JPH0664195B2 - Radiation image conversion panel having a phosphor layer shielded between crack interfaces - Google Patents
Radiation image conversion panel having a phosphor layer shielded between crack interfacesInfo
- Publication number
- JPH0664195B2 JPH0664195B2 JP61053267A JP5326786A JPH0664195B2 JP H0664195 B2 JPH0664195 B2 JP H0664195B2 JP 61053267 A JP61053267 A JP 61053267A JP 5326786 A JP5326786 A JP 5326786A JP H0664195 B2 JPH0664195 B2 JP H0664195B2
- Authority
- JP
- Japan
- Prior art keywords
- stimulable phosphor
- phosphor layer
- radiation image
- image conversion
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 153
- 230000005855 radiation Effects 0.000 title claims description 121
- 238000006243 chemical reaction Methods 0.000 title claims description 75
- 238000000034 method Methods 0.000 claims description 49
- 230000005284 excitation Effects 0.000 claims description 28
- 238000007740 vapor deposition Methods 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 11
- 230000031700 light absorption Effects 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 103
- 230000035945 sensitivity Effects 0.000 description 22
- 239000011241 protective layer Substances 0.000 description 17
- 238000004544 sputter deposition Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910052771 Terbium Inorganic materials 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 229910052693 Europium Inorganic materials 0.000 description 7
- 229910052794 bromium Inorganic materials 0.000 description 7
- 229910052793 cadmium Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 229910052688 Gadolinium Inorganic materials 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- 229910052712 strontium Inorganic materials 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 229910052779 Neodymium Inorganic materials 0.000 description 5
- 229910052769 Ytterbium Inorganic materials 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- -1 polyethylene terephthalate Polymers 0.000 description 5
- 229910052692 Dysprosium Inorganic materials 0.000 description 4
- 229910052689 Holmium Inorganic materials 0.000 description 4
- 229910052772 Samarium Inorganic materials 0.000 description 4
- 229910052775 Thulium Inorganic materials 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 229910052691 Erbium Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical group 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000002601 radiography Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910018068 Li 2 O Inorganic materials 0.000 description 2
- 229910052765 Lutetium Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229920001986 Vinylidene chloride-vinyl chloride copolymer Polymers 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910052915 alkaline earth metal silicate Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- QKYBEKAEVQPNIN-UHFFFAOYSA-N barium(2+);oxido(oxo)alumane Chemical compound [Ba+2].[O-][Al]=O.[O-][Al]=O QKYBEKAEVQPNIN-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Conversion Of X-Rays Into Visible Images (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は輝尽性蛍光体を用いた放射線画像変換パネルに
関するものであり、さらに詳しくは鮮鋭性の高い放射線
画像を与える放射線画像変換パネル及びその製造方法に
関するものである。TECHNICAL FIELD The present invention relates to a radiation image conversion panel using a stimulable phosphor, and more specifically, a radiation image conversion panel which gives a radiation image with high sharpness, and The present invention relates to a manufacturing method thereof.
X線画像のような放射線画像は病気診断用などに多く用
いられる。このX線画像を得るために、被写体を透過し
たX線を蛍光体層(蛍光スクリーン)に照射し、これに
より可視光を生じさせてこの可視光を通常の写真をとる
ときと同じように銀塩を使用したフィルムに照射して該
フィルムを現像した、いわゆる放射線写真が利用されて
いる。しかし、近年銀塩を塗布したフィルムを使用しな
いで蛍光体層から直接画像を取り出す方法が工夫される
ようになった。Radiation images such as X-ray images are often used for disease diagnosis. In order to obtain this X-ray image, X-rays that have passed through the subject are irradiated onto the phosphor layer (fluorescent screen), thereby generating visible light, and this visible light is used in the same way as when taking a normal photograph. The so-called radiography in which a film using salt is irradiated to develop the film is used. However, in recent years, a method of directly taking out an image from the phosphor layer without using a film coated with silver salt has been devised.
この方法としては被写体を透過した放射線を蛍光体に吸
収せしめ、しかる後この蛍光体を例えば光又は熱エネル
ギーで励起することによりこの蛍光体が上記吸収により
蓄積している放射線エネルギーを蛍光として放射せし
め、この蛍光を検出して画像化する方法がある。具体的
には、例えば米国特許3,859,527号及び特開昭55−12144
号には輝尽性蛍光体を用い可視光線又は赤外線を輝尽励
起光とした放射線画像変換方法が示されている。この方
法は支持体上に輝尽性蛍光体層を形成した放射線画像変
換パネルを使用するもので、この放射線画像変換パネル
の輝尽性蛍光体層に被写体を透過した放射線を当てて被
写体各部の放射線透過度に対応する放射線エネルギーを
蓄積させて潜像を形成し、しかる後にこの輝尽性蛍光体
層を輝尽性励起光で走査することによって各部の蓄積さ
れた放射線エネルギーを放射させてこれを光に変換し、
この光の強弱による光信号により画像を得るものであ
る。この最終的な画像はハードコピーとして再生しても
良いし、CRT上に再生してもよい。As this method, the radiation that has passed through the subject is absorbed by the phosphor, and then the phosphor is excited by, for example, light or thermal energy so that the radiation energy accumulated by the absorption by the phosphor is emitted as fluorescence. , There is a method of detecting this fluorescence and imaging. Specifically, for example, U.S. Pat. No. 3,859,527 and JP-A-55-12144.
Japanese Patent No. 3187242 discloses a radiation image conversion method using a stimulable phosphor and using visible light or infrared light as stimulated excitation light. This method uses a radiation image conversion panel in which a stimulable phosphor layer is formed on a support, and the radiation that has passed through the subject is applied to the stimulable phosphor layer of this radiation image conversion panel to apply the radiation to each part of the subject. The latent energy is formed by accumulating the radiation energy corresponding to the radiation transmittance, and thereafter, the radiation energy accumulated in each part is emitted by scanning the stimulable phosphor layer with stimulable excitation light. To light,
An image is obtained by an optical signal depending on the intensity of this light. This final image may be played back as a hard copy or on a CRT.
さて、この放射線画像変換方法に用いられる輝尽性蛍光
体層を有する放射線画像変換パネルにも、前述の蛍光ス
クリーンを用いる放射線写真法におけるように放射線感
度が高くて画像の粒状性が良いこと、および画像の鮮鋭
度が高いことが要求される。しかし、放射線画像変換パ
ネルと蛍光スクリーンとは、放射線画像変換パネルの放
射線感度の高いことは放射線エネルギーを後に励起光で
輝尽発光させ得るように吸収蓄積する効率が高いことで
あるのに対して、蛍光スクリーンの放射線感度が高いこ
とは放射線エネルギーを即刻光に変換する効率が高いこ
とであって、放射線エネルギーを吸収蓄積すると即刻光
に変換する分が減少するようになるといったように、利
用している自然法則が異なっている。Now, also in the radiation image conversion panel having the stimulable phosphor layer used in this radiation image conversion method, the radiation sensitivity is high and the image graininess is good as in the radiographic method using the above-mentioned fluorescent screen, Also, it is required that the sharpness of the image is high. However, in the radiation image conversion panel and the fluorescent screen, the high radiation sensitivity of the radiation image conversion panel means that the radiation energy has a high efficiency of absorbing and accumulating so that the radiation energy can be stimulated and emitted later by the excitation light. The high radiation sensitivity of the fluorescent screen means that the efficiency of converting the radiation energy into light is high, and the absorption of radiation energy reduces the amount of conversion into light immediately. There are different natural laws.
放射線画像変換パネルの放射線感度について、従来の輝
尽性蛍光体層を有する放射線画像変換パネルは粒径1〜
30μm程度の粒子状の輝尽性蛍光体と有機結着剤とを含
む分散液を支持体あるいは保護層上に塗布・乾燥して作
成されるので、輝尽性蛍光体の充填密度が低く(充填率
50%)、放射線感度を充分高くするには第5図(a)に示
すように輝尽性蛍光体層の層厚を厚くする必要があっ
た。Regarding the radiation sensitivity of the radiation image conversion panel, the radiation image conversion panel having the conventional stimulable phosphor layer has a particle size of 1 to 1.
The packing density of the stimulable phosphor is low because it is prepared by coating and drying a dispersion containing a particle-shaped stimulable phosphor of about 30 μm and an organic binder on a support or a protective layer ( Filling rate
50%), it was necessary to increase the thickness of the stimulable phosphor layer as shown in FIG. 5 (a) in order to sufficiently increase the radiation sensitivity.
同図から明らかなように輝尽性蛍光体層の層厚200μm
のときに輝尽性蛍光体の附着量は50mg/cm2であり、層
厚が350μmまでは放射線感度は直線的に増大して450μ
m以上で飽和する。尚、放射線感度が飽和するのは、輝
尽性蛍光体層が厚くなり過ぎると、輝尽性蛍光体粒子間
での輝尽性蛍光体層の散乱のため輝尽性蛍光体層内部で
の輝尽発光が外部に出てこなくなるためである。As is clear from the figure, the layer thickness of the stimulable phosphor layer is 200 μm.
In this case, the deposition amount of the stimulable phosphor is 50 mg / cm 2 , and the radiation sensitivity increases linearly up to 450 μm until the layer thickness reaches 350 μm.
Saturates above m. Incidentally, the radiation sensitivity is saturated, because when the stimulable phosphor layer becomes too thick, the scattering of the stimulable phosphor layer among the stimulable phosphor particles results in This is because the stimulated emission does not come out to the outside.
一方、これに対し前記放射線画像変換方法における画像
の鮮鋭性は第5図(b)に示すように、放射線画像変換パ
ネルの輝尽性蛍光体層の層厚が薄いほど高い傾向にあ
り、鮮鋭性の向上のためには、輝尽性蛍光体層の薄層化
が必要であった。On the other hand, as shown in FIG. 5 (b), the sharpness of the image obtained by the radiation image conversion method tends to be higher as the layer thickness of the stimulable phosphor layer of the radiation image conversion panel is smaller. In order to improve the property, it was necessary to reduce the thickness of the stimulable phosphor layer.
また、前記放射線画像変換方法における画像の粒状性は
放射線量子数の場所的ゆらぎ(量子モトル)あるいは放
射線画像変換パネルの輝尽性蛍光体層の構造的乱れ(構
造モトル)等によって決定されるので、輝尽性蛍光体層
の層厚が薄くなると、輝尽性蛍光体層に吸収される放射
線量子数が減少して量子モトルが増加したり構造的乱れ
が顕在化して構造モトルが増加したりして画質の低下を
生ずる。よって画像の粒状性を向上させるためには輝尽
性蛍光体層の層厚は厚い必要があった。Further, since the graininess of the image in the radiation image conversion method is determined by the spatial fluctuation of the radiation quantum number (quantum mottle) or the structural disorder of the stimulable phosphor layer of the radiation image conversion panel (structure mottle), etc. , When the thickness of the stimulable phosphor layer becomes thin, the number of radiation quantum absorbed in the stimulable phosphor layer decreases and the quantum mottle increases, or structural disorder becomes apparent and the structural mottle increases. As a result, the image quality is degraded. Therefore, in order to improve the graininess of the image, the stimulable phosphor layer needs to be thick.
即ち、前述のように、従来の放射線画像変換パネルは放
射線に対する感度及び画像の粒状性と、画像の鮮鋭性と
が輝尽性蛍光体層の層厚に対してまったく逆の傾向を示
すので、前記放射線画像変換パネルは放射線に対する感
度と粒状性と鮮鋭性のある程度の犠牲によって作成され
てきた。また前述の蛍光スクリーンと放射線画像変換パ
ネルの相違に関して、放射線写真法における画像の鮮鋭
性が蛍光スクリーンの中の蛍光体の瞬間発光(放射線照
射時の発光)の広がりによって決定されるのは周知の通
りであるが、これに対し、前述の輝尽性蛍光体を利用し
た放射線画像変換方法における画像の鮮鋭性は放射線画
像変換パネル中の輝尽性蛍光体の輝尽発光の広がりによ
って決定されるのではなく、すなわち放射線写真法にお
けるように蛍光体の発光の広がりによって決定されるの
ではなく、輝尽励起光の該パネル内での広がりに依存し
て決まると言う相違もある。この相違は、放射線画像変
換方法においては、放射線画像変換パネルに蓄積された
放射線画像情報は時系列化されて取り出されるので、あ
る時間(ti)に照射された輝尽励起光による輝尽発光は
望ましくは全て採光されその時間に輝尽励起光が照射さ
れていた該パネル上のある画素(xi,yi)からの出力とし
て記録されるが、もし輝尽励起光が該パネル内で散乱等
により広がり、照射画素(xi,yi)の外側に存在する輝尽
性蛍光体をも励起してしまうと、上記(xi,yi)なる画素
からの出力としてその画素よりも広い領域からの出力が
記録されてしまうことによる。従って、ある時間(ti)
に照射された輝尽励起光による輝尽発光が、その時間
(ti)に輝尽励起光が真に照射されていた該パネル上の
画素(xi,yi)からの発光のみであれば、その発光がいか
なる広がりを持つものであろうと得られる画像の鮮鋭性
には影響がない。That is, as described above, in the conventional radiation image conversion panel, the sensitivity to radiation and the graininess of the image, and the sharpness of the image show the opposite tendency to the layer thickness of the stimulable phosphor layer. The radiation image conversion panel has been made at the expense of some sensitivity to radiation, graininess and sharpness. Regarding the difference between the fluorescent screen and the radiation image conversion panel described above, it is well known that the sharpness of the image in radiography is determined by the spread of the instantaneous light emission (light emission upon irradiation) of the phosphor in the fluorescent screen. In contrast, the sharpness of the image in the radiation image conversion method using the stimulable phosphor described above is determined by the spread of the stimulated emission of the stimulable phosphor in the radiation image conversion panel. There is also the difference that it is not determined by the spread of the emission of the phosphor, ie, as in radiography, but rather by the spread of the stimulated excitation light within the panel. This difference is that in the radiation image conversion method, since the radiation image information accumulated in the radiation image conversion panel is taken out in time series, the stimulated emission due to the stimulated excitation light irradiated at a certain time (ti) does not occur. It is recorded as the output from a certain pixel (xi, yi) on the panel that was desirably illuminated and stimulated by excitation light at that time, but if the stimulated excitation light is scattered in the panel, etc. If the stimulable phosphor existing outside the radiated pixel (xi, yi) is also excited, the output from a pixel wider than that pixel will be recorded as the output from the pixel (xi, yi) above. Because it is done. Therefore, a certain time (ti)
If the stimulated emission by the stimulated excitation light irradiated to the, only the light emission from the pixel (xi, yi) on the panel that was actually irradiated with the stimulated excitation light at that time (ti), Whatever spread the luminescence has, it does not affect the sharpness of the resulting image.
このような状況の中で、放射線画像の鮮鋭性を改善する
方法がいくつか考案されて来た。例えば特開昭55−1464
47号記載の放射線画像変換パネルの輝尽性蛍光体層中に
白色粉体を混入する方法、特開昭55−163500号記載の放
射線画像変換パネルを輝尽性蛍光体の輝尽励起波長領域
における平均反射率が前記輝尽性蛍光体の輝尽発光波長
領域における平均反射率よりも小さくなるように着色す
る方法等である。しかし、これらの方法は鮮鋭性を改良
すると必然的に感度が著しく低下してしまい、好ましい
方法とは言えない。Under these circumstances, some methods have been devised to improve the sharpness of radiographic images. For example, JP-A-55-1464
A method of mixing white powder in the stimulable phosphor layer of the radiation image conversion panel described in No. 47, the radiation image conversion panel described in JP-A-55-163500 is a stimulable excitation wavelength region of the stimulable phosphor. And the like so that the average reflectance in the above is smaller than the average reflectance in the stimulated emission wavelength region of the stimulable phosphor. However, these methods are not preferable methods because the sensitivity inevitably decreases remarkably when the sharpness is improved.
一方これに対し本出願人は既に特願昭59−196365号にお
いて前述のような輝尽性蛍光体を用いた放射線画像変換
パネルにおける従来の欠点を改良した新規な放射線画像
変換パネルとして、輝尽性蛍光体層が結着剤を含有しな
い放射線画像変換パネルを提案している。これによれ
ば、放射線画像変換パネルの輝尽性蛍光体層が結着剤を
含有しないので輝尽性蛍光体の充填率が著しく向上する
と共に輝尽励起光および輝尽発光の指向性が向上するの
で、前記放射線画像変換パネルの放射線に対する感度と
画像の粒状性が改善されると同時に、画像の鮮鋭性も改
善される。On the other hand, the applicant of the present invention has already proposed in Japanese Patent Application No. 59-196365 a new radiation image conversion panel which is a novel radiation image conversion panel that improves on the conventional defects in the radiation image conversion panel using the stimulable phosphor as described above. A radiation image conversion panel in which the luminescent phosphor layer does not contain a binder is proposed. According to this, since the stimulable phosphor layer of the radiation image conversion panel does not contain a binder, the filling rate of the stimulable phosphor is significantly improved and the directivity of stimulated excitation light and stimulated emission is improved. Therefore, the radiation sensitivity of the radiation image conversion panel and the graininess of the image are improved, and at the same time, the sharpness of the image is improved.
しかしながら前記放射線画像変換方法に於いて、感度、
粒状性を損うことなく且つ鮮鋭性の優れた画質の要求は
更に厳しくなって来ている。However, in the radiation image conversion method, the sensitivity,
The demand for image quality with excellent sharpness without impairing graininess is becoming more severe.
本発明は輝尽性蛍光体を用いた前記提案の放射線画像変
換パネルに関連し、これをさらに改良するものであり、
本発明の目的は放射線に対する感度が向上すると共に鮮
鋭性の高い画像を与える放射線画像変換パネルを提供す
ることにある。The present invention relates to the above proposed radiation image conversion panel using a stimulable phosphor, which is to further improve it.
It is an object of the present invention to provide a radiation image conversion panel which has improved sensitivity to radiation and provides an image with high sharpness.
本発明の他の目的は、粒状性が向上すると共に、鮮鋭性
の高い画像を与える放射線画像変換パネルを提供するこ
とにある。It is another object of the present invention to provide a radiation image conversion panel which improves the graininess and gives an image with high sharpness.
前記した本発明の目的は、支持体上に放射線画像情報を
記憶する輝尽性蛍光体層を有して、該輝尽性蛍光体層に
上面側から輝尽励起光が入射されると輝尽性蛍光体層が
記憶している放射線画像情報を輝尽発光として前記上面
側に放出する放射線画像変換パネルにおいて、前記輝尽
性蛍光体層が気相堆積法による輝尽性蛍光体の堆積から
成っていて、前記上面側でネット状を成し層厚方向に切
り込んでいる亀裂を有し、該亀裂に高光反射率もしくは
高光吸収率の物質が充填されていることを特徴とする放
射線画像変換パネルによって達成される。The above-mentioned object of the present invention has a stimulable phosphor layer for storing radiation image information on a support, and when the stimulable excitation light is incident from the upper surface side to the stimulable phosphor layer, it is brightened. In the radiation image conversion panel which emits the radiation image information stored in the stimulable phosphor layer to the upper surface side as stimulated emission, the stimulable phosphor layer is deposited by a vapor deposition method. A radiation image characterized by comprising a crack formed in a net shape on the upper surface side and cut in the layer thickness direction, and the crack is filled with a substance having a high light reflectance or a high light absorption rate. Accomplished by a conversion panel.
次に本発明を具体的に説明する。Next, the present invention will be specifically described.
第1図(a)は本発明の放射線画像変換パネル(以後意味
明晰な場合には単にパネルと略称することがある)の一
例の厚み方向の断面図である。FIG. 1 (a) is a sectional view in the thickness direction of an example of the radiation image conversion panel of the present invention (hereinafter sometimes simply referred to as a panel when the meaning is clear).
同図に於いて10は本発明のパネルの形態を示す。11は支
持体であり、12は支持体上に設けられた輝尽性蛍光体層
であり、気相堆積法により形成された輝尽性蛍光体層を
表す。支持体11と輝尽性蛍光体層12との間には、必要に
応じ各層間の接着性をよくするための接着層を設けても
よいし、あるいは輝尽励起光および/または輝尽発光の
反射層もしくは吸収層を設けてもよい。また、14は設け
られることが好ましい保護層である。In the figure, reference numeral 10 shows the form of the panel of the present invention. Reference numeral 11 is a support, and 12 is a stimulable phosphor layer provided on the support, which is a stimulable phosphor layer formed by a vapor deposition method. If necessary, an adhesive layer may be provided between the support 11 and the stimulable phosphor layer 12 to improve the adhesiveness between the layers, or stimulated excitation light and / or stimulated emission. You may provide the reflective layer or the absorption layer. Further, 14 is a protective layer which is preferably provided.
前記輝尽性蛍光体層12中には、微細な亀裂13が設けら
れ、該亀裂13には高光反射率または高光吸収率の物質が
充填されており本発明のパネルの特徴となっている。Fine cracks 13 are provided in the stimulable phosphor layer 12, and the cracks 13 are filled with a substance having high light reflectance or high light absorption, which is a feature of the panel of the present invention.
本発明において輝尽性蛍光体層中の亀裂とは、具体的に
は輝尽性蛍光体の結晶粒界に平行な面に沿って設けられ
た微細な亀裂、溝、窪み、クレバス等を総称している。
前記亀裂の形態としては、たとえば第1図(a)に示すよ
うに支持体11に対しほぼ垂直方向に伸びた輝尽性蛍光体
の微細柱状ブロックの並立構造を有する輝尽性蛍光体層
において、該微細柱状ブロック夫々を区画するクレバス
であってもよい。前記柱状ブロックの並立構造は任意の
パターンを有してもよい。第2図(a),(b)および(c)に該
パターンの例を輝尽性蛍光体層の平面図として示した。
第2図において21は輝尽性蛍光体層を、22は前記微細柱
状ブロックを、23は前記クレバスを表している。The crack in the stimulable phosphor layer in the present invention is specifically a general term for fine cracks, grooves, depressions, crevasses and the like provided along a plane parallel to the crystal grain boundaries of the stimulable phosphor. is doing.
The morphology of the cracks is, for example, in a stimulable phosphor layer having a juxtaposed structure of fine columnar blocks of stimulable phosphor extending in a direction substantially perpendicular to the support 11 as shown in FIG. 1 (a). It may be a crevasse that partitions each of the fine columnar blocks. The juxtaposed structure of the columnar blocks may have any pattern. 2 (a), (b) and (c) show examples of the pattern as plan views of the stimulable phosphor layer.
In FIG. 2, 21 is a stimulable phosphor layer, 22 is the fine columnar block, and 23 is the crevasse.
また、本発明のパネルは第1図(b)に示すように輝尽性
蛍光体層12の層表側から入る亀裂13を有する構造であっ
てもよい。Further, the panel of the present invention may have a structure having a crack 13 which is inserted from the surface side of the stimulable phosphor layer 12 as shown in FIG. 1 (b).
本発明のパネルの輝尽性蛍光体層の厚みはパネルの放射
線に対する感度、輝尽性蛍光体の種類等によって異なる
が10〜800μmの範囲であることが好ましく、50〜500μ
mの範囲であることが更に好ましい。The thickness of the stimulable phosphor layer of the panel of the present invention varies depending on the sensitivity of the panel to radiation, the type of the stimulable phosphor, etc., but is preferably in the range of 10 to 800 μm, and 50 to 500 μm.
The range of m is more preferable.
本発明のパネルにおいて、亀裂13の幅は1〜20μm程度
が好ましく、隣りあう亀裂間の間隔は1〜400μm程度
が好ましい。In the panel of the present invention, the width of the crack 13 is preferably about 1 to 20 μm, and the distance between adjacent cracks is preferably about 1 to 400 μm.
本発明のパネルにおいて、輝尽性蛍光体層中の亀裂への
充填物とされる高光反射率の物質としてはたとえばアル
ミニウム、マグネシウム、銀、インジウムその他の金属
などが用いられ、また高光吸収率の物質としてはたとえ
ばカーボン、酸化クロム、酸化ニッケル、酸化鉄などが
用いられる。In the panel of the present invention, as a material having a high light reflectance used as a filling material for cracks in the stimulable phosphor layer, for example, aluminum, magnesium, silver, indium and other metals are used, and a high light absorptivity As the substance, for example, carbon, chromium oxide, nickel oxide, iron oxide or the like is used.
本発明のパネルにおいては、輝尽性蛍光体層に入射した
輝尽励起光の横方向への拡散が、前記高光反射率または
高光吸収率の物質によりほぼ完全に防止されるため、該
励起光は前記亀裂の界面において反射を繰り返しなが
ら、前記亀裂により囲まれてなる区画外に散逸すること
なく支持体面まで到達する。従って輝尽発光による画像
の鮮鋭性を著しく増大することができる。In the panel of the present invention, lateral diffusion of the stimulable excitation light incident on the stimulable phosphor layer is almost completely prevented by the substance having the high light reflectance or the high light absorption rate. Repeats reflection at the interface of the crack, and reaches the surface of the support without being dissipated outside the section surrounded by the crack. Therefore, the sharpness of the image due to stimulated emission can be significantly increased.
本発明の放射線画像変換パネルにおいて輝尽性蛍光体と
は、最初の光もしくは高エネルギー放射線が照射された
後に、光的、熱的、機械的、化学的または電気的等の刺
激(輝尽励起)により、最初の光もしくは高エネルギー
放射線の照射量に対応した輝尽発光を示す蛍光体を言う
が、実用的な面から好ましくは500nm以上の輝尽励起光
によって輝尽発光を示す蛍光体である。本発明の放射線
画像変換パネルに用いられる輝尽性蛍光体としては、例
えば特開昭48−80487号に記載されているBaSO4:Ax(但
しAはDy,Tb及びTmのうち少なくとも1種であり、xは
0.001≦x<1モル%である。)で表わされる蛍光体、
特開昭48−80488号記載のMgSO4:Ax(但しAはHo或いは
Dyのうちいづれかであり、xは0.001≦x≦1モル%で
ある)で表わされる蛍光体、特開昭48−80489号に記載
されているSrSO4:Ax(但しAはDy,Tb及びTmのうち少な
くとも1種であり、xは0.001≦x<1モル%であ
る。)で表わされている蛍光体、特開昭51−29889号に
記載されているNa2SO4,CaSO4及びBaSO4等にMn,Dy及びTb
のうち少なくとも1種を添加した蛍光体、特開昭52−30
487号に記載されているBeO,LiF,MgSO4及びCaF2等の蛍光
体、特開昭53−39277号に記載されているLi2B4O7:Cu,A
g等の蛍光体、特開昭54−47883号に記載されているLi2O
・(B2O2)x:Cu(但しxは2<x≦3)、及びLi2O・(B2O
2)x:Cu,Ag(但しxは2<x≦3)等の蛍光体、米国特
許3,859,527号に記載されているSrS:Ce,Sm、SrS:Eu,S
m、La2O2S:Eu,Sm及び(Zn,Cd)S:Mn,X(但しXはハロゲ
ン)で表わされる蛍光体が挙げられる。また、特開昭55
−12142号に記載されているznS:Cu,Pb蛍光体、一般式
がBaO・xA2O3:Eu(但し0.8≦x≦10)で表わされ
るアルミン酸バリウム蛍光体、及び一般式がMIIO・xS
iO2:A(但しMIIはMg,Ca,Sr,Zn,Cd又はBaであり、AはC
e,Tb,Eu,Tm,Pb,T,Bi及びMnのうち少なくとも1種で
あり、xは0.5≦x<2.5である。)で表わされるアルカ
リ土類金属珪酸塩系蛍光体が挙げられる。また、一般式
が (Ba1-x-yMgxCay)FX:eEu2+ (但しXはBr及びCの中の少なくとも1つであり、x,
y及びeはそれぞれ0<x+y≦0.6、xy≠0及び10-6≦
e≦5×10-2なる条件を満たす数である。)で表わされ
るアルカリ土類弗化ハロゲン化物蛍光体、特開昭55−12
144号に記載されている一般式が LnOX:xA (但しLnはLa,Y,Gd及びLuの少なくとも1つを、XはC
及び/又はBrを、AはCe及び/又はTbを、xは0<x
<0.1を満足する数を表わす。)で表わされる蛍光体、
特開昭55−12145号に記載されている一般式が (Ba1-xMIIx)FX:yA (但しMIIは、Mg,Ca,Sr,Zn及びCdのうちの少なくとも
1つを、XはC,Br及びIのうちの少なくとも1つ
を、AはEu,Tb,Ce,Tm,Dy,Pr,Ho,Nd,Yb及びErのうちの少
なくとも1つを、x及びyは0≦x≦0.6及び0≦y≦
0.2なる条件を満たす数を表わす。)で表わされる蛍光
体、特開昭55−84389号に記載されている一般式がBaF
X:xCe,yA(但し、XはC,Br及びIのうちの少なく
とも1つ、AはIn,T,Gd,Sm及びZrのうちの少なくと
も1つであり、x及びyはそれぞれ0<x≦2×10-1及
び0<y≦5×10-2である。)で表わされる蛍光体、特
開昭55−160078号に記載されている一般式が MIIFX・xA:yLn (但しMIIはMg,Ca,Ba,Sr,Zn及びCdのうちの少なくとも
1種、AはBeO,MgO,CaO,SrO,BaO,ZnO,A2O3,Y2O3,
La2O3,In2O3,SiO2,TiO2,ZrO2,GeO2,SnO2,Nb2O5,Ta2O5,
及びThO2のうちの少なくとも1種、LnはEu,Tb,Ce,Tm,D
y,Pr,Ho,Nd,Yb,Er,Sm及びGdのうちの少なくとも1種で
あり、XはC,Br及びIのうちの少くとも1種であ
り、x及びyはそれぞれ5×10-5≦x≦0.5及び0<y
≦0.2なる条件を満たす数である。)で表わされる希土
類元素付活2価金属フルオロハライド蛍光体、一般式が
ZnS:A、CdS:A、(Zn,Cd)S:A、ZnS:A、X及びCdS:A、X
(但しAはCu,Ag,Au,又はMnであり、Xはハロゲンであ
る。)で表わされる蛍光体、特開昭57−148285号に記載
されている下記いづれかの一般式 xM3(PO4)2・NX2:yA M3(PO4)2:yA (式中、M及びNはそれぞれMg,Ca,Sr,Ba,Zn及びCdのう
ち少なくとも1種、XはF,C,Br及びIのうち少なく
とも1種、AはEu,Tb,Ce,Tm,Dy,Pr,Ho,Nd,Yb,Er,Sb,T
,Mn及びSnのうち少なくとも1種を表わす。また、x
及びyは0<x≦6、0≦y≦1なる条件を満たす数で
ある。)で表わされる蛍光体、下記いづれかの一般式 nReX3・mA▲X′ 2▼:xEu nReX3・mA▲X′ 2▼:xEu,ySm (式中、ReはLa,Gd,Y,Luのうち少なくとも1種、Aはア
ルカリ土類金属、Ba,Sr,Caのうち少なくとも1種、X及
びX′はF,C,Brのうち少なくとも1種を表わす。ま
た、x及びyは、1×10-4<x<3×10-1、1×10-4<
y<1×10-1なる条件を満たす数であり、n/mは1×
10-3<n/m<7×10-1なる条件を満たす。)で表わさ
れる蛍光体、及び下記一般式 MIX・aMII▲X′ 2▼・bMIII▲X″ 2▼:cA (但し、MIはLi,Na,K,Rb及びCsから選ばれる少なくと
も1種のアルカリ金属であり、MIIはBe,Mg,Ca,Sr,Ba,Z
n,Cd,Cu及びNiから選ばれる少なくとも1種の二価金属
である。MIIIはSc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,
Ho,Er,Tm,Yb,Lu,A,Ga及びInから選ばれる少なくとも
1種の三価金属である。X,X′及びX″はF,C,Br及び
Iから選ばれる少なくとも1種のハロゲンである。Aは
Eu,Tb,Ce,Tm,Dy,Pr,Ho,Nd,Yb,Er,Gd,Lu,Sm,Y,T,Na,A
g,Cu及びMgから選ばれる少なくとも1種の金属である。In the radiation image conversion panel of the present invention, the stimulable phosphor means a stimulus such as an optical, a thermal, a mechanical, a chemical, or an electrical stimulus (stimulation excitation) after being irradiated with the first light or high-energy radiation. ), The phosphor that exhibits stimulated emission corresponding to the dose of the first light or high-energy radiation, but from a practical point of view, preferably a phosphor that exhibits stimulated emission by stimulated excitation light of 500 nm or more. is there. Examples of the stimulable phosphor used in the radiation image conversion panel of the present invention include BaSO 4 : Ax (where A is at least one of Dy, Tb and Tm) described in JP-A-48-80487. Yes, x is
0.001 ≦ x <1 mol%. ) Phosphor represented by
MgSO 4 : Ax described in JP-A-48-80488 (where A is Ho or
Phosphor represented by any one of Dy, where x is 0.001 ≦ x ≦ 1 mol%, SrSO 4 : Ax described in JP-A-48-80489 (where A is Dy, Tb and Tm) Which is at least one of the above, and x is 0.001 ≦ x <1 mol%.), Na 2 SO 4 , CaSO 4 and Na 2 SO 4 and CaSO 4 described in JP-A-51-29889. BaSO 4 etc. with Mn, Dy and Tb
A phosphor to which at least one of them is added, Japanese Patent Application Laid-Open No. 52-30
BeO, LiF, MgSO 4, CaF 2 and other phosphors described in JP-A No. 487, Li 2 B 4 O 7 : Cu, A described in JP-A-53-39277.
g and other phosphors, Li 2 O described in JP-A-54-47883
・ (B 2 O 2 ) x: Cu (where x is 2 <x ≦ 3), and Li 2 O ・ (B 2 O
2 ) x: Cu, Ag (where x is 2 <x ≦ 3) and other phosphors, SrS: Ce, Sm, SrS: Eu, S described in US Pat. No. 3,859,527
Examples include phosphors represented by m, La 2 O 2 S: Eu, Sm and (Zn, Cd) S: Mn, X (where X is a halogen). In addition, JP-A-55
No. 12142, a znS: Cu, Pb phosphor, a barium aluminate phosphor represented by the general formula of BaO.xA 2 O 3 : Eu (however 0.8 ≦ x ≦ 10), and a general formula of M II O ・ xS
iO 2 : A (where M II is Mg, Ca, Sr, Zn, Cd or Ba, and A is C
It is at least one of e, Tb, Eu, Tm, Pb, T, Bi and Mn, and x is 0.5 ≦ x <2.5. ) Alkaline earth metal silicate-based phosphors represented by Also, the general formula is (Ba 1 -x-yMgxCay) FX: eEu 2+ (where X is at least one of Br and C, and x,
y and e are 0 <x + y ≦ 0.6, xy ≠ 0 and 10 −6 ≦, respectively
It is a number that satisfies the condition of e ≦ 5 × 10 -2 . ) Alkaline earth fluorohalide phosphor, represented by JP-A-55-12
The general formula described in No. 144 is LnOX: xA (where Ln is at least one of La, Y, Gd and Lu, and X is C
And / or Br, A is Ce and / or Tb, and x is 0 <x
Represents a number that satisfies <0.1. ) Phosphor represented by
The general formula described in JP-A-55-12145 is (Ba 1 -xM II x) FX: yA (where M II is at least one of Mg, Ca, Sr, Zn and Cd is X Is at least one of C, Br and I, A is at least one of Eu, Tb, Ce, Tm, Dy, Pr, Ho, Nd, Yb and Er, and x and y are 0 ≦ x. ≦ 0.6 and 0 ≦ y ≦
Represents a number that satisfies the condition 0.2. ), The general formula described in JP-A-55-84389 is BaF
X: xCe, yA (where X is at least one of C, Br and I, A is at least one of In, T, Gd, Sm and Zr, and x and y are each 0 <x ≦ 2 × 10 −1 and 0 <y ≦ 5 × 10 −2 ), the general formula described in JP-A No. 55-160078 is M II FX · xA: yLn (however, M II is at least one of Mg, Ca, Ba, Sr, Zn and Cd, A is BeO, MgO, CaO, SrO, BaO, ZnO, A 2 O 3 , Y 2 O 3 ,
La 2 O 3, In 2 O 3, SiO 2, TiO 2, ZrO 2, GeO 2, SnO 2, Nb 2 O 5, Ta 2 O 5,
And at least one of ThO 2 , Ln is Eu, Tb, Ce, Tm, D
at least one of y, Pr, Ho, Nd, Yb, Er, Sm and Gd, X is at least one of C, Br and I, and x and y are each 5 × 10 − 5 ≤ x ≤ 0.5 and 0 <y
It is a number that satisfies the condition of ≦ 0.2. ) A rare earth element-activated divalent metal fluorohalide phosphor, represented by the general formula
ZnS: A, CdS: A, (Zn, Cd) S: A, ZnS: A, X and CdS: A, X
(Wherein A is Cu, Ag, Au, or Mn, and X is halogen), a phosphor represented by the general formula xM 3 (PO 4 ) described in JP-A-57-148285. ) 2・ NX 2 : yA M 3 (PO 4 ) 2 : yA (In the formula, M and N are at least one of Mg, Ca, Sr, Ba, Zn and Cd, and X is F, C, Br and At least one of I, A is Eu, Tb, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Sb, T
, Mn and Sn represent at least one kind. Also, x
And y are numbers satisfying the conditions of 0 <x ≦ 6 and 0 ≦ y ≦ 1. ), A phosphor represented by any of the following general formulas nReX 3 · mA ▲ X ′ 2 ▼: xEu nReX 3 · mA ▲ X ′ 2 ▼: xEu, ySm (where Re is La, Gd, Y, Lu) At least one of them, A is an alkaline earth metal, at least one of Ba, Sr, and Ca, X and X ′ are at least one of F, C, and Br, and x and y are 1 ×. 10 -4 <x <3 x 10 -1 , 1 x 10 -4 <
It is a number satisfying the condition of y <1 × 10 −1 , and n / m is 1 ×
The condition of 10 -3 <n / m <7 × 10 -1 is satisfied. Phosphor represented by), and the following general formula M I X · aM II ▲ X '2 ▼ · bM III ▲ X "2 ▼: cA ( where, M I is selected Li, Na, K, from Rb and Cs At least one alkali metal, M II is Be, Mg, Ca, Sr, Ba, Z
It is at least one divalent metal selected from n, Cd, Cu and Ni. M III is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy,
It is at least one trivalent metal selected from Ho, Er, Tm, Yb, Lu, A, Ga and In. X, X'and X "are at least one halogen selected from F, C, Br and I. A is
Eu, Tb, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, T, Na, A
It is at least one metal selected from g, Cu and Mg.
またaは、0≦a<0.5の範囲の数値であり、bは0≦
b<0.5の範囲の数値であり、cは0<c≦0.2の範囲の
数値である。)で表わされるアルカリハライド蛍光体等
が挙げられる。特にアルカリハライド蛍光体は、蒸着,
スパッタリング等の方法で輝尽性蛍光体層を形成させや
すく好ましい。Also, a is a numerical value in the range of 0 ≦ a <0.5, and b is 0 ≦ a <0.5.
The value is in the range of b <0.5, and the value of c is in the range of 0 <c ≦ 0.2. ) Alkali halide phosphors represented by). Alkali halide phosphors are especially
A stimulable phosphor layer can be easily formed by a method such as sputtering, which is preferable.
しかし、本発明の放射線画像変換パネルに用いられる輝
尽性蛍光体は、前述の蛍光体に限られるものではなく、
放射線を照射した後輝尽励起光を照射した場合に輝尽発
光を示す蛍光体であればいかなる蛍光体であってもよ
い。However, the stimulable phosphor used in the radiation image conversion panel of the present invention is not limited to the above-mentioned phosphor,
Any phosphor may be used as long as it exhibits stimulated emission when it is irradiated with radiation and then stimulated by excitation light.
本発明の放射線画像変換パネルは前記の輝尽性蛍光体の
少なくとも一種類を含む一つ若しくは二つ以上の輝尽性
蛍光体層から成る輝尽性蛍光体層群を有してもよい。ま
た、それぞれの輝尽性蛍光体層に含まれる輝尽性蛍光体
は同一であってもよいが異なっていてもよい。The radiation image conversion panel of the present invention may have a stimulable phosphor layer group composed of one or two or more stimulable phosphor layers containing at least one kind of the stimulable phosphor described above. The stimulable phosphor contained in each stimulable phosphor layer may be the same or different.
本発明の放射線画像変換パネルにおいて、用いられる支
持体としては各種高分子材料、ガラス、金属等が用いら
れる。特に情報記録材料としての取り扱い上可撓性のあ
るシートあるいはウェブに加工できるものが好適であ
り、この点から例えばセルロースアセテートフィルム、
ポリエステルフィルム、ポリエチレンテレフタレートフ
ィルム、ポリアミドフィルム、ポリイミドフィルム、ト
リアセテートフィルム、ポリカーボネートフィルム等の
プラスチックフィルム、アルミニウム、鉄、銅、クロム
等の金属シート或は該金属酸化物の被覆層を有する金属
シートが好ましい。In the radiation image conversion panel of the present invention, various polymeric materials, glass, metals and the like are used as the support. In particular, a material that can be processed into a flexible sheet or web for handling as an information recording material is preferable, and from this point, for example, a cellulose acetate film,
A plastic film such as a polyester film, a polyethylene terephthalate film, a polyamide film, a polyimide film, a triacetate film and a polycarbonate film, a metal sheet of aluminum, iron, copper, chromium or the like or a metal sheet having a coating layer of the metal oxide is preferable.
また、これら支持体の層厚は用いる支持体の材質等によ
って異なるが、一般的には80μm〜1000μmであり、取
り扱い上の点からさらに好ましくは80μm〜500μmで
ある。The layer thickness of these supports varies depending on the material of the support used, etc., but is generally 80 μm to 1000 μm, and more preferably 80 μm to 500 μm from the viewpoint of handling.
本発明の放射線画像変換パネルにおいては、一般的に前
記輝尽性蛍光体層が露呈する面に、輝尽性蛍光体層群を
物理的にあるいは化学的に保護するための保護層を設け
ることが好ましい。この保護層は、保護層用塗布液を輝
尽性蛍光体層上に直接塗布して形成してもよいし、ある
いはあらかじめ別途形成した保護層を輝尽性蛍光体層上
に接着してもよい。あるいは、別途形成した保護層上に
輝尽性蛍光体層を設けた後に支持体を接着する方法を用
いてもよい。保護層の材料としては酢酸セルロース、ニ
トロセルロース、ポリメチルメタクリレート、ポリビニ
ルブチラール、ポリビニルホルマール、ポリカーボネー
ト、ポリエステル、ポリエチレンテレフタレート、ポリ
エチレン、ポリプロピレン、ポリ塩化ビニリデン、ナイ
ロン、ポリ四フッ化エチレン、ポリ三フッ化一塩化エチ
レン、四フッ化エチレン−六フッ化プロピレン共重合
体、塩化ビニリデン−塩化ビニル共重合体、塩化ビニリ
デン−アクリロニトリル共重合体等の保護層用材料が用
いられる。In the radiation image conversion panel of the present invention, a protective layer for physically or chemically protecting the stimulable phosphor layer group is generally provided on the surface on which the stimulable phosphor layer is exposed. Is preferred. This protective layer may be formed by directly coating the protective layer coating solution on the stimulable phosphor layer, or by forming a protective layer separately formed in advance on the stimulable phosphor layer. Good. Alternatively, a method may be used in which a support is adhered after providing a stimulable phosphor layer on a separately formed protective layer. Materials for the protective layer include cellulose acetate, nitrocellulose, polymethylmethacrylate, polyvinyl butyral, polyvinyl formal, polycarbonate, polyester, polyethylene terephthalate, polyethylene, polypropylene, polyvinylidene chloride, nylon, polytetrafluoroethylene, and polytrifluoride. Materials for the protective layer such as ethylene chloride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene chloride-vinyl chloride copolymer and vinylidene chloride-acrylonitrile copolymer are used.
また、この保護層は真空蒸着法、スパッタ法等により、
SiC,SiO2,SiN,Al2O3などの無機物質を積層して形成して
もよい。In addition, this protective layer is formed by vacuum vapor deposition, sputtering, etc.
It may be formed by stacking inorganic materials such as SiC, SiO 2 , SiN, and Al 2 O 3 .
次に前記輝尽性蛍光体層の気相堆積法について説明す
る。Next, the vapor phase deposition method of the stimulable phosphor layer will be described.
第1の方法として真空蒸着法がある。該方法に於いて
は、まず支持体を蒸着装置内に設置した後装置内を排気
して10-6Torr程度の真空度とする。The first method is a vacuum vapor deposition method. In this method, first, the support is placed in the vapor deposition apparatus and then the apparatus is evacuated to a vacuum degree of about 10 −6 Torr.
次いで、前記輝尽性蛍光体の少なくとも一つを抵抗加熱
法、エレクトロンビーム法等の方法で加熱蒸発させて前
記支持体表面に輝尽性蛍光体を所望の厚さに堆積させ
る。Then, at least one of the stimulable phosphors is heated and evaporated by a method such as a resistance heating method or an electron beam method to deposit the stimulable phosphor on the surface of the support to a desired thickness.
この結果結着剤を含有しない輝尽性蛍光体層が形成され
るが、前記蒸着工程では複数回に分けて輝尽性蛍光体層
を形成することも可能である。また、前記蒸着工程では
複数の抵抗加熱器あるいはエレクトロンビームを用いて
共蒸着を行うことも可能である。As a result, a stimulable phosphor layer containing no binder is formed, but it is also possible to form the stimulable phosphor layer in a plurality of times in the vapor deposition step. Further, in the vapor deposition step, co-evaporation can be performed using a plurality of resistance heaters or electron beams.
亀裂への充填も終えた輝尽性蛍光体層の完全形成後、必
要に応じて前記輝尽性蛍光体層の支持体側とは反対の側
に好ましくは保護層を設け本発明の放射線画像変換パネ
ルが製造される。After complete formation of the stimulable phosphor layer that has also been filled in the cracks, preferably a protective layer is provided on the side opposite to the support side of the stimulable phosphor layer, if necessary, for the radiation image conversion of the present invention. The panel is manufactured.
尚、保護層上に輝尽性蛍光体層を形成した後、支持体を
設ける手順をもってもよい。Incidentally, after forming the stimulable phosphor layer on the protective layer, the support may be provided.
また、前記真空蒸着法においては、輝尽性蛍光体原料を
複数の抵抗加熱器あるいはエレクトロンビームを用いて
共蒸着し、支持体上で目的とする輝尽性蛍光体を合成す
ると同時に輝尽性蛍光体層を形成することも可能であ
る。In the vacuum deposition method, the stimulable phosphor material is co-evaporated using a plurality of resistance heaters or electron beams to synthesize the desired stimulable phosphor on the support and at the same time stimulable. It is also possible to form a phosphor layer.
さらに前記真空蒸着法においては、蒸着時必要に応じて
被蒸着物(支持体あるいは保護層)を冷却あるいは加熱
してもよい。また、蒸着終了後輝尽性蛍光体層を加熱処
理してもよい。Further, in the vacuum vapor deposition method, the object to be vapor-deposited (support or protective layer) may be cooled or heated during vapor deposition, if necessary. In addition, the stimulable phosphor layer may be heat-treated after completion of vapor deposition.
第2の方法としてスパッタ法がある。該方法において
は、蒸着法と同様に支持体をスパッタ装置内に設置した
後装置内を一旦排気して10-6Torr程度の真空度とし、次
いでスパッタ用のガスとしてAr,Ne等の不活性ガスをス
パッタ装置内に導入して10-3Torr程度のガス圧とする。The second method is a sputtering method. In this method, as in the vapor deposition method, after the support is placed in the sputtering apparatus, the inside of the apparatus is once evacuated to a vacuum degree of about 10 -6 Torr, and then an inert gas such as Ar or Ne is used as a gas for sputtering. The gas is introduced into the sputtering apparatus to a gas pressure of about 10 -3 Torr.
次に前記輝尽性蛍光体をターゲットとして、スパッタリ
ングすることにより、前記支持体表面に輝尽性蛍光体を
所望の厚さに堆積させる。Next, the stimulable phosphor is deposited on the surface of the support to a desired thickness by sputtering using the stimulable phosphor as a target.
前記スパッタ工程では真空蒸着法と同様に複数回に分け
て輝尽性蛍光体層を形成することも可能であるし、また
それぞれ異なった輝尽性蛍光体からなる複数のターゲッ
トを用いて、同時あるいは順次、前記ターゲットをスパ
ッタリングして輝尽性蛍光体層を形成することも可能で
ある。In the sputtering step, it is possible to form the stimulable phosphor layer in a plurality of times in the same manner as in the vacuum deposition method, and it is also possible to simultaneously use a plurality of targets made of different stimulable phosphors. Alternatively, it is also possible to sequentially sputter the target to form a stimulable phosphor layer.
スパッタ法を用いた場合も、真空蒸着法の場合と同様に
必要に応じて前記輝尽性蛍光体層の支持体側とは反対の
側に好ましくは保護層を設け本発明の放射線画像変換パ
ネルが製造される。尚、保護層上に輝尽性蛍光体層を形
成した後、支持体を設ける手順をとってもよい。Also in the case of using the sputtering method, similarly to the case of the vacuum deposition method, preferably a protective layer is provided on the side opposite to the support side of the stimulable phosphor layer, if necessary, to provide a radiation image conversion panel of the present invention. Manufactured. Incidentally, after forming the stimulable phosphor layer on the protective layer, a procedure of providing a support may be adopted.
前記スパッタ法においては、複数の輝尽性蛍光体原料を
ターゲットとして用いこれを同時あるいは順次スパッタ
リングして、支持体上で目的とする輝尽性蛍光体を合成
すると同時に輝尽性蛍光体層を形成することも可能であ
る。また、前記スパッタ法においては、必要に応じてO
2,H2等のガスを導入して反応性スパッタを行ってもよ
い。In the sputtering method, a plurality of stimulable phosphor raw materials are used as targets and are simultaneously or sequentially sputtered to synthesize a target stimulable phosphor on a support and at the same time a stimulable phosphor layer is formed. It is also possible to form. In the sputtering method, if necessary, O
Reactive sputtering may be performed by introducing a gas such as 2 , H 2 or the like.
さらに前記スパッタ法においては、スパッタ時必要に応
じて被蒸着物(支持体あるいは保護層)を冷却あるいは
加熱してもよい。またスパッタ終了後輝尽性蛍光体層を
加熱処理してもよい。Further, in the above-mentioned sputtering method, the material to be vapor-deposited (support or protective layer) may be cooled or heated during the sputtering, if necessary. Further, the stimulable phosphor layer may be heat-treated after completion of sputtering.
第3の方法としてCVD法がある。該方法は目的とする輝
尽性蛍光体あるいは輝尽性蛍光体原料を含有する有機金
属化合物を熱、高周波電力等のエネルギーで分解するこ
とにより、支持体上に結着剤を含有しない輝尽性蛍光体
層を得る。The third method is the CVD method. In this method, a target stimulable phosphor or an organometallic compound containing a raw material for a stimulable phosphor is decomposed by energy such as heat or high-frequency power to give a binder containing no binder on the support. A fluorescent phosphor layer is obtained.
本発明のパネルの輝尽性蛍光体層中に亀裂を設けるため
の方法としては、例えば特願昭59−266912号〜266916号
に述べられている方法を用いることができる。すなわ
ち、多数の微小タイル状板が微細な間隙により互いに隔
絶されて敷きつめられたごとき表面構造を有する支持体
あるいは前記微小タイル状板夫々を細線網が採り囲み区
画する表面構造を有する支持体上に輝尽性蛍光体を気相
堆積させて、第1図(a)のごとき構造を形成してもよ
い。このようにして設けた輝尽性蛍光体層をさらにショ
ック処理を施して亀裂を発達させてもよい。As a method for forming a crack in the stimulable phosphor layer of the panel of the present invention, for example, the method described in Japanese Patent Application Nos. 59-266912 to 266916 can be used. That is, on a support having a surface structure such as a large number of micro tile-shaped plates separated from each other by a minute gap and spread, or on a support having a surface structure in which each of the micro tile-shaped plates is surrounded and divided by a fine wire net. The stimulable phosphor may be vapor-deposited to form a structure as shown in FIG. 1 (a). The stimulable phosphor layer thus provided may be further shock-treated to develop cracks.
また、特願昭60−180704号に述べられているように、気
相堆積法により形成した輝尽性蛍光体層に熱ショックな
どを与えることにより亀裂を発生させ、第1図(b)に示
すごとき構造を得ることもできる。Moreover, as described in Japanese Patent Application No. 60-180704, a crack is generated by applying a heat shock to the stimulable phosphor layer formed by the vapor deposition method, and the crack is generated as shown in FIG. 1 (b). It is also possible to obtain the structure shown.
さらに、特願昭60−250530号に述べられているように、
雰囲気蒸着により空洞を有する輝尽性蛍光体層を形成し
た後に加熱処理などを施して該空洞を成長させて亀裂を
設けてもよい。Furthermore, as described in Japanese Patent Application No. 60-250530,
After forming a stimulable phosphor layer having cavities by vapor deposition in an atmosphere, heat treatment may be performed to grow the cavities to form cracks.
次に、輝尽性蛍光体層に形成された亀裂中に高光反射率
または高光吸収率の物質を充填する方法について述べ
る。Next, a method of filling the crack formed in the stimulable phosphor layer with a substance having high light reflectance or high light absorption will be described.
前述したとおり、前記亀裂の幅は好ましくは1〜20μm
程度であるので、充填すべき物質が粒径数百mμ以下の
超微粒子である場合にはこれをそのまま亀裂に埋め込む
ことができる。また、充填すべき物質が比較的低融点の
金属である場合には、該金属の融点まで昇温し、融解液
の流動性を利用して亀裂に充填してもよい。以上の方法
の他に、適当な溶媒あるいは分散媒中に充填すべき物質
を溶解または分散して適度の粘度をもつ溶液または分散
液を調製し、該溶液または分散液を前記亀裂に浸透させ
た後、溶媒を蒸発させたり、加熱変性させたりすること
により充填物を沈着させる方法を用いてもよい。As mentioned above, the width of the crack is preferably 1 to 20 μm.
Since the material is in the order of magnitude, when the substance to be filled is ultrafine particles having a particle size of several hundred mμ or less, this can be directly embedded in the crack. When the substance to be filled is a metal having a relatively low melting point, the temperature may be raised to the melting point of the metal and the cracks may be filled by utilizing the fluidity of the melt. In addition to the above method, a substance to be filled is dissolved or dispersed in an appropriate solvent or dispersion medium to prepare a solution or dispersion having an appropriate viscosity, and the solution or dispersion is permeated into the crack. After that, a method of depositing the filler by evaporating the solvent or denaturing by heating may be used.
第3図(a)は気相堆積法によってえられた本発明の放射
線画像変換パネルの輝尽性蛍光体層及び該層厚に対応す
る輝尽性蛍光体附着量と放射線感度の関係の一例を表し
ている。FIG. 3 (a) is an example of the relationship between the photostimulable phosphor layer of the radiation image conversion panel of the present invention obtained by the vapor deposition method and the amount of the photostimulable phosphor deposited corresponding to the layer thickness and the radiation sensitivity. Is represented.
本発明に係る気相堆積法による輝尽性蛍光体層は結着剤
を含んでいないので輝尽性蛍光体の附着量(充填率)が
従来の輝尽性蛍光体を塗設した輝尽性蛍光体層の約2倍
あり、輝尽性蛍光体層単位厚さ当たりの放射線吸収率が
向上し放射線に対して高感度となるばかりか、画像の粒
状性が向上する。Since the stimulable phosphor layer by the vapor deposition method according to the present invention does not contain a binder, the amount of the stimulable phosphor attached (filling rate) is the same as that obtained by coating a conventional stimulable phosphor. It is about twice as thick as the stimulable phosphor layer, and the radiation absorptivity per unit thickness of the stimulable phosphor layer is improved and the sensitivity to radiation is high, and the graininess of the image is improved.
更に前記気相堆積法による輝尽性蛍光体層は輝尽励起光
及び輝尽発光の指向性が高く、従来の塗設法による輝尽
性蛍光体層より層厚を厚くすることが可能であり、放射
線に対して一層高感度となる。Furthermore, the stimulable phosphor layer produced by the vapor deposition method has high directivity for stimulated excitation light and stimulated emission, and the layer thickness can be made larger than that of the stimulable phosphor layer produced by the conventional coating method. , Becomes more sensitive to radiation.
前記のようにして得られた亀裂内に高光反射率または高
光吸収率の充填物を有する輝尽性蛍光体層を有する本発
明のパネルの鮮鋭性の一例を第3図(b)の31によって示
す。An example of the sharpness of the panel of the present invention having a stimulable phosphor layer having a high light reflectance or high light absorption filler in the crack obtained as described above is shown by 31 in FIG. 3 (b). Show.
本発明のパネルは特願昭59−266912号〜266916号に記載
されている前記充填物を有さない微細柱状ブロック構造
よりその光誘導効果が優れており、輝尽励起光の横方向
への拡散が防止されるので、例えば特願昭59−266914号
に指定されるタイル状構造を引き継いだ柱状ブロック構
造を有し、亀裂内に何ら充填物を有さないパネルの特性
を示す第3図(b)の32と比較すると明らかなように、画
像の鮮鋭性が向上すると共に輝尽性蛍光体の層厚の増大
にともなう鮮鋭性をより向上することが可能である。The panel of the present invention is more excellent in its light-inducing effect than the fine columnar block structure having no filling described in Japanese Patent Application No. 59-266912 to 266916, and the transverse direction of stimulated excitation light in the lateral direction. Since diffusion is prevented, for example, the characteristics of a panel having a columnar block structure that inherits the tile-like structure specified in Japanese Patent Application No. 59-266914 and having no filling in cracks are shown in FIG. As is clear from comparison with 32 of (b), it is possible to improve the sharpness of the image and further improve the sharpness with an increase in the layer thickness of the stimulable phosphor.
また輝尽性蛍光体粒子を結着剤に分散塗布して得られる
従来のパネルの特性を第3図(b)の33に示す。これより
明らかに画像の鮮鋭性が優れていることがわかる。The characteristics of a conventional panel obtained by dispersing and coating stimulable phosphor particles on a binder are shown in 33 of FIG. 3 (b). This clearly shows that the sharpness of the image is excellent.
本発明の放射線画像変換パネルは第4図に概略的に示さ
れる放射線画像変換方法に用いられた場合、優れた鮮鋭
性粒状性及び感度を与える。すなわち、第4図におい
て、41は放射線発生装置、42は被写体、43は本発明の放
射線画像変換パネル、44は輝尽励起光源、45は該放射線
画像変換パネルより放射された輝尽発光を検出する光電
変換装置、46は45で検出された信号を画像として再生す
る装置47は再生された画像を表示する装置、48は輝尽励
起光と輝尽発光とを分離し、輝尽発光のみを透過させる
フィルターである。尚45以降は43からの光情報を何らか
の形で画像として再生できるものであればよく、上記に
限定されるものではない。The radiation image conversion panel of the present invention provides excellent sharpness and graininess when used in the radiation image conversion method shown schematically in FIG. That is, in FIG. 4, 41 is a radiation generator, 42 is a subject, 43 is a radiation image conversion panel of the present invention, 44 is a stimulated excitation light source, and 45 is stimulated emission emitted from the radiation image conversion panel. A photoelectric conversion device, 46 is a device for reproducing the signal detected at 45 as an image 47 is a device for displaying the reproduced image, 48 is for separating stimulated excitation light and stimulated emission, only stimulated emission It is a filter that allows light to pass through. It should be noted that after 45, it is not limited to the above as long as the optical information from 43 can be reproduced as an image in some form.
第4図に示されるように放射線発生装置41からの放射線
は被写体42を通して本発明の放射線画像変換パネル43に
入射する。この入射した放射線はパネル43の輝尽性蛍光
体層に吸収され、そのエネルギーが蓄積され放射線透過
像の蓄積像が形成される。次にこの蓄積像を輝尽励起光
源44からの輝尽励起光で励起して輝尽発光として放出せ
しめる。本発明の放射線画像変換パネル43は、輝尽励起
光の光誘導効果に優れており、上記輝尽励起光による走
査の際に、輝尽励起光が輝尽性蛍光体層中で拡散するの
が抑制される。As shown in FIG. 4, the radiation from the radiation generator 41 enters the radiation image conversion panel 43 of the present invention through the subject 42. The incident radiation is absorbed by the photostimulable phosphor layer of the panel 43, the energy is accumulated, and an accumulated image of a radiation transmission image is formed. Next, this accumulated image is excited by stimulated excitation light from the stimulated excitation light source 44 and emitted as stimulated emission. The radiation image conversion panel 43 of the present invention is excellent in the light induction effect of the stimulated excitation light, and during the scanning by the stimulated excitation light, the stimulated excitation light diffuses in the stimulable phosphor layer. Is suppressed.
放射される輝尽発光の強弱は蓄積された放射線エネルギ
ー量に比例するので、この光信号を例えば光電子増倍管
等の光電変換装置45で光電変換し、画像再生装置46によ
って画像として再生し画像表示装置47によって表示する
ことにより、被写体の放射線透過像を観察することがで
きる。Since the intensity of the stimulated emission emitted is proportional to the amount of accumulated radiation energy, this optical signal is photoelectrically converted by the photoelectric conversion device 45 such as a photomultiplier tube and reproduced as an image by the image reproduction device 46. By displaying with the display device 47, a radiation transmission image of the subject can be observed.
次に実施例によって本発明を説明する。 Next, the present invention will be described with reference to examples.
実施例 0.5mm厚のアルミニウム板を特願昭59−266914号に示し
た方法により陽極酸化処理、封孔処理および加熱処理し
てタイル状板が微細な間隙により互いに隔絶されて敷き
つめられたごとき表面構造とした支持体を蒸着器中に設
置した。EXAMPLE A surface such as an aluminum plate having a thickness of 0.5 mm was anodized, sealed, and heat-treated by the method described in Japanese Patent Application No. 59-266914 so that the tile-shaped plates were separated from each other by fine gaps and spread. The structured support was placed in the vaporizer.
次に抵抗加熱用のモリブデンボート中にアルカリハライ
ド系輝尽性蛍光体RbBr:0.0002Tを入れ、抵抗加熱用
電極にセットし、続いて蒸着器内を排気して1×10-7To
rrの真空度とした。次いで支持体加熱用ヒーターにより
支持体を300〜500℃に加熱して支持体表面を洗浄にした
後、支持体を100℃に設定し、2×10-6Torrの真空度と
した。次にモリブデンボートに通電し、抵抗加熱法によ
りRbBr:0.0002Tを蒸発させ、約250μmの厚さに真
空蒸着して微細柱状ブロック構造を有する輝尽性蛍光体
層を形成し、大気中に取り出した。Next, the alkali halide stimulable phosphor RbBr: 0.0002T was placed in a molybdenum boat for resistance heating, set on the resistance heating electrode, and then the vaporizer was evacuated to 1 × 10 -7 To.
The vacuum degree was rr. Next, the support was heated to 300 to 500 ° C. by a support heating heater to wash the surface of the support, and then the support was set to 100 ° C. and the degree of vacuum was set to 2 × 10 −6 Torr. Next, energize the molybdenum boat, evaporate RbBr: 0.0002T by a resistance heating method, and vacuum deposit to a thickness of about 250 μm to form a stimulable phosphor layer having a fine columnar block structure, which is taken out into the atmosphere. It was
次に、前記輝尽性蛍光体層の微細柱状ブロックを隔てる
亀裂に溶融したインジウムを浸透させ、室温まで冷却し
て、亀裂内にインジウムが結着された本発明の放射線画
像変換パネルAを得た。Next, the melted indium is permeated into the cracks separating the fine columnar blocks of the stimulable phosphor layer and cooled to room temperature to obtain the radiation image conversion panel A of the present invention in which the indium is bound in the cracks. It was
このようにして得られた本発明のパネルAに管電圧80KV
pのX線を10mR照射した後、半導体レーザ光(780nm)で
輝尽励起し、輝尽性蛍光体層から放射される輝尽発光を
光検出器(光電子増倍管)で光電変換し、この信号を画
像再生装置によって画像として再生し、銀塩フィルム上
に記録した。信号の大きさより、放射線画像変換パネル
AのX線に対する感度を調べ、また得られた画像より、
画像の変調伝達関数(MTF)及び粒状性を調べ第1表に
示す。A tube voltage of 80 KV was applied to the panel A of the present invention thus obtained.
After irradiating 10 mR of X-ray of p, it is stimulated by exciting with a semiconductor laser beam (780 nm), and the stimulated emission emitted from the stimulable phosphor layer is photoelectrically converted by a photodetector (photomultiplier tube). This signal was reproduced as an image by an image reproducing device and recorded on a silver salt film. From the magnitude of the signal, the sensitivity of the radiation image conversion panel A to X-rays was examined, and from the obtained image,
The modulation transfer function (MTF) and graininess of the image were investigated and are shown in Table 1.
第1表において、X線に対する感度は、本発明の放射線
画像変換パネルAを100として相対値で示してある。ま
た、変調伝達関数(MTF)は、空間周波数が2サイクル
/mmの時の値である。In Table 1, the sensitivity to X-rays is shown as a relative value with the radiation image conversion panel A of the present invention as 100. The modulation transfer function (MTF) is a value when the spatial frequency is 2 cycles / mm.
比較例 実施例において、インジウムを輝尽性蛍光体層の亀裂に
充填する作業を省略する以外は実施例と同様にして比較
の放射線画像変換パネルBを得た。Comparative Example A comparative radiation image conversion panel B was obtained in the same manner as in the Example, except that the work of filling the cracks of the stimulable phosphor layer with indium was omitted.
比較のパネルBは実施例と同様にして評価し、結果を第
1表に併記する。Comparative panel B was evaluated in the same manner as in Example, and the results are also shown in Table 1.
第1表より明らかなように、本発明のパネルAは比較の
パネルBに比べてX線感度はやや高く粒状性は同等であ
るにもかかわらず鮮鋭性が著しく優れていた。これは、
本発明のパネルAは輝尽性蛍光体層中に亀裂を有しかつ
該亀裂に高光反射率物質であるインジウムが充填されて
おり、該亀裂に充填物を有さない比較のパネルBに比べ
光誘導効果がより高くなっているためである。 As is clear from Table 1, the panel A of the present invention had a slightly higher X-ray sensitivity than the comparative panel B, but the sharpness was remarkably excellent although the graininess was equivalent. this is,
The panel A of the present invention has cracks in the stimulable phosphor layer, and the cracks are filled with indium which is a high light reflectance material. This is because the light guiding effect is higher.
以上述べてきたように、本発明によれば輝尽性蛍光体層
が亀裂を有し、該亀裂に高光反射率または高光吸収率の
物質が充填されているため、輝尽励起光の輝尽性蛍光体
層中での散乱が著しく減少し、その結果画像の鮮鋭性を
向上させることが可能である。As described above, according to the present invention, the stimulable phosphor layer has a crack, and the crack is filled with a substance having a high light reflectance or a high light absorptivity. The scattering in the fluorescent layer is significantly reduced, and as a result, the sharpness of the image can be improved.
また、本発明によれば輝尽性蛍光体層厚の増大による画
像の鮮鋭性の低下が小さいため、輝尽性蛍光体層厚を大
きくすることにより、画像の鮮鋭性を低下させることな
く放射線感度を向上させることが可能である。Further, according to the present invention, since the sharpness of the image is not significantly reduced due to the increase in the stimulable phosphor layer thickness, increasing the stimulable phosphor layer thickness allows the radiation without decreasing the sharpness of the image. It is possible to improve the sensitivity.
また、本発明によれば輝尽性蛍光体層厚の増大による画
像の鮮鋭性の低下が小さいため、輝尽性蛍光体層厚を大
きくすることにより、画像の鮮鋭性を低下させることな
く画像の粒状性を向上させることが可能である。Further, according to the present invention, since the deterioration of the sharpness of the image due to the increase of the stimulable phosphor layer thickness is small, by increasing the thickness of the stimulable phosphor layer, the image sharpness is not deteriorated without decreasing the image sharpness. It is possible to improve the graininess of the.
また、本発明によれば本発明の放射線画像変換パネルを
安価に安定して製造することが可能である。Further, according to the present invention, the radiation image conversion panel of the present invention can be manufactured inexpensively and stably.
本発明はその効果が極めて大きく、工業的に有用であ
る。The present invention is extremely effective and industrially useful.
第1図(a)は本発明の一例の放射線画像変換パネルの一
部を示す断面図である。第1図(b)は本発明の別の一例
の放射線画像変換パネルの一部を示す断面図である。第
2図(a)、(b)および(c)は本発明の放射線画像変換パネル
の一部を示す平面図の例である。第3図(a)は本発明の
一例の放射線画像変換パネルの輝尽性蛍光体層厚及び付
着量と放射線に対する感度とを示す図であり、(b)は空
間周波数と変調伝達関数(MTF)との関係を示す図であ
る。第4図は本発明のパネルが用いられる放射線画像変
換装置の概略図である。第5図(a)は従来の放射線画像
変換パネルにおける輝尽性蛍光体層厚及び付着量と放射
線に対する感度とを示す図であり、(b)は前記従来の放
射線画像変換パネルにおける輝尽性蛍光体層厚と空間周
波数が2サイクル/mmにおける変調伝達関数(MTF)と
を示す図である。 11……支持体 12……輝尽性蛍光体層 13……亀裂 14……保護層 21……輝尽性蛍光体層 22……微細柱状ブロック 23……亀裂 31……本発明の放射線画像変換パネルの特性 32……微細柱状ブロック構造を有する放射線画像変換パ
ネルの特性 33……従来の放射線画像変換パネルの特性 41……放射線発生装置 42……被写体 43……放射線画像変換パネル 44……輝尽励起光源 45……光電変換装置 46……画像再生装置 47……画像表示装置 48……フィルターFIG. 1 (a) is a sectional view showing a part of a radiation image conversion panel of an example of the present invention. FIG. 1 (b) is a sectional view showing a part of a radiation image conversion panel of another example of the present invention. 2 (a), (b) and (c) are examples of plan views showing a part of the radiation image conversion panel of the present invention. FIG. 3 (a) is a diagram showing the stimulable phosphor layer thickness and deposition amount and radiation sensitivity of the radiation image conversion panel of one example of the present invention, and FIG. 3 (b) is a spatial frequency and modulation transfer function (MTF). ) Is a diagram showing a relationship with FIG. FIG. 4 is a schematic diagram of a radiation image conversion device in which the panel of the present invention is used. FIG. 5 (a) is a diagram showing the stimulable phosphor layer thickness and deposition amount and radiation sensitivity in a conventional radiation image conversion panel, and FIG. 5 (b) is a stimulability in the conventional radiation image conversion panel. It is a figure which shows a phosphor layer thickness and a modulation transfer function (MTF) in case spatial frequency is 2 cycles / mm. 11 …… Support 12 …… Photostimulable phosphor layer 13 …… Crack 14 …… Protective layer 21 …… Photostimulable phosphor layer 22 …… Fine column block 23 …… Crack 31 …… Radiation image of the present invention Characteristics of conversion panel 32 …… Characteristics of radiation image conversion panel having fine columnar block structure 33 …… Characteristics of conventional radiation image conversion panel 41 …… Radiation generator 42 …… Subject 43 …… Radiation image conversion panel 44 …… Photostimulated excitation light source 45 …… Photoelectric conversion device 46 …… Image playback device 47 …… Image display device 48 …… Filter
───────────────────────────────────────────────────── フロントページの続き (72)発明者 島田 文生 東京都日野市さくら町1番地 小西六写真 工業株式会社内 審査官 田村 爾 (56)参考文献 特開 昭59−202100(JP,A) 特開 昭59−60300(JP,A) 特開 昭57−7051(JP,A) 特開 昭54−120576(JP,A) 特開 昭51−131264(JP,A) 実開 昭48−56971(JP,U) ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Fumio Shimada 1 Sakura-cho, Hino-shi, Tokyo Konishi Roku Photo Industrial Co., Ltd. Judge Tamura (56) Reference JP-A-59-202100 (JP, A) Special Kai 59-60300 (JP, A) JP 57-7051 (JP, A) JP 54-120576 (JP, A) JP 51-131264 (JP, A) Actual 48-56971 JP, U)
Claims (1)
性蛍光体層を有して、該輝尽性蛍光体層に上面側から輝
尽励起光が入射されると輝尽性蛍光体層が記憶している
放射線画像情報を輝尽発光として前記上面側に放出する
放射線画像変換パネルにおいて、前記輝尽性蛍光体層が
気相堆積法による輝尽性蛍光体の堆積から成っていて、
前記上面側でネット状を成し層厚方向に切り込んでいる
亀裂を有し、該亀裂に高光反射率もしくは高光吸収率の
物質が充填されていることを特徴とする放射線画像変換
パネル。1. A photostimulable phosphor layer for storing radiation image information on a support, and photostimulable fluorescent light when photostimulable excitation light is incident on the photostimulable phosphor layer from the upper surface side. In the radiation image conversion panel which emits the radiation image information stored in the body layer as the stimulated emission to the upper surface side, the stimulable phosphor layer is formed by deposition of the stimulable phosphor by a vapor deposition method. hand,
A radiation image conversion panel comprising a net-like crack on the upper surface side that is cut in the layer thickness direction, and the crack is filled with a substance having a high light reflectance or a high light absorption rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61053267A JPH0664195B2 (en) | 1986-03-11 | 1986-03-11 | Radiation image conversion panel having a phosphor layer shielded between crack interfaces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61053267A JPH0664195B2 (en) | 1986-03-11 | 1986-03-11 | Radiation image conversion panel having a phosphor layer shielded between crack interfaces |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62209397A JPS62209397A (en) | 1987-09-14 |
JPH0664195B2 true JPH0664195B2 (en) | 1994-08-22 |
Family
ID=12937984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61053267A Expired - Lifetime JPH0664195B2 (en) | 1986-03-11 | 1986-03-11 | Radiation image conversion panel having a phosphor layer shielded between crack interfaces |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0664195B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990012405A1 (en) * | 1989-04-03 | 1990-10-18 | Fujitsu Limited | Accelerated phosphor plate and accelerated phosphor reader |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4856971U (en) * | 1971-10-29 | 1973-07-20 | ||
JPS51131264A (en) * | 1975-05-10 | 1976-11-15 | Toshiba Corp | The input of x-ray fluorescence intensifying tube |
JPS54120576A (en) * | 1978-03-13 | 1979-09-19 | Toshiba Corp | Input screen of image multiplication tube |
JPS5941267B2 (en) * | 1980-06-16 | 1984-10-05 | 株式会社東芝 | Radiation-excited fluorescent surface and its manufacturing method |
JPS5960300A (en) * | 1982-09-29 | 1984-04-06 | 富士通株式会社 | Radiation image reading device |
JPS59202100A (en) * | 1983-04-30 | 1984-11-15 | コニカ株式会社 | Radiation image conversion panel and manufacture thereof |
-
1986
- 1986-03-11 JP JP61053267A patent/JPH0664195B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62209397A (en) | 1987-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5055681A (en) | Radiographic image storage panel and process for reading out a radiographic image | |
JP4265139B2 (en) | Radiation image conversion panel and radiation image reading apparatus | |
EP0175578B1 (en) | Radiographic image storage panel and its preparing process | |
US4947046A (en) | Method for preparation of radiographic image conversion panel and radiographic image conversion panel thereby | |
JP2677818B2 (en) | Radiation image conversion panel | |
JP2003248097A (en) | Radiation image conversion panel and its production method | |
JPH06230198A (en) | Radiation image conversion panel | |
JP3130633B2 (en) | Manufacturing method of radiation image conversion panel | |
JPH0631902B2 (en) | Radiation image conversion panel manufacturing method | |
JPH0727079B2 (en) | Radiation image information reader | |
JP3130632B2 (en) | Radiation image conversion panel | |
JP3034587B2 (en) | Radiation image conversion panel | |
JP2741209B2 (en) | Radiation image conversion panel | |
JPH0718958B2 (en) | Radiation image conversion panel | |
JPS61245100A (en) | Radiation picture conversion panel | |
JP3070940B2 (en) | Manufacturing method of radiation image conversion panel | |
JP4731091B2 (en) | Radiation image conversion panel and manufacturing method thereof | |
JPH0664195B2 (en) | Radiation image conversion panel having a phosphor layer shielded between crack interfaces | |
JP5119572B2 (en) | Radiation image conversion panel and manufacturing method thereof | |
JP3070944B2 (en) | Manufacturing method of radiation image conversion panel | |
JP3164598B2 (en) | Manufacturing method of radiation image conversion panel | |
JP3070943B2 (en) | Manufacturing method of radiation image conversion panel | |
JP3070941B2 (en) | Manufacturing method of radiation image conversion panel | |
JPH0727078B2 (en) | Radiation image information reader | |
JP3070939B2 (en) | Manufacturing method of radiation image conversion panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |