JPH0664970A - Production of lead titanate zirconate - Google Patents
Production of lead titanate zirconateInfo
- Publication number
- JPH0664970A JPH0664970A JP18134891A JP18134891A JPH0664970A JP H0664970 A JPH0664970 A JP H0664970A JP 18134891 A JP18134891 A JP 18134891A JP 18134891 A JP18134891 A JP 18134891A JP H0664970 A JPH0664970 A JP H0664970A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- sol solution
- plzt
- lead
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 title claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000002994 raw material Substances 0.000 claims abstract description 18
- 239000010936 titanium Substances 0.000 claims abstract description 13
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- -1 titanium alkoxide Chemical class 0.000 claims abstract description 10
- 150000002611 lead compounds Chemical class 0.000 claims abstract description 9
- 238000010304 firing Methods 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 8
- 150000003755 zirconium compounds Chemical class 0.000 claims description 8
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 5
- 150000002604 lanthanum compounds Chemical class 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 239000000243 solution Substances 0.000 abstract description 25
- 239000010408 film Substances 0.000 abstract description 14
- 239000010409 thin film Substances 0.000 abstract description 9
- 238000003756 stirring Methods 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 abstract description 4
- 108010025899 gelatin film Proteins 0.000 abstract description 4
- 229940046892 lead acetate Drugs 0.000 abstract description 4
- JLRJWBUSTKIQQH-UHFFFAOYSA-K lanthanum(3+);triacetate Chemical compound [La+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JLRJWBUSTKIQQH-UHFFFAOYSA-K 0.000 abstract description 3
- 239000011259 mixed solution Substances 0.000 abstract description 2
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 abstract description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract 1
- 238000000034 method Methods 0.000 description 29
- 239000000203 mixture Substances 0.000 description 16
- 230000003287 optical effect Effects 0.000 description 8
- 230000005693 optoelectronics Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000003980 solgel method Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- KQNKJJBFUFKYFX-UHFFFAOYSA-N acetic acid;trihydrate Chemical compound O.O.O.CC(O)=O KQNKJJBFUFKYFX-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- RBPQRWPSWRTKEC-UHFFFAOYSA-H lanthanum(3+) hexaacetate trihydrate Chemical compound O.O.O.[La+3].[La+3].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O RBPQRWPSWRTKEC-UHFFFAOYSA-H 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- QBHQQYMEDGADCQ-UHFFFAOYSA-N oxozirconium(2+);dinitrate;dihydrate Chemical compound O.O.[Zr+2]=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QBHQQYMEDGADCQ-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- LYTNHSCLZRMKON-UHFFFAOYSA-L oxygen(2-);zirconium(4+);diacetate Chemical compound [O-2].[Zr+4].CC([O-])=O.CC([O-])=O LYTNHSCLZRMKON-UHFFFAOYSA-L 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は透光性が良好で、大きな
電気光学効果を有するために、従来の圧電磁器材料とし
ての用途の他に、画像表示装置、光記憶素子、光変調器
などへのオプトエレクトロニクスとしての応用が考えら
れるランタンを含むチタン酸ジルコン酸鉛(PLZT)の製
造方法、より詳しくはゾル・ゲル法を用いたチタン酸ジ
ルコン酸鉛の製造方法に係る。INDUSTRIAL APPLICABILITY The present invention has good translucency and has a large electro-optical effect. Therefore, in addition to its use as a conventional piezoelectric ceramic material, an image display device, an optical storage element, an optical modulator, etc. The present invention relates to a method for producing lead zirconate titanate (PLZT) containing lanthanum, which is expected to be applied to optoelectronics, and more specifically to a method for producing lead zirconate titanate using a sol-gel method.
【0002】[0002]
【従来の技術】従来のPLZTの製造方法としては、酸
化物混合法と、PVD(物理蒸着)法、CVD(化学気
相成長法)法とがある。酸化物混合法は、La2O3,P
bO,ZrO2,TiO2を湿式で混合し、乾燥後に乾式
でペレット成形した後、バインダ、溶剤を加えてシート
を成形し、これらを1100〜1200℃で焼成するか、または
成形体を300〜500Kg/cm2の圧力下で1100〜1200℃、5〜1
0時間酸素中でホットプレスする方法がある。また、P
VD法としては、スパッタ法、EB蒸着法、イオンプレ
ーティング法など、CVD法としては、例えばプラズマ
CVD法、MOCVD(有機金属化学気相成長)法など
を用いる方法が知られている。2. Description of the Related Art Conventional methods for producing PLZT include an oxide mixing method, a PVD (physical vapor deposition) method, and a CVD (chemical vapor deposition) method. The oxide mixing method is based on La 2 O 3 , P
bO, ZrO 2 , and TiO 2 are mixed by a wet method, dried and then pelletized by a dry method, and then a binder and a solvent are added to form a sheet, and these are fired at 1100 to 1200 ° C. 1100 to 1200 ° C. under a pressure of 500Kg / cm 2, 5~1
There is a method of hot pressing in oxygen for 0 hours. Also, P
Known methods include a sputtering method, an EB vapor deposition method, and an ion plating method as the VD method, and a plasma CVD method, a MOCVD (metal organic chemical vapor deposition) method, and the like as the CVD method.
【0003】[0003]
【発明が解決しようとする課題】酸化物混合法では、P
bOの揮散が生じ組成変動が起こるため、あらかじめ過
剰のPbOを添加したり、PbO雰囲気での焼成が不可
欠であるが、PbO蒸気圧の制御が困難である。又、粉
末混合時のコンタミネーションや凝集粒子の存在、さら
にバインダー除去による空孔がセラミックス内部に残留
し、緻密化が妨げられ、圧電特性の劣化が生じるなどの
問題がある。In the oxide mixing method, P
Since volatilization of bO occurs and composition variation occurs, it is indispensable to add excess PbO in advance or perform firing in a PbO atmosphere, but it is difficult to control the PbO vapor pressure. In addition, there are problems such as contamination during powder mixing, the presence of agglomerated particles, and voids left by the removal of the binder remaining inside the ceramics, which hinders densification and deteriorates the piezoelectric characteristics.
【0004】また、PVD法、CVD法は、緻密な膜の
形成が可能であるが、堆積させる基板の選択が必要とな
る。また、装置の関係上高価となり、大量生産も不可能
である。さらに、原料として気相を用いるため、組成制
御が困難となるなどの問題がある。Further, although the PVD method and the CVD method can form a dense film, it is necessary to select the substrate to be deposited. In addition, the device is expensive and mass production is not possible. Further, since a gas phase is used as a raw material, there is a problem that composition control becomes difficult.
【0005】[0005]
【問題を解決するための手段】請求項1の記載の発明は
上記のような問題点を解決するために、鉛化合物及び、
ジルコニウム化合物とチタンアルコキシドを原料とし、
酢酸を溶媒として、ゾル溶液を調製し、これを焼成する
ものである。In order to solve the above-mentioned problems, a lead compound and
Using zirconium compound and titanium alkoxide as raw materials,
A sol solution is prepared by using acetic acid as a solvent, and this is baked.
【0006】請求項2の記載の発明は上記のような問題
点を解決するために、塩化物以外の無機、有機のランタ
ン化合物、鉛化合物及び、ジルコニウム化合物とチタン
アルコキシドを原料とし、酢酸を溶媒として、ゾル溶液
を調製し、これを焼成するものである。In order to solve the above problems, the invention according to claim 2 uses an inorganic or organic lanthanum compound other than chloride, a lead compound, a zirconium compound and a titanium alkoxide as raw materials, and acetic acid as a solvent. As the above, a sol solution is prepared and then baked.
【0007】[0007]
【作用】本発明のチタン酸ジルコン酸鉛の製造方法によ
れば、ゾル・ゲル法を用いることにより、850℃以下と
いう低温で雰囲気制御せずに従来法と同等の特性を有
し、原子あるいは分子オーダーで均一な組成のPLZT
を焼成することができる。さらに、このように焼成され
たPLZTは、形状の自由度が大きく、大量生産も可能
であり、PLZTの特性を生かした従来の圧電磁気材料
としての用途の他に、画像表示装置、光記憶素子、光変
調器などへのオプトエレクトロニクスへの幅広い応用が
可能である。According to the method for producing lead zirconate titanate of the present invention, by using the sol-gel method, the sol-gel method has characteristics equivalent to those of the conventional method without controlling the atmosphere at a temperature as low as 850 ° C. or less. PLZT with uniform composition in molecular order
Can be fired. Further, the thus fired PLZT has a large degree of freedom in shape and can be mass-produced. In addition to the use as a conventional piezoelectric magnetic material utilizing the characteristics of PLZT, an image display device, an optical storage element, etc. It can be applied to a wide range of optoelectronics such as optical modulators.
【0008】[0008]
【実施例】始めに、PLZT原料のゾル溶液を調製す
る。ランタン、鉛、ジルコニウム化合物の原料として
は、塩化物以外であれば有機、無機いずれの化合物でも
よい。例えば、ランタン化合物の原料として酢酸ランタ
ン、硝酸ランタン、鉛化合物として酢酸鉛、硝酸鉛、ス
テアリン酸鉛、ジルコニウム化合物として硝酸ジルコニ
ル、ジルコニウムプロポキシドが好ましく使用される。
チタン原料としては、チタンアルコキシドを使用する。
このアルコキシドが後に重縮合してゲル化を可能にす
る。チタンアルコキシドとしては、チタンエトキシド、
チタンイソプロポキシド、チタンブトキシドが好ましく
使用される。EXAMPLE First, a sol solution of PLZT raw material is prepared. The raw materials for the lanthanum, lead and zirconium compounds may be either organic or inorganic compounds as long as they are not chlorides. For example, lanthanum acetate and lanthanum nitrate are preferably used as raw materials for the lanthanum compound, lead acetate, lead nitrate and lead stearate are used as lead compounds, and zirconyl nitrate and zirconium propoxide are used as zirconium compounds.
Titanium alkoxide is used as the titanium raw material.
This alkoxide is subsequently polycondensed and allows gelation. As the titanium alkoxide, titanium ethoxide,
Titanium isopropoxide and titanium butoxide are preferably used.
【0009】これらの原料は、酢酸とアルコールを溶媒
とすることにより、ゾル溶液を調製することができる。
ランタン、鉛、ジルコニウム及びチタン原料を所定のP
LZT組成に応じて配合し、これに酢酸及びアルコール
を添加して、透明なゾル溶液が得られるまで攪拌する。
アルコキシドは加水分解しやすいので最後に添加するの
がよい。酢酸の濃度は、PLZTの各原料1/100モルに
対し、8.5N,10ml程度加える。ゾル溶液には、溶液の粘
度調整及び高安定化のために、エチレングリコール類を
PLZT各原料の1/100モルに対し、2ml程度添加して、
攪拌することが望ましい。このゾル溶液をゲル化する第
1の方法は、ディップコーティング法、スピンコーティ
ング法、超音波コーティング法などの方法で基板上に膜
を形成するもので、成膜されたのちゲル化する。A sol solution can be prepared from these raw materials by using acetic acid and alcohol as solvents.
Lanthanum, lead, zirconium and titanium raw materials can
Blend according to LZT composition, add acetic acid and alcohol to this and stir until a clear sol solution is obtained.
The alkoxide is easily hydrolyzed, so it is better to add it last. The concentration of acetic acid is 8.5N, about 10 ml is added to 1/100 mol of each raw material of PLZT. To the sol solution, in order to adjust the viscosity of the solution and make it highly stable, about 2 ml of ethylene glycol is added to 1/100 mol of each PLZT raw material,
It is desirable to stir. The first method of gelling this sol solution is to form a film on a substrate by a method such as a dip coating method, a spin coating method, an ultrasonic coating method, etc. After the film is formed, it is gelled.
【0010】そこで本発明により、ゾル溶液からPLZ
Tを製造する第1の方法は、上記の如く基板上に各種コ
ーティング法でゲル膜を成膜した後、850℃以下、好ま
しくは、600〜800℃の温度で焼成する方法である。第2
の方法は、ゾル溶液が加熱中に飛散しないような容器
(例えばルツボ)に入れ、500〜750℃で仮焼きしてPL
ZT粉末を得、これを成形し焼成する方法である。焼成
温度は、800℃以下、好ましくは、600〜800℃とする。
第3の方法は、ゾル溶液をゆっくり乾燥して(例えば室
温に1週間放置後)ゲル化させ、得られたゲル形成体を
800℃以下の温度で焼成する方法である。Therefore, according to the present invention, PLZ is changed from the sol solution.
The first method for producing T is a method in which a gel film is formed on the substrate by various coating methods as described above and then fired at a temperature of 850 ° C. or lower, preferably 600 to 800 ° C. Second
The method is that the sol solution is placed in a container (for example, a crucible) that does not scatter during heating, calcined at 500 to 750 ° C, and
This is a method in which ZT powder is obtained, shaped and fired. The firing temperature is 800 ° C or lower, preferably 600 to 800 ° C.
In the third method, the sol solution is slowly dried (eg, allowed to stand at room temperature for 1 week) to be gelled, and the obtained gel-forming body is
This is a method of firing at a temperature of 800 ° C or lower.
【0011】図1にゾル溶液の製造工程の一例をフロー
図で示す。酢酸鉛 3水和物、酢酸ランタン 1.5水和物と
酢酸ジルコニル 2水和物を所定量秤量し、これに酢酸を
添加後溶液が完全に透明になるまで攪拌する。次に所定
量のチタンブトキシドモノマーをビューレット等を用い
て滴下する。この混合溶液に、溶液の粘度調整並びに溶
液の高安定化のため、エチレングリコール類を各原料1/
100モルに対し2ml添加し、攪拌することによりゾル溶液
を得る。これに、石英、ITOの付いた石英ガラス、ソ
ーダガラス、Pt板等の基板を浸漬させ、2〜10cm/min
のスピードで引き上げ、基板上にゲル膜を形成させる。
この引き上げ回数により、所望の膜厚を有するPLZT
薄膜を形成できる。ここで、引き上げ1回当たり約0.18
μmの膜厚となり、引き上げの操作回数により、膜厚が
容易に制御できる。FIG. 1 is a flow chart showing an example of the manufacturing process of the sol solution. Predetermined amounts of lead acetate trihydrate, lanthanum acetate sesquihydrate and zirconyl acetate dihydrate are added, and after adding acetic acid to the mixture, the solution is stirred until it becomes completely transparent. Next, a predetermined amount of titanium butoxide monomer is dropped using a buret or the like. To this mixed solution, ethylene glycols were added to each raw material 1 /
A sol solution is obtained by adding 2 ml to 100 mol and stirring. Substrates such as quartz, quartz glass with ITO, soda glass, and Pt plate are immersed in this, and 2-10 cm / min
At a speed of 1 to form a gel film on the substrate.
Depending on the number of times of pulling up, PLZT having a desired film thickness
A thin film can be formed. Here, about 0.18 per pull
The film thickness is μm, and the film thickness can be easily controlled by the number of pulling operations.
【0012】このようにして得た膜試料を試料Aとす
る。なお、ここで試料Aはスピンコーティング法や超音
波コーティング法による膜でもよく、スピン速度やスプ
レー時間により、膜厚の制御が可能である。また、上記
作製したゾル溶液を乾燥後500〜850℃で焼成した粉末試
料を試料Bとする。膜厚及び粉末X線回折の結果より試
料A、B共に500℃からペログスカイト相が析出しはじ
め、600℃の熱処理により、ペログスカイト相となっ
た。これにより、600℃以上の熱処理によりPLZT単
相が得られることがわかった。次に試料Aについて、30
0〜800nmにおける透過率を測定した結果、膜厚を約 2μ
mとした場合においても 600nm付近で 70%程度の透過率
を示していた。The film sample thus obtained is called sample A. Here, the sample A may be a film formed by a spin coating method or an ultrasonic coating method, and the film thickness can be controlled by the spin speed and the spray time. A powder sample obtained by drying the sol solution prepared above and baking it at 500 to 850 ° C. is referred to as Sample B. From the results of the film thickness and the powder X-ray diffraction, a perovskite phase began to precipitate from 500 ° C. in both Samples A and B, and became a perovskite phase by heat treatment at 600 ° C. From this, it was found that a PLZT single phase was obtained by heat treatment at 600 ° C. or higher. Next, for sample A, 30
As a result of measuring the transmittance from 0 to 800 nm, the film thickness is about 2 μm.
Even at m, the transmittance was about 70% near 600 nm.
【0013】上記の工程で得られた、PLZTの代表的
組成における誘電率の例を、図2に示す。ランタンを含
むチタン酸ジルコン酸鉛(PLZT)は、Pb1-X/100La
X/100(ZrY/100TiZ/100)1-X/400O3[ただし、0
≦x≦1]で表される組成を有している。図中のPLZ
T組成は、例えばPLZT(X/Y/Z)において、9/65/35
は、Pb0.93La0.07(Zr0.65Ti0.35)0.978O3,
7/65/35はPb0.93La0.07(Zr0.65Ti0.35)0.983
O3を示す。例えば、7/65/35のPLZTは、各原料1/10
0モル、即ち酢酸鉛 3水和物 3.546g、酢酸ランタン 1.5
水和物 0.240g、硝酸ジルコニル 2水和物 1.760gに8.5N
の酢酸 10.00ml0添加し攪拌して溶解させる。これに、
チタンプトキシド 0.01モルを滴下しながら加え、さら
にトリエチレングリコール 2.0mlを添加して、ゾル溶液
を調製し、次いで、ITOを膜付けした石英基板に10回
浸漬して、厚さ 2.0μmのゲル膜を形成後、700〜850℃
の温度で 2〜4時間焼成して作製した。An example of the dielectric constant of a typical composition of PLZT obtained in the above process is shown in FIG. Lead zirconate titanate (PLZT) containing lanthanum is Pb 1-X / 100 La
X / 100 (Zr Y / 100 Ti Z / 100 ) 1-X / 400 O 3 [however, 0
≤ x ≤ 1]. PLZ in the figure
T composition, for example in the PLZT (X / Y / Z) , 9/65/35
Is Pb 0.93 La 0.07 (Zr 0.65 Ti 0.35 ) 0.978 O 3 ,
7/65/35 Pb 0.93 La 0.07 (Zr 0.65 Ti 0.35) 0.983
Indicates O 3 . For example, 7/65/35 PLZT of the respective raw materials 1/10
0 mol, that is, lead acetate trihydrate 3.546 g, lanthanum acetate 1.5
Hydrate 0.240g, Zirconyl nitrate dihydrate 1.760g 8.5N
10.00 ml of acetic acid of 0 is added and dissolved by stirring. to this,
Add 0.01 mol of titanium butoxide dropwise, and further add 2.0 ml of triethylene glycol to prepare a sol solution, and then immerse it in a quartz substrate coated with ITO 10 times to form a 2.0 μm thick gel film. After forming, 700-850 ℃
It was prepared by firing at the temperature of 2 to 4 hours.
【0014】図2は、測定周波数を10kHzとした時のP
LZT(x/65/35)各組成の2.0μmの厚さを持つ薄膜の
誘電率の各熱処理温度依存性を示している。この図2か
ら明らかなように、焼成温度が 800℃を越えると特性の
劣化が現れる。これは、鉛成分が試料中から飛散し組成
変動が起こるためである。また、800℃以下の焼成にお
いては雰囲気の制御を行なわない大気中での焼成にもか
かわらず、従来からの粉末焼結法と同等の特性を示して
いる。さらに、ここではディップコーディング法、スピ
ンコーディング法、超音波スプレー法を用いた試料の全
てが同等の特性を示していた。FIG. 2 shows P when the measurement frequency is 10 kHz.
LZT (x / 65/35) shows the respective thermal treatment temperature dependence of the dielectric constant of the thin film having a thickness of 2.0μm for each composition. As is clear from FIG. 2, when the firing temperature exceeds 800 ° C., the characteristics deteriorate. This is because the lead component scatters from the sample and compositional variation occurs. Further, in the case of firing at 800 ° C. or lower, it shows the same characteristics as those of the conventional powder sintering method, even though firing is performed in the air without controlling the atmosphere. Further, here, all of the samples using the dip coding method, the spin coding method, and the ultrasonic spray method showed the same characteristics.
【0015】また、図3ではPt板に800℃、2.0時間熱
処理により作製した膜厚2.5μmのPLZT(x/65/35)
薄膜の誘電率及びPLZT(7/65/35)の 複素誘電率の
損失係数tanδの温度依存性を示している。この時の測
定周波数は10kHzである。この図3からx=8〜9の組成の
薄膜は焼成温度が100℃を超えると特性の劣化が現れ、1
00℃以下の焼成においては雰囲気の制御を行なわない大
気中での焼成にもかかわらず、従来からの粉末焼結法と
同等の特性を示している。そしてまた、x=7の組成の
薄膜を例に、その誘電率と複素誘電率の損失係数 tanδ
の変化について対比してみる。x=7の組成薄膜では190
℃を超えると特性の劣化が現れるが、同温度付近で熱損
失の減少が見られる。Furthermore, 800 ° C. to Pt plate 3, of thickness 2.5μm was produced by 2.0 hours heat treatment PLZT (x / 65/35)
Shows the temperature dependence of the loss factor tanδ of the complex dielectric constant of the thin film dielectric constant and PLZT (7/65/35) . The measurement frequency at this time is 10 kHz. From Fig. 3, the thin film with the composition of x = 8-9 deteriorates in characteristics when the firing temperature exceeds 100 ° C.
In the case of firing at a temperature of 00 ° C or lower, the characteristics are the same as those of the conventional powder sintering method, even though the firing is performed in the air without controlling the atmosphere. In addition, taking a thin film with a composition of x = 7 as an example, the loss coefficient tan δ of its dielectric constant and complex dielectric constant
Let's compare the change of. 190 for a composition thin film with x = 7
When the temperature exceeds ℃, the characteristics deteriorate, but the heat loss decreases at around the same temperature.
【0016】このように、本発明では鉛化合物及びジル
コニウム化合物とチタンアルコキシドを原料とし、酢酸
を溶媒としてゾル溶液を調整し、これを焼成することに
より850℃以下という低温で雰囲気制御せずに、従来法
と同等の特性を有し、しかも原子あるいは分子オーダー
均一な組成のPLZTを焼成できる。As described above, in the present invention, a lead compound, a zirconium compound, and a titanium alkoxide are used as raw materials, a sol solution is prepared using acetic acid as a solvent, and the sol solution is fired to control the atmosphere at a temperature as low as 850 ° C. or less without controlling the atmosphere. PLZT having the same characteristics as the conventional method and having a uniform composition in atomic or molecular order can be fired.
【0017】また、塩化物以外の無機、有機のランタン
化合物、鉛化合物及びジルコニウム化合物とチタンアル
コキシドを原料とし、酢酸を溶媒としてゾル溶液を調整
し、これを焼成することによっても、850℃以下という
低温で雰囲気制御せずに、従来法と同等の特性を有し、
しかも原子あるいは分子オーダーで均一な組成のPLZ
Tを焼成できる。Also, by using inorganic and organic lanthanum compounds other than chlorides, lead compounds and zirconium compounds and titanium alkoxide as raw materials and using acetic acid as a solvent to prepare a sol solution, which is then calcined, it is also possible to obtain 850 ° C. or lower. It has the same characteristics as the conventional method without controlling the atmosphere at low temperature,
Moreover, PLZ has a uniform composition on the atomic or molecular order.
T can be fired.
【0018】そして、このように本発明により焼成され
たPLZTは透光性が良好で、大きな電気光学効果を有
するために、従来の圧電磁気材料としての用途の他に、
画像表示装置、光記憶素子、光変調器などへのオプトエ
レクトロニクスとしての応用も考えられる。例えば、自
動車のバックミラーにPLZT膜を張り付け、これを電
気的に振動させることによって、雨の日でもバックミラ
ーの水をはじき自動車の走行の安全性を向上することが
できる。The PLZT thus fired according to the present invention has a good light-transmitting property and has a large electro-optical effect.
Application as optoelectronics to image display devices, optical storage elements, optical modulators, etc. is also conceivable. For example, by attaching a PLZT film to a rearview mirror of an automobile and electrically vibrating the film, it is possible to repel water in the rearview mirror even on a rainy day and improve the traveling safety of the automobile.
【0019】[0019]
【発明の効果】以上説明したように、本発明では、ゾル
・ゲル法を用いることによって、850℃以下という低温
で雰囲気制御をせずに、従来法と同等の特性を有し、原
子あるいは分子オーダーで均一の組成のPLZTを焼成
できる。さらに、このように焼成されたPLZTは、安
価で形状の自由度が大きく、大量生産も可能である。As described above, according to the present invention, by using the sol-gel method, it has the same characteristics as the conventional method without controlling the atmosphere at a temperature as low as 850 ° C. PLZT having a uniform composition can be fired on the order. Furthermore, the PLZT thus fired is inexpensive, has a high degree of freedom in shape, and can be mass-produced.
【0020】そして、このように本発明により焼成され
たPLZTは透光性が良好で、大きな電気光学効果を有
するために、従来の圧電磁気材料としての用途の他に、
画像表示装置、、光記憶素子、光変調器などへのオプト
エレクトロニクスとしての幅広い分野での応用が可能で
ある。The PLZT thus fired according to the present invention has a good translucency and a large electro-optical effect, and therefore, in addition to the conventional use as a piezoelectric magnetic material,
It can be applied to image display devices, optical storage elements, optical modulators and the like in a wide range of fields as optoelectronics.
【図1】本発明によるゾル溶液の作製工程の一例を示す
フロー図である。FIG. 1 is a flow chart showing an example of a process for producing a sol solution according to the present invention.
【図2】PLZT(X/65/35)各組成の2.0μmの厚さを
持つ薄膜の誘電率の各熱処理温度依存性を示す図であ
る。2 is a diagram showing each heat treatment temperature dependence of the dielectric constant of the thin film having a thickness of 2.0μm of PLZT (X / 65/35) each composition.
【図3】Pt基板上に作製した、PLZT(X/65/35)
薄膜の誘電率と複素誘電率の損失係数tanδの温度依存
性を示す図である。[Figure 3] was produced in the Pt substrate, PLZT (X / 65/35 )
FIG. 5 is a diagram showing temperature dependence of loss coefficient tan δ of thin film dielectric constant and complex dielectric constant.
Claims (2)
ンアルコキシドを原料とし、酢酸を溶媒としてゾル溶液
を調製し、これを焼成することを特徴とするチタン酸ジ
ルコン酸鉛の製造方法。1. A method for producing lead zirconate titanate, which comprises using a lead compound, a zirconium compound, and a titanium alkoxide as raw materials to prepare a sol solution using acetic acid as a solvent and firing the solution.
物、鉛化合物及び、ジルコニウム化合物とチタンアルコ
キシドを原料とし、酢酸を溶媒としてゾル溶液を調製
し、これを焼成することを特徴とするランタンを含むチ
タン酸ジルコン酸鉛の製造方法。2. A lanthanum characterized in that an inorganic or organic lanthanum compound other than chloride, a lead compound, and a zirconium compound and a titanium alkoxide are used as raw materials, a sol solution is prepared using acetic acid as a solvent, and this is calcined. A method for producing lead zirconate titanate containing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18134891A JP2920000B2 (en) | 1991-07-22 | 1991-07-22 | Method for producing lead zirconate titanate containing lanthanum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18134891A JP2920000B2 (en) | 1991-07-22 | 1991-07-22 | Method for producing lead zirconate titanate containing lanthanum |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0664970A true JPH0664970A (en) | 1994-03-08 |
JP2920000B2 JP2920000B2 (en) | 1999-07-19 |
Family
ID=16099141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18134891A Expired - Fee Related JP2920000B2 (en) | 1991-07-22 | 1991-07-22 | Method for producing lead zirconate titanate containing lanthanum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2920000B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998011613A1 (en) * | 1996-09-12 | 1998-03-19 | Citizen Watch Co., Ltd. | Ferroelectric element, process for producing the same, and ink jet head |
CN108558400A (en) * | 2018-07-27 | 2018-09-21 | 福州大学 | A kind of preparation method of barium calcium zirconate titanate base transparent ceramic |
-
1991
- 1991-07-22 JP JP18134891A patent/JP2920000B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998011613A1 (en) * | 1996-09-12 | 1998-03-19 | Citizen Watch Co., Ltd. | Ferroelectric element, process for producing the same, and ink jet head |
US6247799B1 (en) | 1996-09-12 | 2001-06-19 | Citizen Watch Co., Ltd. | Ferroelectric element, process for producing the same, and ink jet head |
US6336716B1 (en) | 1996-09-12 | 2002-01-08 | Citizen Watch Co., Ltd. | Ferroelectric element, process for producing the same, and ink jet head |
US6343855B1 (en) | 1996-09-12 | 2002-02-05 | Citizen Watch Co., Ltd. | Ferroelectric element process for producing the same and ink jet head |
CN108558400A (en) * | 2018-07-27 | 2018-09-21 | 福州大学 | A kind of preparation method of barium calcium zirconate titanate base transparent ceramic |
Also Published As
Publication number | Publication date |
---|---|
JP2920000B2 (en) | 1999-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tani et al. | Lead Oxide Coatings on Sol–Gel‐Derived Lead Lanthanum Zirconium Titanate Thin Layers for Enhanced Crystallization into the Perovskite Structure | |
JPH0369512A (en) | Improved thin membrane of perovskite | |
CN112374885B (en) | Precursor solution and method for preparing lead-free piezoelectric material | |
JPS60236404A (en) | Method of producing thin film ferrodielectric material | |
JP2920000B2 (en) | Method for producing lead zirconate titanate containing lanthanum | |
JPH0674173B2 (en) | Method for producing lead zirconate titanate | |
Schwartz et al. | Effects of acetylacetone additions on PZT thin film processing | |
JPH06309925A (en) | Dielectric composition, its manufacture, manufacture of its thin film, and thin-film capacitor | |
JPH0578103A (en) | Thick film inorganic oxide | |
JP2003095651A (en) | Precursor sol for forming dielectric film, method for preparing precursor sol, dielectric film and method for forming dielectric film | |
JPH1086365A (en) | Thin film element for ferroelectric substance | |
US6210752B1 (en) | All-alkoxide synthesis of strontium-containing metal oxides | |
ES2774084T3 (en) | Procedure for preparing a sol-gel solution that can be used to prepare a ceramic with barium titanate doped with hafnium and / or with at least one lanthanide element | |
JPH06318405A (en) | Dielectric composition, manufacture thereof, and thin film capacitor | |
JP2887308B2 (en) | Manufacturing method of stabilized zirconia thin film | |
JPH025507A (en) | Ceramic capacitor | |
JP2996776B2 (en) | Method for producing lead zirconate titanate | |
JPH04184808A (en) | Manufacture of ferroelectric thin film | |
JPH11278846A (en) | Pzt precursor sol, its preparation and formation of thin pzt film using same | |
JPH08169800A (en) | Method for producing BaTiO3 alignment film | |
JPH0597407A (en) | Laminated and patterned inorganic oxide film and its formation thereof | |
JP2789305B2 (en) | Manufacturing method of lead germanate | |
JPH05116913A (en) | Thick-film inorganic complex oxide | |
Parola et al. | New sol-gel route for processing of PMN thin films | |
JPH07121817B2 (en) | Zirconium oxide-based precursor gel and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990406 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |