JPH0665942B2 - Chemical heat pump - Google Patents
Chemical heat pumpInfo
- Publication number
- JPH0665942B2 JPH0665942B2 JP59082200A JP8220084A JPH0665942B2 JP H0665942 B2 JPH0665942 B2 JP H0665942B2 JP 59082200 A JP59082200 A JP 59082200A JP 8220084 A JP8220084 A JP 8220084A JP H0665942 B2 JPH0665942 B2 JP H0665942B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat pump
- chemical heat
- refrigerant
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000126 substance Substances 0.000 title claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 230000002745 absorbent Effects 0.000 claims description 15
- 239000002250 absorbent Substances 0.000 claims description 15
- 239000003507 refrigerant Substances 0.000 claims description 14
- 229910021536 Zeolite Inorganic materials 0.000 claims description 10
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 10
- 239000010457 zeolite Substances 0.000 claims description 10
- 239000004113 Sepiolite Substances 0.000 claims description 5
- 229910052624 sepiolite Inorganic materials 0.000 claims description 5
- 235000019355 sepiolite Nutrition 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000000034 method Methods 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- -1 CaCl 2 Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は例えば、海水に対する地中の熱などの様に無限
に熱量はあるが温度差が小さいため使用に限界があった
低級の熱エネルギーを高温度差の高級エネルギー源に変
換するためのケミカルヒートポンプに関する。TECHNICAL FIELD OF THE INVENTION The present invention can increase low-grade heat energy, which has a limit in use because it has an infinite amount of heat but has a small temperature difference, such as underground heat against seawater. The present invention relates to a chemical heat pump for converting a temperature difference into a high-grade energy source.
従来例の構成とその問題点 ケミカルヒートポンプの基本構成に第1図に示した吸収
−再生器1、蒸発−凝縮器2およびバルブ3から成って
いる。吸収再生器1には吸収剤が充填され、蒸発−凝縮
器2には冷媒が充填されている。以下、例として吸収剤
にゼオライト,冷媒に水を用いた場合について説明す
る。容器間で水の蒸気を出入させ、それに伴なう熱エネ
ルギーの出入を利用するものである。Structure of the conventional example and its problems The basic structure of the chemical heat pump comprises the absorption-regenerator 1, the evaporation-condenser 2 and the valve 3 shown in FIG. The absorption regenerator 1 is filled with an absorbent, and the evaporation-condenser 2 is filled with a refrigerant. Hereinafter, a case where zeolite is used as an absorbent and water is used as a refrigerant will be described as an example. It makes the steam of water go in and out between the containers and uses the comings and goings of heat energy accompanying it.
この際の作動方式は従来2つの方式(一般に第1種と第
2種と呼ばれている)が考えられていた。これらの作動
原理を図示すると第2図および第3図のようになる。第
2図は第1種方式、第3図は第2種方式を表わしてい
る。いずれの図も横軸は温度で縦軸は容器内の水蒸気圧
を示している。曲線に付加した番号1,2はそれぞれ吸収
−再生器1,蒸発−凝縮器2内の蒸気圧,すなわちゼオラ
イトと水の水蒸気圧に対応している。また、各方式とも
2つずつの過程から成っており、それぞれの過程につい
ての水蒸気の移動方向を単線矢印で、熱エネルギーの移
動方向は複線矢印で示す。熱エネルギーは比較的常温に
近い低級エネルギーをq、常温から離れた高級エネルギ
ーをQで示す。As the operation method at this time, two methods (generally called the first type and the second type) have been conventionally considered. The operation principle of these is illustrated in FIGS. 2 and 3. FIG. 2 shows the first type system, and FIG. 3 shows the second type system. In each figure, the horizontal axis represents temperature and the vertical axis represents water vapor pressure in the container. The numbers 1 and 2 added to the curves correspond to the vapor pressures in the absorption-regenerator 1 and the evaporation-condenser 2, that is, the vapor pressures of zeolite and water. Further, each method is composed of two processes, and the moving direction of water vapor in each process is shown by a single-line arrow, and the moving direction of thermal energy is shown by a double-line arrow. The thermal energy is shown by q for lower energy that is relatively close to room temperature and Q for higher energy that is far from room temperature.
第2図、すなわち、第1種ケミカルヒートポンプについ
ては、高温度の熱エネルギーQ1を吸収−再生器内のゼ
オライトに与えることによって、水を蒸発−吸収器に凝
縮し(図中aからbに水蒸気が移動)この際低級エネル
ギーq1を得る。次の過程では乾燥したゼオライトが強
制的に水を吸収し(図中cからdに水蒸気が移動)この
際、高級な冷熱Q2と低級な熱q2を得る。以上の2つ
の過程を反復することにより第1種ケミカルヒートポン
プが作動する。FIG. 2, that is, for the type 1 chemical heat pump, by giving high-temperature heat energy Q 1 to the zeolite in the absorption-regenerator, water is condensed in the evaporation-absorber (from a to b in the figure). Water vapor moves) At this time, lower energy q 1 is obtained. In the next step, the dried zeolite forcibly absorbs water (water vapor moves from c to d in the figure), and at this time, high-grade cold heat Q 2 and low-grade heat q 2 are obtained. The first-class chemical heat pump operates by repeating the above two processes.
次に第3図すなわち第2種ケミカルヒートポンプについ
ては、高級な冷熱Q3によりゼオライトを再生し(図中
eよりfに水蒸気が移動)その後低級な熱q4を与える
ことにより図中gからhに水蒸気を移動し高温の熱Q4
を得るものである。Next, in FIG. 3, that is, in the type 2 chemical heat pump, zeolite is regenerated by high-grade cold heat Q 3 (water vapor moves from e to f in the figure) and then low-grade heat q 4 is given to g to h in the figure. High temperature heat by moving water vapor to Q 4
Is what you get.
以上を別の角度から考えればそれぞれの方式に含まれて
いる2つの過程は必ずそのうちの1過程は温度の高い方
から低い方に熱(水蒸気)が流れている。一般に、常温
より大きい温度差をもつ熱源ほど高級な熱あるいは冷熱
エネルギーといえる。したがって、従来の2つのタイプ
のケミカルヒートポンプは高級な冷熱エネルギーを得よ
うとすればそれだけ高級な熱エネルギーを要し高級な熱
エネルギーを得ようとすればそれだけ高級な冷熱エネル
ギーが必要であった。Considering the above from another angle, of the two processes included in each method, heat (steam) always flows from one of the higher temperatures to the lower one of the two processes. Generally, it can be said that a heat source having a temperature difference larger than room temperature has higher-grade heat or cold energy. Therefore, the conventional two types of chemical heat pumps need high-grade heat energy to obtain high-grade cold heat energy, and need high-grade cold heat energy to obtain high-grade heat energy.
発明の目的 本発明は低級な熱源を用いて高級な冷熱を得、低級な冷
熱を用いて高級な熱を得ることが可能な従来にない方式
のケミカルヒートポンプを提供することを目的とする。OBJECT OF THE INVENTION It is an object of the present invention to provide a chemical heat pump of a non-conventional type that can obtain high-grade cold heat using a low-grade heat source and obtain high-grade heat using low-grade cold heat.
発明の構成 一般に吸収剤は、水・アルコール・アンモニアなどの冷
媒蒸気を吸収した際発熱する。本発明は単位冷媒蒸気あ
たりの吸収熱が異なる2種類の吸収剤を用いたケミカル
ヒートポンプである。冷媒蒸気圧(P),温度(T),吸収熱
(ΔH)の間には、 logP=−aΔH/T+b(a,bは吸収剤に固有の係数)
の関係が成立する。したがって縦軸にlogP,横軸に1/
Tをとった曲線(P−T曲線)の傾きは(−aΔH)と
なり吸収熱(ΔH)が異なる2種類の吸収剤のP−T曲
線はある温度で交差する。また吸収剤の中には、冷媒を
吸収脱着するにつれて、P−T曲線が左右に移動する性
質のものもあり、この性質を有する吸収剤をすくなくと
も1方に用いた場合は2種類のP−T曲線の交点は冷媒
蒸気の移動にともなって移動する。本発明では以上述べ
た特性を有する吸収剤を用いてケミカルヒートポンプを
構成した。つまり開閉自在なバルブで連結された、すく
なくとも2つの槽に、P−T曲線が交点を有し、冷媒蒸
気の槽間移動にともなって交点が移動する適切な2種の
吸収剤を充填した。なお、この性質を有する吸収剤と冷
媒の組み合わせの例として、冷媒には水,アルコール,
アンモニアの類似物およびこれらの混合物、また吸収剤
にはゼオライトけいそう土,シリカゲル,セピオライト
などの天然あるいは合成鉱物、NaOH,LiBr,CaCl2,Na2
O,CaO,MgO,Na2S,などに代表されるアルカリ金属,
アルカリ土類の塩,酸化物,硫化物または硫酸などの吸
収性の酸のいずれか、あるいはこれらの混合物または化
合物などがあげられる。Structure of the Invention In general, an absorbent generates heat when absorbing refrigerant vapor such as water, alcohol, and ammonia. The present invention is a chemical heat pump using two kinds of absorbents having different absorption heat per unit refrigerant vapor. Between the refrigerant vapor pressure (P), temperature (T), and heat of absorption (ΔH), logP = -aΔH / T + b (a and b are the unique coefficients of the absorbent)
The relationship is established. Therefore, the vertical axis is logP and the horizontal axis is 1 /
The slope of the curve obtained by taking T (PT curve) is (−aΔH), and the PT curves of two kinds of absorbents having different absorption heats (ΔH) intersect at a certain temperature. In addition, some absorbents have a property that the P-T curve moves left and right as the refrigerant is absorbed and desorbed. When an absorbent having this property is used for at least one, two types of P- The intersection of the T curves moves with the movement of the refrigerant vapor. In the present invention, a chemical heat pump is constructed using the absorbent having the above-mentioned characteristics. That is, at least two tanks connected by a valve that can be opened and closed were filled with two kinds of appropriate absorbents each having an intersection of the PT curve and moving the intersection as the refrigerant vapor moves between the tanks. As an example of the combination of the absorbent having this property and the refrigerant, the refrigerant may be water, alcohol,
Ammonia analogues and their mixtures, as well as diatomaceous earth zeolite, natural or synthetic minerals such as silica gel, sepiolite, NaOH, LiBr, CaCl 2 , Na 2
Alkali metals such as O, CaO, MgO and Na 2 S,
Examples thereof include any of alkaline earth salts, oxides, sulfides, or absorbing acids such as sulfuric acid, or a mixture or compound thereof.
実施例の説明 吸収剤としてセピオライトとゼオライト,冷媒として水
を用いた本発明の実施例について説明する。ケミカルヒ
ートポンプの容器は第1図に示したものと同様の容器を
用いた。吸収−再生器1にセピオライト200gおよび水10
g,蒸発−凝縮器2にゼオライト100gを充填し、系は脱気
して封じた。Description of Examples An example of the present invention using sepiolite and zeolite as an absorbent and water as a refrigerant will be described. As the container of the chemical heat pump, the same container as that shown in FIG. 1 was used. Absorption-regenerator 1 200g sepiolite and 10 water
g, evaporation-condenser 2 was filled with 100 g of zeolite and the system was degassed and sealed.
第4図を用いて本発明の動作例を説明する。最初含水し
たセピオライトを含む吸収−−再生器1および乾燥した
ゼオライトを含む蒸発−凝縮器2はそれぞれ曲線A,Bの
P−T曲線にしたがっている。このとき約95℃付近に交
点を有している。蒸発−凝縮器2を65℃以下に保ってバ
ルブを開くと図中iよりjへ水蒸気が熱をともなって移
動し、吸収−再生器1から0℃以下の冷熱が得られた。
反応の進行にともない曲線A,BはそれぞれA′,B′に移
動した。次にバルブを閉じ、蒸発−凝縮器2を50℃に加
熱してバルブを開くと図中kより1に水蒸気が熱をとも
なって移動し、吸収−再生器1が110℃に発熱した。こ
の反応の進行にともない、曲線A′,B′はA,Bにそれぞ
れ移動し、反応終了点では、最初の状態に戻り繰り返し
同様の動作が行なわれた。An operation example of the present invention will be described with reference to FIG. The absorption-regenerator 1 containing the initially hydrated sepiolite and the evaporation-condenser 2 containing the dried zeolite follow the PT curves of curves A and B, respectively. At this time, it has an intersection at about 95 ° C. When the evaporator-condenser 2 was kept at 65 ° C or lower and the valve was opened, the steam moved from i to j in the figure with heat, and the absorption-regenerator 1 obtained cold heat of 0 ° C or lower.
As the reaction progressed, the curves A and B moved to A'and B ', respectively. Next, when the valve was closed and the evaporator-condenser 2 was heated to 50 ° C. and the valve was opened, water vapor was moved to 1 from k in the figure, and the absorption-regenerator 1 generated heat at 110 ° C. As the reaction progressed, the curves A'and B'moved to A and B, respectively, and at the reaction end point, the initial state was restored and the same operation was repeated.
発明の効果 本発明により、低い再生温度,高い冷却温度という悪条
件の下で、エネルギー的に質の高い冷熱と熱が得られ、
従来用いることができなかった質の低いエネルギー源を
用用いてケミカルヒートポンプを駆動することが可能と
なった。Effect of the Invention According to the present invention, under the adverse conditions of low regeneration temperature and high cooling temperature, energetically high quality cold heat and heat can be obtained,
It has become possible to drive chemical heat pumps using low-quality energy sources that could not be used in the past.
第1図はケミカルヒートポンプの構造を表わす概略図、
第2図〜第4図はそれぞれ、第1種,第2種および本発
明のケミカルヒートポンプの動作原理を示すP−T曲線
を動作温度をわかりやすくするため、縦軸をP、横軸を
Tで表わしたものである。 1……吸収−再生器、2……蒸発−凝縮器、3……バル
ブ。FIG. 1 is a schematic diagram showing the structure of a chemical heat pump,
FIGS. 2 to 4 show P-T curves showing the operating principles of the chemical heat pumps of the first type, the second type and the present invention, respectively, in order to make the operating temperature easy to understand, the vertical axis is P and the horizontal axis is T. It is represented by. 1 ... Absorption-regenerator, 2 ... Evaporation-condenser, 3 ... Valve.
Claims (1)
れの吸収剤が冷媒を吸収した状態の冷媒蒸気圧を温度に
対して描いた曲線が交差し、この交点が反応の進行にと
もなって移動する関係にある吸収剤を開閉自在に連結し
た異なる槽にそれぞれ充てんしたことを特徴としたケミ
カルヒートポンプであって、冷媒として水を用い、吸収
剤として少なくとも一方にゼオライト,セピオライトの
いずれかあるいはこの混合物または化合物を用いたこと
を特徴としたケミカルヒートポンプ。Claims: 1. At least two kinds of absorbents are used, and the curves drawn by the refrigerant vapor pressure with respect to temperature in the state where each of the absorbents absorbs the refrigerant intersects, and this intersection moves as the reaction progresses. A chemical heat pump characterized by filling different tanks that are connected in a freely openable and closable manner with each other, wherein water is used as a refrigerant and at least one of zeolite and sepiolite is used as an absorbent, or a mixture thereof. Alternatively, a chemical heat pump characterized by using a compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59082200A JPH0665942B2 (en) | 1984-04-24 | 1984-04-24 | Chemical heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59082200A JPH0665942B2 (en) | 1984-04-24 | 1984-04-24 | Chemical heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60226674A JPS60226674A (en) | 1985-11-11 |
JPH0665942B2 true JPH0665942B2 (en) | 1994-08-24 |
Family
ID=13767781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59082200A Expired - Lifetime JPH0665942B2 (en) | 1984-04-24 | 1984-04-24 | Chemical heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0665942B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2582790B1 (en) * | 1985-06-04 | 1987-07-24 | Elf Aquitaine | THERMOCHEMICAL PROCESS AND DEVICE FOR STORING AND CLEARING HEAT |
JPH02238265A (en) * | 1989-03-09 | 1990-09-20 | Matsushita Electric Ind Co Ltd | Reversible heat/cold generator |
JP2660253B2 (en) * | 1992-05-21 | 1997-10-08 | 鹿島建設株式会社 | Adsorption heat pump |
US5497630A (en) * | 1992-09-30 | 1996-03-12 | Thermal Electric Devices, Inc. | Method and apparatus for hydride heat pumps |
JP5232510B2 (en) * | 2008-03-14 | 2013-07-10 | 株式会社豊田中央研究所 | Manufacturing method of chemical heat storage material molded body |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60126562A (en) * | 1983-12-14 | 1985-07-06 | 松下電器産業株式会社 | Chemical heat pump |
-
1984
- 1984-04-24 JP JP59082200A patent/JPH0665942B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60226674A (en) | 1985-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6293977B2 (en) | Flue gas desulfurization denitration process and equipment | |
US2729543A (en) | Removal of sulfur dioxide from gases containing the same | |
JPH0747122B2 (en) | Isothermal heat cycle process | |
JP2013524139A (en) | System and method for generating power and cooling using unused heat | |
US5091358A (en) | Regenerable CO2 /H2 O solid sorbent | |
CA1215215A (en) | Controlled temperature expansion in oxygen production by molten alkali metal salts | |
JPH0665942B2 (en) | Chemical heat pump | |
JPH0641822B2 (en) | High temperature absorbent for steam | |
CN104607037A (en) | A method and system for capturing CO2 by using the principle of pH swing | |
US5338521A (en) | Process for reversibly absorbing acid gases from gaseous mixtures | |
JPH0471144B2 (en) | ||
JPS5830340A (en) | Catalyst regenerating method | |
US2134482A (en) | Process of recovering so from waste gases | |
US5174974A (en) | Regenerable CO2 /H2 O solid sorbent | |
JPH02122169A (en) | chemical heat pump | |
US2395565A (en) | Process of extracting carbon dioxide from gases | |
JP4294587B2 (en) | Refrigeration equipment and method using reversible sorption system | |
DK0810410T3 (en) | Process for controlling a thermochemical reaction or adsorption between solid and gas | |
US4944934A (en) | High temperature oxygen recovery with reversible chemical reaction | |
CN101804323A (en) | Preparation method and application of novel high-temperature CO2 adsorbent | |
JPH0471145B2 (en) | ||
JPH0252786B2 (en) | ||
JPS6048467A (en) | Method of driving heat pump device | |
US3274125A (en) | Regenerable adsorbent gels and the method of their preparation | |
WO1988010290A1 (en) | High-temperature non-oxidizing water vapor absorbent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |