JPH06649B2 - Method for producing fine dielectric particles - Google Patents
Method for producing fine dielectric particlesInfo
- Publication number
- JPH06649B2 JPH06649B2 JP21364984A JP21364984A JPH06649B2 JP H06649 B2 JPH06649 B2 JP H06649B2 JP 21364984 A JP21364984 A JP 21364984A JP 21364984 A JP21364984 A JP 21364984A JP H06649 B2 JPH06649 B2 JP H06649B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- fine particles
- water
- added
- hydrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title description 11
- 239000002245 particle Substances 0.000 title description 8
- 230000007062 hydrolysis Effects 0.000 claims description 11
- 238000006460 hydrolysis reaction Methods 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- 239000011575 calcium Chemical class 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 5
- 229910052712 strontium Inorganic materials 0.000 claims description 5
- 229910052788 barium Inorganic materials 0.000 claims description 4
- 229910052791 calcium Chemical class 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical class [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical class [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical class [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 2
- 238000009877 rendering Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 38
- 239000010419 fine particle Substances 0.000 description 35
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 239000000460 chlorine Substances 0.000 description 21
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 229910052801 chlorine Inorganic materials 0.000 description 9
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 5
- 238000004062 sedimentation Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 229910002367 SrTiO Inorganic materials 0.000 description 3
- 229910007926 ZrCl Inorganic materials 0.000 description 3
- 229910002113 barium titanate Inorganic materials 0.000 description 3
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010908 decantation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910021523 barium zirconate Inorganic materials 0.000 description 2
- DQBAOWPVHRWLJC-UHFFFAOYSA-N barium(2+);dioxido(oxo)zirconium Chemical compound [Ba+2].[O-][Zr]([O-])=O DQBAOWPVHRWLJC-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- WEUCVIBPSSMHJG-UHFFFAOYSA-N calcium titanate Chemical compound [O-2].[O-2].[O-2].[Ca+2].[Ti+4] WEUCVIBPSSMHJG-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Inorganic Insulating Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタン酸バリウム微粒子、チタン酸ストロン
チウム微粒子、ジルコニウム酸バリウム微粒子等の誘電
体微粒子の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing dielectric fine particles such as barium titanate fine particles, strontium titanate fine particles, and barium zirconate fine particles.
本出願人は、特願昭57−147226(チタン酸バリウム微粒
子の製造方法)、特願昭57−151240(チタン酸カルシウ
ム微粒子の製造方法)、特願昭57−156315(チタン酸ス
トロンチウム微粒子の製造方法)、特願昭57−219540
(ジルコニウム酸バリウム微粒子の製造方法)等におい
て、湿式合成法による誘電体微粒子の製造方法を提案し
た。The applicant of the present invention has filed Japanese Patent Application No. 57-147226 (a method for producing fine particles of barium titanate), Japanese Patent Application No. 57-151240 (a method for producing fine particles of calcium titanate) and Japanese Patent Application No. 57-156315 (production of fine particles of strontium titanate). Method), Japanese Patent Application No. 57-219540
In (Production method of barium zirconate fine particles) and the like, a method for producing dielectric fine particles by a wet synthesis method was proposed.
これらの誘電体微粒子の製造方法において、Ti)又はZ
r)の原料として塩化物を使用した場合の製造方法は、
大略次の通りである。In these methods for producing dielectric fine particles, Ti) or Z
When chloride is used as the raw material of r),
The outline is as follows.
先ず、TiCl4(又は、ZrCl4,ZrOCl2・8H2O等)を加水分
解した後、NaOH,KOH等のアルカリ剤を使用して中和す
る。次に、TiCl4と等モル量のBa(又はCa,Sr等)を加
えた後、NaOH,KOH等のアルカリ剤でpHを強アルカリ性
側にして、加熱、反応させる。この後、デカンテーショ
ンによる水洗、濾過、乾燥を行って、例えばチタン酸バ
リウムBaTiO3微粒子を得る。First, TiCl 4 (or ZrCl 4 , ZrOCl 2 · 8H 2 O, etc.) is hydrolyzed and then neutralized using an alkaline agent such as NaOH, KOH. Next, after adding Ba (or Ca, Sr, etc.) in an equimolar amount to TiCl 4 , the pH is made strongly alkaline with an alkaline agent such as NaOH, KOH, and the mixture is heated and reacted. After that, washing with water by decantation, filtration and drying are carried out to obtain, for example, barium titanate BaTiO 3 fine particles.
上述したように、Ti(又はZr)の原料として塩化物を使
用して製造した誘電体微粒子を螢光X線分析装置で測定
すると、微量のClが検出される。このClは、原料のチタ
ン酸化物(又はジルコニウム塩化物)に由来するもので
あると考えられる。Clの存在は、コンデンサ、セラミッ
ク成形品等に加工した後、経時変化による信頼性劣化の
原因ともなり得るので、Cl量はできるだけ少ないことが
望ましい。また、フアインセラミックス製品の原料とし
て使用する場合においても、このClの存在が問題となり
得る場合がある。As described above, when the dielectric fine particles produced by using chloride as a raw material of Ti (or Zr) are measured with a fluorescent X-ray analyzer, a trace amount of Cl is detected. This Cl is considered to be derived from the titanium oxide (or zirconium chloride) that is the raw material. Since the presence of Cl may cause deterioration of reliability due to aging after processing into a capacitor, a ceramic molded product, etc., it is desirable that the amount of Cl be as small as possible. Further, even when used as a raw material for fine ceramics products, the presence of Cl may cause a problem.
本発明は、上記問題点を解決することができる誘電体微
粒子の製造方法を提供するものである。The present invention provides a method for producing dielectric fine particles, which can solve the above problems.
本発明においては、チタン又はジルコニウムの塩化物
(例えば、TiCl4,ZrCl4,ZrOCl2・8H2O等)を水溶液中
で加水分解した後、この水溶液をアルカリ剤(NaOH,KOH
等)でpH7.1以上のアルカリ性とし、この状態で水洗、
デカンテーションを行って塩素イオンを除去する。引き
続き、バリウム、ストロンチウム、カルシウムの水溶性
塩のうちの少くとも1つを加え、強アルカリ性水溶液中
で反応させて所望の誘電体微粒子を得る。In the present invention, a chloride of titanium or zirconium (for example, TiCl 4 , ZrCl 4 , ZrOCl 2 · 8H 2 O, etc.) is hydrolyzed in an aqueous solution, and then this aqueous solution is treated with an alkaline agent (NaOH, KOH).
Etc.) and make it alkaline with pH 7.1 or higher, and then rinse with water,
Decanting is performed to remove chlorine ions. Subsequently, at least one of water-soluble salts of barium, strontium and calcium is added and reacted in a strongly alkaline aqueous solution to obtain desired dielectric fine particles.
得られる誘電体微粒子をABO3とした場合(A:Ba,Sr,C
a,B:Ti,Zr)、単一系のみならず、複合系の微粒子の製
造にも適用することができる。When the resulting dielectric particles are ABO 3 (A: Ba, Sr, C
a, B: Ti, Zr), and can be applied to the production of not only a single system but also a composite system of fine particles.
なお、バリウムの水溶性塩としては、例えば、Ba(N
O3)2,Ba(OH)2,BaCl2,Ba(CH3COO)2を使用することが
できる。また、ストロンチウムの水溶性塩としては、例
えばSr(NO3)2,Sr(OH)2,SrCl2,Sr(CH3COO)2,SrOを使
用することができる。カルシウムの水溶性塩としては、
例えばCa(NO3)2,Ca(OH)2,CaCl2,Ca(CH3COO)2,CaOを
使用することができる。As the water-soluble salt of barium, for example, Ba (N
O 3) 2, Ba (OH ) 2, can be used BaCl 2, Ba (CH 3 COO ) 2. Moreover, as the water-soluble salt of strontium, for example, Sr (NO 3 ) 2 , Sr (OH) 2 , SrCl 2 , Sr (CH 3 COO) 2 , and SrO can be used. As a water-soluble salt of calcium,
For example it is possible to use Ca (NO 3) 2, Ca (OH) 2, CaCl 2, Ca (CH 3 COO) 2, CaO.
チタン又はジルコニウムの原料として塩化物を使用する
誘電体微粒子の製造方法において、従来塩化物を加水分
解し、アルカリで中和するとClがTiOCl2などの形で残存
し、合成反応時にClが結晶中に取り込まれたり、結晶表
面に吸着されて、反応時の水洗でも除去されないため、
得られた誘電体微粒子中にClが残留するという問題が生
じていた。しかるに、本発明においては、塩化物を加水
分解した後の溶液を中性ではなく、アルカリ性側にする
ため、Clが残存し難くなり、水洗、デカンテーションを
行うことにより溶液中のClを大幅に除去することができ
る。従って、得られる誘電体微粒子中のClの残留量も低
く抑えることが可能になる。In a method for producing fine dielectric particles using chloride as a raw material of titanium or zirconium, when chloride is conventionally hydrolyzed and neutralized with alkali, Cl remains in the form of TiOCl 2, etc., and Cl is crystallized during the synthesis reaction. It is taken in by or is adsorbed on the crystal surface and is not removed even by washing with water during the reaction.
There is a problem that Cl remains in the obtained dielectric fine particles. However, in the present invention, the solution after hydrolysis of chloride is not neutral, but is made alkaline, so that Cl is less likely to remain, and washing in water and decantation significantly increase Cl in the solution. Can be removed. Therefore, the residual amount of Cl in the obtained dielectric fine particles can be suppressed to be low.
実施例1 50gのTiCl4を100gの水に溶かした溶液にNH4OHを加え
て加水分解させ、pHを9.5とした。そして、この沈降が
生成した溶液に水洗とデカンテーションを繰り返し、pH
を7とした。次に、溶液中のTiを略等モル量(0.95)のBa
(OH)2を加え、KOH溶液でpH14とした。この溶液を90℃で
3時間反応させ、生成した沈殿に濾過、水洗を行った
後、100℃で1日乾燥させた。Example 1 NH 4 OH was added to a solution prepared by dissolving 50 g of TiCl 4 in 100 g of water to cause hydrolysis to bring the pH to 9.5. Then, the solution generated by this sedimentation is repeatedly washed with water and decanted to adjust the pH.
Was set to 7. Next, Ti in the solution was mixed with Ba in an approximately equimolar amount (0.95).
(OH) 2 was added and the pH was adjusted to 14 with KOH solution. This solution was reacted at 90 ° C. for 3 hours, the formed precipitate was filtered, washed with water, and then dried at 100 ° C. for 1 day.
得られた微粒子をX線回析により分析した結果による
と、この微粒子はBaTiO3であることが確認できた。ま
た、粒子サイズは、200〜300Åであった。According to the result of X-ray diffraction analysis of the obtained fine particles, it was confirmed that the fine particles were BaTiO 3 . The particle size was 200 to 300Å.
実施例2 50gのTiCl4を200gの水に溶かした溶液にNaOH溶液を加
えて加水分解させ、pHを9.5とした。そして、この沈降
が生成した溶液に水洗とデカンテーションを繰り返し、
pHを7とした。次に、BaOを加え、NaOH溶液でpH13.7と
した後、95℃で2時間反応させた。生成した沈殿に濾
過、水洗を行い、100℃で1日乾燥させた。Example 2 To a solution of 50 g of TiCl 4 dissolved in 200 g of water was added a NaOH solution for hydrolysis to bring the pH to 9.5. Then, washing with water and decantation are repeated on the solution in which this sedimentation is generated,
The pH was 7. Next, BaO was added, the pH was adjusted to 13.7 with a NaOH solution, and the mixture was reacted at 95 ° C for 2 hours. The generated precipitate was filtered, washed with water, and dried at 100 ° C for 1 day.
得られた微粒子をX線回析により分析した結果による
と、この微粒子はBaTiO3であることが確認できた。ま
た、粒子サイズは、200〜300Åであった。According to the result of X-ray diffraction analysis of the obtained fine particles, it was confirmed that the fine particles were BaTiO 3 . The particle size was 200 to 300Å.
次に、表1に上記実施例1及び2で得られたBaTiO3微粒
子について、螢光X線分析により残留塩素量を測定した
結果を比較例(加水分解直後の溶液のpHは7)と併せて
示す。この表から、加水分解後の溶液をアルカリ性に
し、水洗とデカンテーションを施すことが、得られたBa
TiO3微粒子中の残留塩素量を減少させるのに有効である
ことがわかる。Next, Table 1 shows the results of measuring the residual chlorine content of the BaTiO 3 fine particles obtained in Examples 1 and 2 by fluorescent X-ray analysis together with Comparative Example (pH of the solution immediately after hydrolysis is 7). Indicate. From this table, the solution after hydrolysis was made alkaline, washed with water and decanted.
It can be seen that it is effective in reducing the amount of residual chlorine in the TiO 3 fine particles.
実施例3 50gのTiCl4を100gの水に溶かした溶液にNH4OHを加え
て加水分解させ、pHを9.5とした。そして、この沈殿が
生成した溶液に水洗とデカンテーションを繰り返してpH
を7とした。次に、この溶液のTiに対して、Sr/Ti=1.
05(モル比)となるSr(OH)2を加え、KOH溶液でpHを14と
した。この溶液を95℃で4時間反応させた後、生成した
沈殿に濾過、水洗を行い、100℃で1日乾燥させた。 Example 3 NH 4 OH was added to a solution prepared by dissolving 50 g of TiCl 4 in 100 g of water to cause hydrolysis to bring the pH to 9.5. The solution in which this precipitate was formed was washed with water and decanted repeatedly to adjust the pH.
Was set to 7. Next, for the Ti of this solution, Sr / Ti = 1.
Sr (OH) 2 with a molar ratio of 05 was added, and the pH was adjusted to 14 with a KOH solution. After this solution was reacted at 95 ° C for 4 hours, the formed precipitate was filtered, washed with water, and dried at 100 ° C for 1 day.
得られた微粒子をX線回析により分析した結果による
と、この微粒子はSrTiO3であることが確認できた。ま
た、粒子サイズは、100〜200Åであった。According to the result of X-ray diffraction analysis of the obtained fine particles, it was confirmed that the fine particles were SrTiO 3 . The particle size was 100 to 200Å.
実施例4 50gのTiCl4を200gの水に溶かした溶液にNaOH溶液を加
えて加水分解させ、pHを9.5とした。そして、この沈降
が生じた溶液に水洗とデカンテーションを繰り返してpH
を7とした。次に、この溶液中のTiと等モル量のSrCl2
を加え、NaOH溶液でpH14とした。100℃で3時間反応さ
せた後、生成した沈殿に濾過、水洗を行い、100℃で1
日乾燥させた。Example 4 To a solution of 50 g of TiCl 4 dissolved in 200 g of water was added a NaOH solution for hydrolysis to bring the pH to 9.5. Then, the solution in which the sedimentation has occurred is repeatedly washed with water and decanted to adjust the pH.
Was set to 7. Next, an equimolar amount of SrCl 2
Was added and the pH was adjusted to 14 with a NaOH solution. After reacting at 100 ° C for 3 hours, the formed precipitate was filtered and washed with water,
Dried for a day.
X線回析による分析結果によると、この微粒子はSrTiO3
であることが確認できた。According to the analysis result by X-ray diffraction, the fine particles are SrTiO 3
It was confirmed that
次に、表2に上記実施例3及び4で得られたSrTiO3微粒
子について、螢光X線分析により残留塩素量を測定した
結果を比較例(加水分解直後のpHは7)と併せて示す。Next, Table 2 shows the results of measuring the residual chlorine content of the SrTiO 3 fine particles obtained in Examples 3 and 4 by fluorescent X-ray analysis together with Comparative Examples (pH immediately after hydrolysis is 7). .
実施例5 50gのTiCl4を100gの水に溶かした溶液にNH4OHを加え
て加水分解させ、pHを9.5とした。そして、この沈殿が
生じた溶液に水洗とデカンテーションを繰り返してpHを
7とした。次に、この溶液のTiに対してモル比で1.05と
なるCa(OH)2を加え、NaOH溶液でpH14とした。この溶液
を95℃で4時間反応させた後、生成した沈殿に濾過、水
洗を行い、100℃で1日乾燥させた。 Example 5 NH 4 OH was added to a solution prepared by dissolving 50 g of TiCl 4 in 100 g of water for hydrolysis to adjust the pH to 9.5. Then, the solution in which this precipitation had occurred was repeatedly washed with water and decanted to adjust the pH to 7. Next, Ca (OH) 2 with a molar ratio of 1.05 was added to Ti of this solution, and the pH was adjusted to 14 with a NaOH solution. After this solution was reacted at 95 ° C for 4 hours, the formed precipitate was filtered, washed with water, and dried at 100 ° C for 1 day.
