manufacturing method of high purity ceramic powder
JPS5926966A (en) * 1982-07-31 1984-02-13 三菱鉱業セメント株式会社 Manufacture of ceramics green molded body

Also Published As

Publication number Publication date
JPS60215569A (en) 1985-10-28

Similar Documents

Publication Publication Date Title
EP0477004B1 (en) Multi-layer wiring board
US4301324A (en) Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper
JPH0634452B2 (en) Ceramic circuit board
US5458709A (en) Process for manufacturing multi-layer glass ceramic substrate
JPS63358A (en) Low permittivity material for manufacture of subminiature electronic device
EP0532842A1 (en) Low dielectric inorganic composition for multilayer ceramic package
JPH03150236A (en) Ceramic composition and its use
JPH10284836A (en) Ceramic batch laminated wiring board and method of manufacturing the same
JPH0811696B2 (en) Multi-layer glass ceramic substrate and manufacturing method thereof
US5122930A (en) High heat-conductive, thick film multi-layered circuit board
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
JPH0666532B2 (en) Method for manufacturing glass-ceramic composite substrate
EP0476954B1 (en) Method for preparing green sheets
JPH0676227B2 (en) Glass ceramic sintered body
JPH06345530A (en) Multilayreed glass-ceramic substrate and production thereof
JPH0617249B2 (en) Glass ceramic sintered body
JPH0617250B2 (en) Glass ceramic sintered body
JPH07502245A (en) Low dielectric constant substrate
US5352482A (en) Process for making a high heat-conductive, thick film multi-layered circuit board
JPH09172258A (en) Glass-ceramic multilayer wiring board and manufacturing method thereof
JPH068189B2 (en) Oxide dielectric material
JP2000026163A (en) Production of low dielectric constant substrate
JP3047985B2 (en) Manufacturing method of multilayer ceramic wiring board
JPS59162169A (en) Ceramics and multilayer distribution panel
JPH04206552A (en) Glass-ceramic substrate