得られた微粒子をX線回析により分析した結果による
と、この微粒子はCaTiO3であることが確認できた。ま
た、粒子サイズは、1〜3μmであった。According to the result of X-ray diffraction analysis of the obtained fine particles, it was confirmed that the fine particles were CaTiO 3 . The particle size was 1 to 3 μm.
実施例6 50gのTiCl4を200gの水に溶かした溶液にNaOH溶液を加
えて加水分解させ、pHを9.5とした。そして、この沈降
が生じた溶液に水洗とデカンテーションを繰り返してpH
を7とした。次に、この溶液中のTiと等モル量のCaCl2
を加え、NaOH溶液でpH14とした。この溶液を100℃で3
時間反応させた後、生成した沈殿に濾過、水洗を行い、
100℃で1日乾燥させた。Example 6 A solution of 50 g of TiCl 4 in 200 g of water was hydrolyzed by adding a NaOH solution to adjust the pH to 9.5. Then, the solution in which the sedimentation has occurred is repeatedly washed with water and decanted to adjust the pH.
Was set to 7. Next, CaCl 2 in the same molar amount as Ti in this solution
Was added and the pH was adjusted to 14 with a NaOH solution. This solution at 100 ℃ 3
After reacting for a time, the generated precipitate is filtered and washed with water,
It was dried at 100 ° C. for 1 day.
X線回析による分析結果によると、この微粒子はCaTiO3
であることが確認できた。According to the analysis result by X-ray diffraction, the fine particles are CaTiO 3
It was confirmed that
次に、表3に上記実施例5及び6で得られたCaTiO3微粒
子について、螢光X線分析により残留塩素量を測定した
結果を比較例(加水分解直後のpHは7)と併せて示す。Next, Table 3 shows the results of measuring the residual chlorine content of the CaTiO 3 fine particles obtained in Examples 5 and 6 by fluorescent X-ray analysis together with Comparative Examples (pH immediately after hydrolysis is 7). .
実施例7 55.74gのZrCl4を水に溶解した500mlの溶液から40mlを
採取し、この中にLiOH溶解を加えて加水分解させ、pHを
9.5とした。そして、この沈殿が生じた溶液に水洗とデ
ンカテーションを繰り返してpHを7とした。この白色懸
濁液にBa(OH)2・8H2Oを9.054g(Ba/Zr=1.5)を加えLiO
H溶液でpH14とした。この溶液を98℃で8時間反応させ
た後、生成した沈殿にデカンテーション、濾過を行い、
乾燥させた。 Example 7 40 ml was taken from a solution of 500 ml in which 55.74 g of ZrCl 4 was dissolved in water, and LiOH was dissolved therein to hydrolyze the solution to adjust the pH.
It was set to 9.5. Then, the solution in which this precipitation had occurred was repeatedly washed with water and decanted to adjust the pH to 7. LiO Ba a (OH) 2 · 8H 2 O and 9.054g (Ba / Zr = 1.5) was added to the white suspension
The pH was adjusted to 14 with H solution. After reacting this solution at 98 ° C for 8 hours, the generated precipitate was decanted and filtered,
Dried.
得られた微粒子をX線回析により分析した結果による
と、この微粒子はBaZrO3であることが確認できた。ま
た、粒子サイズは、2〜3μmであった。螢光X線分析
により残留塩素量を測定した結果によると、本製造方法
により得られたBaZrO3微粒子中の残留塩素量は、大幅に
減少していることが確認できた。According to the result of analyzing the obtained fine particles by X-ray diffraction, it was confirmed that the fine particles were BaZrO 3 . The particle size was 2 to 3 μm. According to the result of measuring the residual chlorine amount by fluorescent X-ray analysis, it was confirmed that the residual chlorine amount in the BaZrO 3 fine particles obtained by the present production method was significantly reduced.
本発明によれば、誘電体微粒子中の塩素残留量が大幅に
減少するため、塩素に原因する特性の劣化は生せず、信
頼性の高いコンデンサ、セラミック成形品等を提供する
ことができる。また、Clを除去する工程を付加するのみ
でよく、本出願人が提案した湿式合成法をそのまま採用
することができる。According to the present invention, since the amount of chlorine remaining in the dielectric fine particles is significantly reduced, the deterioration of characteristics due to chlorine does not occur, and a highly reliable capacitor, ceramic molded product, etc. can be provided. Further, it is only necessary to add a step of removing Cl, and the wet synthesis method proposed by the present applicant can be adopted as it is.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 英雅 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (56)参考文献 特開 昭59−195574(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidemasa Tamura Inventor Hidemasa Tamura 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (56) References JP-A-59-195574 (JP, A)
Claims (1)
中で加水分解した後、該水溶液を一旦アルカリ性にして
塩素イオンを除去し、引き続きバリウム、ストロンチウ
ム、カルシウムの水溶性塩のうちの少くとも1つを加
え、強アルカリ性水溶液中で反応させることを特徴とす
る誘電体微粒子の製造方法。1. Hydrolysis of titanium or zirconium chloride in an aqueous solution, and then once rendering the aqueous solution alkaline to remove chloride ions, and subsequently at least one of water-soluble salts of barium, strontium and calcium. And a reaction method in a strong alkaline aqueous solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21364984A JPH06649B2 (en) | 1984-10-12 | 1984-10-12 | Method for producing fine dielectric particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21364984A JPH06649B2 (en) | 1984-10-12 | 1984-10-12 | Method for producing fine dielectric particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6191016A JPS6191016A (en) | 1986-05-09 |
JPH06649B2 true JPH06649B2 (en) | 1994-01-05 |
Family
ID=16642653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21364984A Expired - Fee Related JPH06649B2 (en) | 1984-10-12 | 1984-10-12 | Method for producing fine dielectric particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06649B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2193713B (en) * | 1986-07-14 | 1990-12-05 | Cabot Corp | Method of producing perovskite-type compounds. |
FR2659641B1 (en) * | 1990-03-14 | 1992-07-24 | Rhone Poulenc Chimie | PROCESS FOR THE PREPARATION OF A DIVALENT OR TRIVALENT CATION TITANATE. |
JPH0747487B2 (en) * | 1990-07-30 | 1995-05-24 | 電気化学工業株式会社 | Method for producing powder for easily sinterable microwave dielectric |
KR100443536B1 (en) * | 1998-05-20 | 2004-08-09 | 도호 티타늄 가부시키가이샤 | Method for producing barium titanate powder |
JP6065286B2 (en) * | 2014-02-14 | 2017-01-25 | 富士フイルム株式会社 | Method for producing strontium titanate fine particles |
-
1984
- 1984-10-12 JP JP21364984A patent/JPH06649B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6191016A (en) | 1986-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4520004A (en) | Method of manufacturing metal titanate fine powder | |
JP5393518B2 (en) | Micronized alkaline earth metal carbonate | |
DE2707229A1 (en) | PRODUCTION OF ZINC AND EARTH CALCIUM TITANATES | |
JPH06649B2 (en) | Method for producing fine dielectric particles | |
EP0112159B1 (en) | Methods of manufacturing a fine powder of barium zirconate | |
EP0104002B1 (en) | Methods of manufacturing metal titanate fine powders | |
CN1380254A (en) | Method for preparing oxide powder | |
JPS5939726A (en) | Manufacture of fine barium titanate particle | |
CN1030308C (en) | Process for preparing titanate | |
JPS6272525A (en) | Production of barium titanate or strontium titanate | |
JP2788320B2 (en) | Metal titanate fiber and method for producing the same | |
US5252316A (en) | Zirconium oxide powder, process for its preparation and its use | |
KR100395218B1 (en) | METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS | |
EP4163256A1 (en) | Niobate compound and niobium-containing slurry | |
JP2634290B2 (en) | Method for producing barium titanate powder | |
JPS59195576A (en) | Manufacture of ceramic raw material powder | |
JPH069218A (en) | Production of solid solution of barium strontium titanate | |
WO2001010781A1 (en) | METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS | |
JPH013019A (en) | Method for producing perovskite ceramic fine powder | |
JPH0617232B2 (en) | Method for producing hydrated spherical titanium oxide | |
JPH01179725A (en) | Production of partially stabilized zirconia having extremely high purity | |
JPH06135720A (en) | Production of acicular barium titanate powder | |
JPH0339015B2 (en) | ||
JP2787328B2 (en) | Method for producing crystalline barium titanate ultrafine particles | |
RU2060946C1 (en) | Method for production of barium titanate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |