JPH0664162A - Liquid drop discharging device, and driving method therefor - Google Patents
Liquid drop discharging device, and driving method thereforInfo
- Publication number
- JPH0664162A JPH0664162A JP4221599A JP22159992A JPH0664162A JP H0664162 A JPH0664162 A JP H0664162A JP 4221599 A JP4221599 A JP 4221599A JP 22159992 A JP22159992 A JP 22159992A JP H0664162 A JPH0664162 A JP H0664162A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- cover plate
- electrode
- electrodes
- piezoelectric element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
- B41J2/14201—Structure of print heads with piezoelectric elements
- B41J2/14209—Structure of print heads with piezoelectric elements of finger type, chamber walls consisting integrally of piezoelectric material
- B41J2002/14225—Finger type piezoelectric element on only one side of the chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2202/00—Embodiments of or processes related to ink-jet or thermal heads
- B41J2202/01—Embodiments of or processes related to ink-jet heads
- B41J2202/10—Finger type piezoelectric elements
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は液滴吐出装置に関し、更
に詳しくは複数のノズルを有し、必要に応じて各々のノ
ズルよりインク滴を射出するオンデマンド型マルチノズ
ルインクジェット記録装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a droplet discharge apparatus, and more particularly to an on-demand type multi-nozzle ink jet recording apparatus having a plurality of nozzles and ejecting ink droplets from each nozzle as needed.
【0002】[0002]
【従来の技術】現在オンデマンドマルチノズルインクジ
ェット装置としては、圧電素子を用い電気信号を機械的
な変位に変換し流路中のインクに圧力を加えインク滴を
射出する方式と、流路中のインクに熱を加え発生する蒸
気の圧力によってインク滴を射出するいわゆるバブルジ
ェット方式とがある。従来の圧電素子を用いたインクジ
ェット記録装置は、エネルギー効率がよく、どのような
インクでも使えるといった利点が有るものの、高品質印
字をするための高密度化、多数ノズル化には不向きであ
る。また、バブルジェット方式はエネルギー効率が悪
い、インクに対する制約が大きい、耐久性が悪い等の問
題が有る。2. Description of the Related Art Presently, as an on-demand multi-nozzle ink jet device, a method of converting an electric signal into a mechanical displacement by using a piezoelectric element to apply pressure to ink in a flow path to eject an ink droplet, There is a so-called bubble jet method in which ink droplets are ejected by the pressure of steam generated by applying heat to ink. A conventional inkjet recording device using a piezoelectric element has the advantages of high energy efficiency and the ability to use any ink, but is not suitable for high density printing with a large number of nozzles for high quality printing. Further, the bubble jet method has problems such as low energy efficiency, large restrictions on ink, and poor durability.
【0003】そこで本出願人は先に、高密度に配置され
た多数のノズルを持ち、エネルギー効率がよく耐久性の
よい新規原理,構成によるインクジェット印字装置を大
量かつ安価に提供するために、面方向と実質的に直角方
向に設けられている複数の隔壁とこの隔壁とによって区
画される流路とを有する流路基板と、厚み方向に分極さ
れた圧電素子板からなり隔壁端面上に固着されているカ
バープレートとを有する液滴吐出装置を、特願平4−1
30419号により提案している。Therefore, in order to provide a large quantity and a low cost of an ink jet printer having a novel principle and structure which has a large number of nozzles arranged in high density and is energy efficient and durable, And a flow path substrate having a plurality of partition walls provided in a direction substantially perpendicular to the direction and a flow path partitioned by the partition walls, and a piezoelectric element plate polarized in the thickness direction and fixed on the partition wall end face. Patent application No. 4-1.
Proposed by No. 30419.
【0004】図7に先に本発明者が提案した液滴吐出装
置の斜視図を、図8にその断面図を示す。流路基板3に
は面方向に対して実質的に直角に複数の流路隔壁1が形
成され、この隔壁1によりインク流路2が区画されてい
る。各流路2並びに流路隔壁1の断面は概略長方形とな
っている。各流路2はノズルプレート5側においては独
立しその反対側においてはインクを供給するための共通
インク室11に連通している。各流路2と流路隔壁1は
ノズル部から共通インク室部まで平行に伸びノズル5a
のピッチと等しい。このため、従来の圧電素子を用いた
インクジェットヘッドに見られたような、扇型の流路配
列を取る必要が無く、任意の数のノズルを持ったマルチ
ノズルインクジェットヘッドを作成することが可能で、
シリアルプリンタ、ラインプリンタどちらにも適用可能
といった利点を有している。FIG. 7 is a perspective view of a droplet discharge device proposed by the present inventor, and FIG. 8 is a sectional view thereof. A plurality of flow path partition walls 1 are formed on the flow path substrate 3 substantially at right angles to the surface direction, and the partition walls 1 partition the ink flow paths 2. The cross section of each flow path 2 and flow path partition 1 is substantially rectangular. Each flow path 2 is independent on the nozzle plate 5 side and communicates with a common ink chamber 11 for supplying ink on the opposite side. Each flow channel 2 and flow channel partition wall 1 extend in parallel from the nozzle portion to the common ink chamber portion and the nozzle 5a.
Equal to the pitch of. For this reason, it is not necessary to take a fan-shaped flow path arrangement as seen in a conventional inkjet head using a piezoelectric element, and it is possible to create a multi-nozzle inkjet head having an arbitrary number of nozzles. ,
It has the advantage of being applicable to both serial printers and line printers.
【0005】流路基板3上には、下面に接地電極9、上
面に各流路に対応した駆動電極10が形成された圧電素
子板4が装着される。この圧電素子板は流路隔壁1を変
形させるアクチュエータとなるとともに流路カバーとし
ての機能も有している。各駆動電極10はフレキシブル
ケーブル等より信号を供給するための電極端子12を有
している。ヘッド前面には、各流路に対応したノズル5
aが形成されたノズルプレート5が装着される。A piezoelectric element plate 4 having a ground electrode 9 on the lower surface and a drive electrode 10 corresponding to each flow path on the upper surface is mounted on the flow path substrate 3. This piezoelectric element plate serves as an actuator that deforms the flow path partition wall 1 and also has a function as a flow path cover. Each drive electrode 10 has an electrode terminal 12 for supplying a signal from a flexible cable or the like. Nozzle 5 corresponding to each flow path on the front of the head
The nozzle plate 5 having a formed therein is mounted.
【0006】次に上記液滴吐出装置の駆動方法を図9を
用いて説明する。ここでは流路2bからインク滴を射出
する動作について説明する。なお、今後の説明におい
て、インク滴を射出する流路は黒丸で、射出しない流路
は白丸で図示している。図示されている3つの駆動電極
10a〜10cのうち流路2bに対応する駆動電極10
bにのみ圧電素子4が平面内で縮む方向(分極方向Pと
同方向に電界Eが発生する方向)に電圧Vを印加する。
圧電素子板4のうち流路2bの上部部分のみが縮むた
め、流路2bの両側の流路隔壁1b、1cが引き寄せら
れ流路2bの体積は減少する。このため流路2b内のイ
ンクに圧力が加えられノズルよりインク滴が射出され
る。また、非選択流路2aについて説明すると、隣接し
た流路2b上部の圧電素子板が縮むため、流路2a上部
の圧電素子部、更には流路隔壁1a、1bも流路2b方
向に引き寄せられ変形する。しかしこの場合は同じ方向
に両側の流路隔壁が変形するために流路2aの体積は変
化せず、流路2a内のインクに圧力が加えられることは
ない。このように、構造的に一体の圧電素子板4を用い
て特定の流路のみを選択してインク滴を射出することが
可能である。Next, a method of driving the above-mentioned droplet discharge device will be described with reference to FIG. Here, the operation of ejecting ink droplets from the flow path 2b will be described. In the following description, the flow paths for ejecting ink droplets are shown by black circles, and the flow paths that are not ejected are shown by white circles. Of the three drive electrodes 10a to 10c shown, the drive electrode 10 corresponding to the flow path 2b
The voltage V is applied only to b in the direction in which the piezoelectric element 4 contracts in the plane (direction in which the electric field E is generated in the same direction as the polarization direction P).
Since only the upper portion of the flow path 2b of the piezoelectric element plate 4 contracts, the flow path partition walls 1b and 1c on both sides of the flow path 2b are attracted, and the volume of the flow path 2b decreases. Therefore, pressure is applied to the ink in the flow path 2b, and ink droplets are ejected from the nozzle. In addition, the non-selected channel 2a will be described. Since the piezoelectric element plate above the adjacent channel 2b contracts, the piezoelectric element portion above the channel 2a and the channel partition walls 1a and 1b are also attracted toward the channel 2b. Deform. However, in this case, since the flow path partition walls on both sides are deformed in the same direction, the volume of the flow path 2a does not change, and no pressure is applied to the ink in the flow path 2a. In this way, it is possible to select only a specific flow path using the structurally integrated piezoelectric element plate 4 and eject ink droplets.
【0007】[0007]
【解決しようとする課題】図10は上記従来の駆動方法
にて全流路を同時に駆動した例を示す図である。図9の
様に非常に少ない数の流路を駆動する際は問題にならな
いが、全流路または多数の流路を同時に駆動した場合、
圧電素子カバープレート4が面方向に全体的に縮んでし
まう。このため圧電素子カバープレート4と流路基板3
がバイモルフ構造となり図10に示した様に湾曲し変形
する。FIG. 10 is a diagram showing an example in which all the flow paths are simultaneously driven by the above-mentioned conventional driving method. When driving a very small number of channels as shown in FIG. 9, it does not matter, but when all channels or a large number of channels are driven simultaneously,
The piezoelectric element cover plate 4 is entirely contracted in the plane direction. Therefore, the piezoelectric element cover plate 4 and the flow path substrate 3
Has a bimorph structure and is bent and deformed as shown in FIG.
【0008】この現象を具体例を用いて説明する。X
[dpi(ドットパーインチ)]の印字密度をn列の流
路で実現するとき、隣接流路ピッチDNは、 DN=0.0254×n/X ・・・(1) となる。圧電素子板の厚さをT0、駆動電極の幅を流路
ピッチの0.8倍(0.8×DN)、印加電圧をV、横
圧電定数をdとすると1流路当たりの圧電素子板の縮み
量ωは次のようになる。 ω=d×V×0.8×DN/T0 ・・・(2) ここで300[dpi]の印字密度を1列の流路で実現
するとき流路ピッチDNは(1)式より、 DN=8.5・10-5 [m] である。横圧電歪定数dを198×10-12 [m/
V]、駆動電圧Vを200[V]、圧電素子板の厚みT
0を1×10-4[m]としたとき、1流路当たりの圧電
素子板の縮み量ω1は(2)式より、 ω1=2.7×10-8 [m] となり十分小さな値で他の流路や記録装置全体に与える
影響は無視できる。しかし、マルチノズルヘッドで多数
の流路が同時に駆動された場合、例えば100ノズルを
もった記録装置の各流路を同時に駆動した場合の縮み量
ω2は、 ω2=2.7×10-6 [m] と大きな値となる。このため記録ヘッド全体が大きく湾
曲し騒音を発生する、流路基板3の基部や記録ヘッド支
持部に応力が発生し記録装置の耐久性が悪化するなどの
問題があった。This phenomenon will be described using a specific example. X
When a print density of [dpi (dots per inch)] is realized in n rows of channels, the adjacent channel pitch DN is DN = 0.0254 × n / X (1) When the thickness of the piezoelectric element plate is T0, the width of the drive electrode is 0.8 times the channel pitch (0.8 × DN), the applied voltage is V, and the lateral piezoelectric constant is d, the piezoelectric element plate per channel The contraction amount ω of is as follows. ω = d × V × 0.8 × DN / T0 (2) Here, when a print density of 300 [dpi] is realized with a single row of flow passages, the flow passage pitch DN is expressed by the equation (1) as DN. = 8.5 · 10 -5 [m]. The lateral piezoelectric strain constant d is 198 × 10 −12 [m /
V], the driving voltage V is 200 [V], the thickness T of the piezoelectric element plate
When 0 is set to 1 × 10 −4 [m], the contraction amount ω1 of the piezoelectric element plate per flow path is given by the formula (2), and ω1 = 2.7 × 10 −8 [m], which is a sufficiently small value. The influence on other channels and the entire recording apparatus can be ignored. However, when many flow paths are simultaneously driven by the multi-nozzle head, for example, when the flow paths of a recording apparatus having 100 nozzles are simultaneously driven, the shrinkage amount ω2 is ω2 = 2.7 × 10 −6 [ m] becomes a large value. Therefore, there are problems that the entire recording head is largely curved and noise is generated, stress is generated in the base portion of the flow path substrate 3 and the recording head supporting portion, and the durability of the recording apparatus is deteriorated.
【0009】また従来の方式では、流路体積を減少させ
てインクに圧力を加えインク滴を射出する際に、ノズル
とは反対側の共通インク室11側へのインクの逆流並び
に圧力伝播が発生し、同時駆動する流路の数によって共
通インク室11内の状態は変化していた。このため大部
分の流路を同時に駆動した場合、共通インク室内のイン
クにも大きな圧力が発生し非選択流路からもインク滴が
射出される、また同時に駆動する流路の本数によって射
出されるインク滴の速度体積等特性が変化するなど、い
わゆるクロストークと呼ばれる現象が見られた。Further, in the conventional method, when the flow path volume is reduced and pressure is applied to the ink to eject an ink droplet, backflow and pressure propagation of the ink to the common ink chamber 11 side opposite to the nozzle occur. However, the state of the inside of the common ink chamber 11 has changed depending on the number of channels that are simultaneously driven. Therefore, when most of the flow paths are driven at the same time, a large pressure is also generated in the ink in the common ink chamber, and ink droplets are ejected from the non-selected flow paths, and are ejected depending on the number of flow paths that are driven at the same time. There was a phenomenon called so-called crosstalk, such as changes in characteristics such as velocity volume of ink droplets.
【0010】以上のように、本発明者が先に開示した液
滴吐出装置は、圧電素子カバープレートをアクチュエー
タとして用いる簡単な構成で、高密度に配置された多数
のノズルと流路を持つ記録装置であるが、多数流路の同
時駆動をした場合、内部応力によって耐久性が劣化す
る、騒音が発生する、クロストークがある等の欠点を有
していた。As described above, the droplet discharge device previously disclosed by the present inventor has a simple structure in which the piezoelectric element cover plate is used as an actuator, and has a large number of nozzles and channels arranged at high density. Although the device is an apparatus, it has drawbacks such that durability is deteriorated by internal stress, noise is generated, and crosstalk occurs when multiple channels are simultaneously driven.
【0011】そこで本発明の目的は、構成が簡単で高密
度の印字が可能で、しかも耐久性にすぐれクロストーク
が無く高品質印字可能で静かな液滴吐出装置を実現する
ことにある。SUMMARY OF THE INVENTION It is an object of the present invention to realize a quiet droplet discharge device which has a simple structure and is capable of high-density printing, has excellent durability, is free from crosstalk, and is capable of high-quality printing.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するため
に、本発明の液滴吐出装置は、面方向に対して実質的に
直角方向に設けられている複数の隔壁とこの隔壁によっ
て、区画される複数の流路を有する流路基板と、厚み方
向に分極されるとともに流路に対応する複数の駆動電極
が両面に設けられている圧電素子板からなり隔壁端面上
に固着されているカバープレートとを含むものであり、
流路に対応してカバープレートの一方の面に設けられて
いる駆動電極は、それと隣り合う流路に対応してカバー
プレートの他方の面に設けられている駆動電極のうち少
なくともいずれか一方と導通されている。In order to achieve the above-mentioned object, the droplet discharge device of the present invention comprises a plurality of partition walls provided in a direction substantially perpendicular to the surface direction and partition walls formed by the partition walls. A cover made of a flow path substrate having a plurality of flow paths and a piezoelectric element plate that is polarized in the thickness direction and has a plurality of drive electrodes corresponding to the flow paths provided on both sides, and fixed to the end face of the partition wall. It includes a plate and
The drive electrode provided on one surface of the cover plate corresponding to the flow path is at least one of the drive electrodes provided on the other surface of the cover plate corresponding to the flow path adjacent to the flow path. It is conducted.
【0013】[0013]
【実施例】以下、本発明の詳細を添付図面に示した好適
な実施例に添って説明する。図1は本発明の液滴吐出装
置の実施例であるインクジェット記録装置を示す図であ
る。本発明の液滴吐出装置は、面方向に対し実質的に直
角に複数の隔壁1a,1b,1c,1d,1e,1f,
1gが形成されこの隔壁によりインク流路2a,2b,
2c,2d,2e,2fが区画形成されている流路基板
3と、この流路面に固着される圧電素子カバープレート
4と、図7に示すものと同様なものであり流路端部に固
着されるノズルプレート5とからなっている。本実施例
において圧電素子カバープレート4は、プレート面に垂
直で表面から流路基板3方向に分極されている(矢印P
で示す)。圧電素子カバープレート4の両面には流路形
状に概略応じてそれぞれ分離された駆動電極(表面電極
6a〜6fおよび裏面電極7a〜7f)が形成され、あ
る1つの流路に対応する表面電極は、その隣りの流路に
対応する裏面電極の一方と導通されている。すなわち2
n番目(nは自然数)の流路2b,2d,2fに対応す
る表面電極6b,6d,6fは、2n−1番目の流路2
a,2c,2eに対応する裏面電極7a,7c,7eと
導通されており、2n−1番目の流路2a,2c,2e
に対応する表面電極6a,6c,6eは、2n番目の流
路2b,2d,2fに対応する裏面電極7b,7d,7
fと導通されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the preferred embodiments shown in the accompanying drawings. FIG. 1 is a diagram showing an ink jet recording apparatus which is an embodiment of the droplet discharge apparatus of the present invention. The droplet discharge device of the present invention includes a plurality of partition walls 1a, 1b, 1c, 1d, 1e, 1f, which are substantially perpendicular to the surface direction.
1 g is formed, and the ink flow paths 2a, 2b,
A flow path substrate 3 in which 2c, 2d, 2e, and 2f are defined and formed, a piezoelectric element cover plate 4 fixed to the flow path surface, and a structure similar to that shown in FIG. And a nozzle plate 5 to be used. In this embodiment, the piezoelectric element cover plate 4 is polarized in the direction perpendicular to the plate surface and toward the flow path substrate 3 from the surface (arrow P).
). Drive electrodes (front surface electrodes 6a to 6f and back surface electrodes 7a to 7f) separated according to the shape of the flow path are formed on both surfaces of the piezoelectric element cover plate 4, and the front surface electrode corresponding to a certain flow path is , One of the back surface electrodes corresponding to the adjacent channel is electrically connected. Ie 2
The surface electrodes 6b, 6d, 6f corresponding to the n-th (n is a natural number) flow paths 2b, 2d, 2f are the 2n-1th flow path 2
Conductive with the back surface electrodes 7a, 7c, 7e corresponding to a, 2c, 2e, and the 2n-1th flow paths 2a, 2c, 2e.
The front surface electrodes 6a, 6c, 6e corresponding to the back surface electrodes 7b, 7d, 7 corresponding to the 2nth flow paths 2b, 2d, 2f.
It is electrically connected to f.
【0014】上記したような電極の接続方法としては、
流路基板3上に圧電素子カバープレート4裏面の電極パ
ターンに対応した電極パターンを形成しておき、半田、
異方導電性ゴム、導電性接着剤等で裏面電極を一旦流路
基板上の電極に接続し、その後フレキシブルケーブル、
ワイヤーボンディング等を用い流路基板上の電極と圧電
素子カバープレート4上の電極を接続する方法がある。
しかしこれらの方法では製造工程が複雑になる。そこで
圧電素子カバープレート4単部品のみで上記電極の接続
を実現する方法として図2に示したように圧電素子カバ
ープレート4にコンタクトホール8を形成することによ
って電極表面6a〜6fと裏面電極7a〜7fを接続す
る事ができる。コンタクトホール8を用いることによっ
て簡単な構造で駆動信号を受けるための電極端子9を圧
電素子カバープレート4の表面のみに形成することがで
きる。As a method of connecting the electrodes as described above,
An electrode pattern corresponding to the electrode pattern on the back surface of the piezoelectric element cover plate 4 is formed on the flow path substrate 3, and solder,
Connect the back electrode once to the electrode on the flow path substrate with anisotropic conductive rubber, conductive adhesive, etc., then use the flexible cable,
There is a method of connecting the electrode on the flow path substrate and the electrode on the piezoelectric element cover plate 4 by using wire bonding or the like.
However, these methods complicate the manufacturing process. Therefore, as a method of realizing the connection of the electrodes by only the piezoelectric element cover plate 4 as a single component, as shown in FIG. 2, the contact holes 8 are formed in the piezoelectric element cover plate 4 to form the electrode front surfaces 6a to 6f and the back surface electrodes 7a to. 7f can be connected. By using the contact hole 8, the electrode terminal 9 for receiving the drive signal can be formed only on the surface of the piezoelectric element cover plate 4 with a simple structure.
【0015】次に1流路のみよりインク滴を射出する動
作について図1を用いて説明する。流路2dよりインク
滴を射出させるためには、流路2dの容積を所定の量だ
け減少させて流路中のインクに圧力を加えなければいけ
ない。本実施例の圧電素子カバープレート4は、プレー
ト面に垂直で表面電極6a〜6fから裏面電極7a〜7
fに向かう方向(矢印P方向)に分極されているため、
裏面電極7dを接地レベルにし表面電極6dに正電圧を
印加することによって分極方向Pと同方向の電界Eが印
加され、圧電素子カバープレート4の表面電極6dに対
応する部分はプレート面内方向で縮む。Next, the operation of ejecting ink droplets from only one flow path will be described with reference to FIG. In order to eject ink droplets from the flow channel 2d, it is necessary to reduce the volume of the flow channel 2d by a predetermined amount and apply pressure to the ink in the flow channel. The piezoelectric element cover plate 4 of the present embodiment is perpendicular to the plate surface and includes front surface electrodes 6a to 6f to back surface electrodes 7a to 7f.
Since it is polarized in the direction toward f (direction of arrow P),
By setting the back electrode 7d to the ground level and applying a positive voltage to the front electrode 6d, an electric field E in the same direction as the polarization direction P is applied, and the portion of the piezoelectric element cover plate 4 corresponding to the front electrode 6d is in the plate in-plane direction. Shrink.
【0016】このとき表面電極6cは電極7dと導通さ
れているため0V、裏面電極7cは電極6dと導通され
ているため正電圧となり、圧電素子カバープレート4の
表面電極6cに対応した部分には分極方向Pとは逆方向
の電界E´が印加されプレート面内方向で伸びる。この
伸びの量は表面電極6d部分の縮みの量と概略同じであ
るため、これらの歪みは流路2cと流路2d間の流路隔
壁1dを変形させるのみで、その他の流路基板部分や記
録ヘッド全体に変形や応力を及ぼすことはない。よって
圧電素子カバープレート4に接着された流路2cと流路
2d間の流路隔壁1dのみが流路2d方向に変形され、
流路2dの容積は減少し内部のインクが加圧されインク
滴が射出される。逆に流路2cよりインク滴を射出する
には表面電極6dを接地レベルに導通し表面電極6cに
正電圧を印加すれば良い。At this time, the front surface electrode 6c is electrically connected to the electrode 7d, so that the voltage is 0V, and the back surface electrode 7c is electrically connected to the electrode 6d, so that the voltage becomes a positive voltage. An electric field E ′ in the direction opposite to the polarization direction P is applied and extends in the plate in-plane direction. Since the amount of this expansion is substantially the same as the amount of contraction of the surface electrode 6d portion, these strains only deform the flow channel partition wall 1d between the flow channel 2c and the flow channel 2d, and other flow channel substrate portions and No deformation or stress is applied to the entire recording head. Therefore, only the flow channel partition wall 1d between the flow channel 2c and the flow channel 2d adhered to the piezoelectric element cover plate 4 is deformed in the flow channel 2d direction,
The volume of the flow path 2d decreases, the ink inside is pressurized, and ink droplets are ejected. On the contrary, in order to eject the ink droplets from the flow path 2c, the surface electrode 6d may be electrically connected to the ground level and a positive voltage may be applied to the surface electrode 6c.
【0017】また複数流路を同時駆動する際の動作を図
3に示す。上記した1流路射出の場合と同じように、2
n番目の電極群と2n−1番目の電極群を交互に接地レ
ベルに導通し時分割駆動することにより圧電素子カバー
プレート4中に交互に伸縮部分を作るので、圧電素子カ
バープレート4さらには流路基板3全体に変形や応力が
及ぶことなく、複数流路を同時駆動することができ、耐
久性の低下や騒音といった問題は起らない。The operation when simultaneously driving a plurality of flow paths is shown in FIG. As with the one-pass injection described above, 2
Since the n-th electrode group and the 2n−1-th electrode group are alternately conducted to the ground level and driven in a time-division manner, expansion and contraction portions are alternately formed in the piezoelectric element cover plate 4, so that the piezoelectric element cover plate 4 and the piezoelectric element cover plate 4 It is possible to drive a plurality of flow paths at the same time without causing deformation or stress to the entire road substrate 3, and there is no problem such as deterioration of durability and noise.
【0018】流路からインク滴を射出する際の実際の駆
動電圧波形例を図4に示した。偶数(2n)流路からイ
ンク滴を射出する際は奇数(2n−1)流路上の表面電
極(以下「2n−1電極」という。)を接地レベルに導
通させ、2n流路上の表面電極(以下「2n電極」とい
う。)を0[V]から所定の正駆動電圧+v[V]に短
い立上がり時間で変更する。このため流路2cと流路2
d間の流路隔壁1dは、急激に流路2d側に変形し流路
2d中のインクに大きな圧力が加わりインク滴が射出さ
れる。所定の時間その電圧値を保った後に、2n電極電
圧値は長い立ち下がり時間で0(V)に戻される。この
とき前記流路壁は、ゆっくりと2n−1流路側へ戻って
くるため2n−1流路中に大きな圧力が発生することは
無く、この過程で2n−1流路よりインク滴が射出され
ることはない。FIG. 4 shows an example of an actual drive voltage waveform when ejecting ink droplets from the flow path. When ejecting an ink droplet from an even (2n) channel, a surface electrode on an odd (2n-1) channel (hereinafter referred to as "2n-1 electrode") is electrically connected to the ground level and a surface electrode on a 2n channel ( Hereinafter, “2n electrode”) is changed from 0 [V] to a predetermined positive drive voltage + v [V] in a short rise time. Therefore, the channel 2c and the channel 2
The flow path partition wall 1d between d is suddenly deformed to the flow path 2d side, a large pressure is applied to the ink in the flow path 2d, and an ink droplet is ejected. After maintaining the voltage value for a predetermined time, the 2n electrode voltage value is returned to 0 (V) with a long fall time. At this time, since the flow path wall slowly returns to the 2n-1 flow path side, a large pressure is not generated in the 2n-1 flow path, and ink droplets are ejected from the 2n-1 flow path in this process. There is no such thing.
【0019】2n−1流路よりインク滴を射出するに
は、2n流路よりインク滴を射出するのとは別のタイミ
ングで、2n流路を接地レベルに導通し2n−1流路に
所定の電圧波形を印加すれば良い。In order to eject an ink droplet from the 2n-1 channel, the 2n channel is electrically connected to the ground level at a different timing from the ejection of the ink droplet from the 2n channel, and the 2n-1 channel is predetermined. It is sufficient to apply the voltage waveform of.
【0020】本発明を適用した他の駆動例を図5に示し
た。図5の駆動波形は、2n流路からインク滴を射出す
る際に一旦2n流路と2n−1流路間の流路隔壁をゆっ
くりと2n−1流路側に変形させ2n流路の体積を増加
させておき、その後電圧を0Vに短い立ち下がり時間で
戻し流路隔壁を急激に元の状態にすることによって、2
n流路に圧力を発生させ2n流路よりインク滴を射出す
るものである。この駆動法では、初めに流路壁をゆっく
りと変形させたときに流路内に生じるインクの圧力振動
に合わせて流路壁を変形させることにより極めて効率的
な駆動を行なうことができる。Another driving example to which the present invention is applied is shown in FIG. When the ink droplets are ejected from the 2n flow path, the drive waveform of FIG. 5 temporarily deforms the flow path partition between the 2n flow path and the 2n-1 flow path to the 2n-1 flow path side to reduce the volume of the 2n flow path. The voltage is increased and then the return flow path partition is rapidly returned to its original state with a short fall time to 0 V.
A pressure is generated in the n-channel to eject ink droplets from the 2n-channel. In this driving method, extremely efficient driving can be performed by deforming the flow path wall in accordance with the pressure vibration of the ink generated in the flow path when the flow path wall is slowly deformed first.
【0021】図6の駆動方法は奇数流路上の表面電極
(2n−1電極)は常に接地レベルに導通させておき2
n電極にのみ駆動波形を印加し、波形の立ち上がり時間
と立ち下がり時間を調整することによって各流路の選択
射出を行なうものである。前述したように2n−1電極
を接地レベルに導通し2n電極に正電圧を印加した場
合、2n流路と2n−1流路間の流路隔壁は2n流路側
に変形する。よって2n電極の電位を短い立ち上がり時
間で0Vから所定の正電圧に変化させた場合2n流路よ
りインク滴が射出される。次に所定の時間後短い立ち下
がり時間で0Vに変化させると前記流路隔壁は2n流路
側より2n−1流路側の初期位置に急激に戻り2n−1
流路よりインク滴が射出される。In the driving method shown in FIG. 6, the surface electrode (2n-1 electrode) on the odd-numbered flow path is always electrically connected to the ground level.
The drive waveform is applied only to the n-electrode, and the rising time and the falling time of the waveform are adjusted to selectively eject each flow path. As described above, when the 2n-1 electrode is connected to the ground level and a positive voltage is applied to the 2n electrode, the channel partition between the 2n channel and the 2n-1 channel is deformed to the 2n channel side. Therefore, when the potential of the 2n electrode is changed from 0 V to a predetermined positive voltage with a short rise time, an ink droplet is ejected from the 2n flow path. Next, when the voltage is changed to 0V after a predetermined time with a short fall time, the flow path partition is rapidly returned from the 2n flow path side to the initial position on the 2n-1 flow path side 2n-1.
Ink droplets are ejected from the flow path.
【0022】また図中に点線で示したように2n電極電
位の立ち上がり時間を長くした場合は、流路隔壁の動き
が遅くなるため2n流路よりインク滴は射出されず、立
ち下がり時間を遅くした場合は2n−1流路よりインク
滴が射出されなくなる。この駆動方法では流路本数の半
分の電極に駆動波形を供給すればよいので、駆動回路を
半減できる、回路部から印字ヘッド部への接続ケーブル
を節約できるなど印字装置のコストを削減することがで
きる。When the rising time of the 2n electrode potential is lengthened as shown by the dotted line in the figure, the movement of the flow path partition wall becomes slow, so that no ink droplet is ejected from the 2n flow path and the falling time is delayed. In that case, ink drops will not be ejected from the 2n-1 flow path. In this driving method, since it is sufficient to supply the driving waveform to the electrodes that are half the number of flow paths, the driving circuit can be cut in half and the connection cable from the circuit section to the print head section can be saved, thus reducing the cost of the printing apparatus. it can.
【0023】ここで本発明による印字装置では、偶数流
路と奇数流路を時分割駆動するため印字装置全体の最大
射出周波数の低下が懸念される。しかし例えば奇数流路
の射出後偶数流路を射出する際に、奇数流路中のインク
圧力振動の減衰やインク再充填が完全に終了するのを待
つ必要はないため、印字装置全体の最大射出周波数は1
流路の最大射出周波数に比べ若干低下するにすぎない。In the printing apparatus according to the present invention, since even-numbered channels and odd-numbered channels are driven in a time-division manner, there is a concern that the maximum ejection frequency of the entire printing apparatus may be lowered. However, for example, when ejecting the even-numbered channels after ejecting the odd-numbered channels, it is not necessary to wait until the ink pressure oscillation in the odd-numbered channels is dampened or the ink refilling is completely completed. Frequency is 1
It is only slightly lower than the maximum ejection frequency of the flow path.
【0024】次にクロストークについて説明する。本発
明の記録装置では、射出選択された流路の体積減少量と
概略同じだけ隣接流路の体積が増加する。従って、射出
選択された流路より共通インク室側にインクが逆流する
液量と概略同じだけその隣接した流路に共通インク室よ
りインクが流入する。また圧力波も概略逆波形のものが
隣接流路より共通インク室に伝播してくるため打ち消し
あい、共通インク室状態にはほとんど変化が生じること
はない。このことは、同時に駆動する流路本数が増えて
もいえるため、射出パターンによって液滴速度や体積な
ど射出特性が変化するといったいわゆるクロストークが
生じることはない。Next, crosstalk will be described. In the recording apparatus of the present invention, the volume of the adjacent flow channel increases by about the same as the volume reduction amount of the flow channel selected for injection. Therefore, the ink flows from the common ink chamber to the adjacent flow channel by substantially the same amount as the amount of the ink that flows back to the common ink chamber side from the flow channel selected for ejection. Further, the pressure wave having a substantially reverse waveform propagates from the adjacent flow path to the common ink chamber, so that the pressure waves cancel each other out, and the state of the common ink chamber hardly changes. This can be said even if the number of flow paths that are driven at the same time increases, so that so-called crosstalk in which the ejection characteristics such as the droplet speed and the volume change depending on the ejection pattern does not occur.
【0025】また圧電素子カバープレート材料としてP
ZTなどの圧電セラミクスを用いた場合、これらの材料
に抗電界といわれるあるしきい値以上の大きな電界を印
加すると分極方向がその電界方向に変化することが知ら
れている。上記したように圧電素子カバープレート4に
は、その分極方向Pと同じ向きの電界Eと逆向きの電界
E´が交互に印加されるため、分極方向が変化してしま
うことが無いよう印加する電界は抗電界以下でなければ
いけない。Further, P is used as the piezoelectric element cover plate material.
When piezoelectric ceramics such as ZT are used, it is known that when a large electric field called a coercive electric field above a certain threshold value is applied to these materials, the polarization direction changes to the electric field direction. As described above, since the electric field E having the same direction as the polarization direction P and the electric field E ′ having the opposite direction are alternately applied to the piezoelectric element cover plate 4, the application is performed so that the polarization direction does not change. The electric field must be below the coercive field.
【0026】また、本実施例では圧電素子カバープレー
ト4が表面電極側から裏面電極方向に分極されている場
合を示したが、裏面電極側から表面電極方向に分極され
ている場合でも印加する電界がそれぞれ逆向きになるよ
うに駆動波形を印加することによって全く同じように駆
動できる事は言うまでもない。Although the piezoelectric element cover plate 4 is polarized in the direction of the front surface electrode from the front surface electrode side in the present embodiment, the electric field to be applied even when it is polarized in the direction of the front surface electrode from the rear surface electrode side. It goes without saying that they can be driven in exactly the same way by applying drive waveforms so that they are in opposite directions.
【0027】本発明の印字装置は流路隔壁が変形し流路
中の液体に圧力を与え液滴をノズルより射出するもので
あるので、液体の物性には何ら制限を与えずどのような
液体、インクでも使用することができる。従って、本発
明はコンピュータ端末としての印字装置に限定されるも
のではなく、あらゆる液体を吐出するような用途、例え
ば工業用印字装置、試薬の微量吐出、ファクシミリなど
幅広い用途に適用可能である。In the printing apparatus of the present invention, the flow path partition is deformed and pressure is applied to the liquid in the flow path to eject droplets from the nozzle. Can also be used with ink. Therefore, the present invention is not limited to a printing device as a computer terminal, and can be applied to a wide range of applications such as ejecting any liquid, for example, an industrial printing device, a small amount of reagent ejection, and a facsimile.
【0028】上記実施例では1つの表面電極と隣り合う
裏面電極のうちの一方のみとを導通させているが、両隣
の裏面電極とそれぞれ導通させる構成とすることも可能
である。In the above embodiment, one front surface electrode is electrically connected to only one of the adjacent back surface electrodes, but it is also possible to make it electrically connected to both adjacent back surface electrodes.
【0029】[0029]
【発明の効果】以上の様に本発明によれば、エネルギー
効率が良く、耐久性に優れ、クロストークが無く高印字
品質の静かな記録装置を提供することが可能である。As described above, according to the present invention, it is possible to provide a quiet recording apparatus having high energy efficiency, excellent durability, no crosstalk, and high print quality.
【図1】本発明の一実施例の断面図FIG. 1 is a sectional view of an embodiment of the present invention.
【図2】一実施例の要部平面図FIG. 2 is a plan view of a main part of one embodiment.
【図3】一実施例の作動を説明する断面図FIG. 3 is a sectional view illustrating the operation of the embodiment.
【図4】本発明の駆動方法の第1の例を示す電圧波形図FIG. 4 is a voltage waveform diagram showing a first example of a driving method of the present invention.
【図5】駆動方法の第2の例を示す電圧波形図FIG. 5 is a voltage waveform diagram showing a second example of the driving method.
【図6】駆動方法の第3の例を示す電圧波形図FIG. 6 is a voltage waveform diagram showing a third example of a driving method.
【図7】従来例の斜視図FIG. 7 is a perspective view of a conventional example.
【図8】従来例の断面図FIG. 8 is a sectional view of a conventional example.
【図9】従来例の作動を説明する断面図FIG. 9 is a cross-sectional view illustrating the operation of a conventional example.
【図10】従来例の他の作動状態を示す断面図 1a〜1g・・・流路隔壁 2a〜2f・・・流路 3・・・流路基板 4・・・圧電素子カバープレート 5・・・ノズルプレート 5a・・・ノズル 6a〜6f・・・表面電極 7a〜7f・・・裏面電極FIG. 10 is a cross-sectional view showing another operating state of the conventional example 1a to 1g ... Flow path partition walls 2a to 2f ... Flow path 3 ... Flow path substrate 4 ... Piezoelectric element cover plate 5 ... -Nozzle plate 5a ... Nozzles 6a-6f ... Front surface electrode 7a-7f ... Back surface electrode
Claims (5)
られている複数の隔壁と、前記隔壁によって区画される
複数の流路とを有する流路基板と、 厚み方向に分極されるとともに前記流路に対応する複数
の駆動電極が両面に設けられている圧電素子板からな
り、前記隔壁端面上に固着されているカバープレートと
を含み、 前記流路に対応して前記カバープレートの一方の面に設
けられている前記駆動電極は、それと隣り合う前記流路
に対応して前記カバープレートの他方の面に設けられて
いる前記駆動電極のうち少なくともいずれか一方と導通
されていることを特徴とする液滴吐出装置。1. A flow channel substrate having a plurality of partition walls provided in a direction substantially perpendicular to a plane direction and a plurality of flow channels partitioned by the partition walls, and polarized in the thickness direction. A plurality of drive electrodes corresponding to the flow path, which are formed of piezoelectric element plates on both sides, and a cover plate fixed on the partition wall end surface, one of the cover plates corresponding to the flow path. The drive electrode provided on the surface of the cover plate is electrically connected to at least one of the drive electrodes provided on the other surface of the cover plate corresponding to the flow path adjacent to the flow path. Characteristic droplet discharge device.
基板および前記カバープレートの端面に固着されるノズ
ルプレートを含むことを特徴とする液滴吐出装置。2. The droplet discharge according to claim 1, wherein a nozzle communicating with the flow path is formed, and the nozzle includes a nozzle plate fixed to an end surface of the flow path substrate and the cover plate. apparatus.
ールを介して電気的に導通されていることを特徴とする
液滴吐出装置。3. The droplet discharge device according to claim 1, wherein the drive electrodes that are electrically connected to each other are electrically connected to each other through contact holes.
n−1番目の電極群を交互に接地レベルに導通させるこ
とによって、偶数流路群と奇数流路群を時分割駆動する
ことを特徴とする液滴吐出装置の駆動方法。4. The 2n-th electrode group and 2 on one surface of the cover plate according to claim 1.
A driving method of a droplet discharge device, characterized in that the even-numbered flow channel group and the odd-numbered flow channel group are time-divisionally driven by alternately connecting the (n-1) th electrode group to the ground level.
−1番目の電極群のどちらか一方の電圧を常に接地レベ
ルとし、その逆の電極群中の駆動電極に印加する電圧波
形の立上がり時定数と立ち下がり時定数を変化させるこ
とによって、偶数流路と奇数流路を時分割駆動すること
を特徴とする液滴吐出装置の駆動方法。5. The 2n-th electrode group or 2n on the surface of the cover plate according to claim 1.
-By setting either voltage of the first electrode group to the ground level at all times and changing the rising time constant and the falling time constant of the voltage waveform applied to the drive electrode in the opposite electrode group, And a method for driving a droplet discharge device, characterized in that the odd-numbered channels are driven in a time division manner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22159992A JP3257054B2 (en) | 1992-08-20 | 1992-08-20 | Droplet discharge device and driving method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22159992A JP3257054B2 (en) | 1992-08-20 | 1992-08-20 | Droplet discharge device and driving method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0664162A true JPH0664162A (en) | 1994-03-08 |
JP3257054B2 JP3257054B2 (en) | 2002-02-18 |
Family
ID=16769288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22159992A Expired - Lifetime JP3257054B2 (en) | 1992-08-20 | 1992-08-20 | Droplet discharge device and driving method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3257054B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101370775A (en) | 2006-01-13 | 2009-02-18 | 惠氏公司 | Sulfonyl substituted 1H-indoles as ligands for the 5-hydroxytryptamine receptors |
-
1992
- 1992-08-20 JP JP22159992A patent/JP3257054B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3257054B2 (en) | 2002-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2931817B1 (en) | Driving method of inkjet head | |
JP3776317B2 (en) | On-demand dropping ink jet printing apparatus and ink jet printing method | |
JP3475067B2 (en) | Driving method of inkjet printer head | |
CN100443304C (en) | Droplet ejection device and driving method thereof | |
JP2715001B2 (en) | High density inkjet printer head with two U-shaped channel drives | |
US6050679A (en) | Ink jet printer transducer array with stacked or single flat plate element | |
US6523923B2 (en) | Wavefrom prevents ink droplets from coalescing | |
US5854645A (en) | Inkjet array | |
US5898448A (en) | Ink ejecting device having ink chambers of differing shapes | |
US7410232B2 (en) | Ink-droplet ejecting apparatus | |
JP4237382B2 (en) | Inkjet head drive device | |
JP2881616B2 (en) | Ink jet head device | |
JPH091792A (en) | Ink-jet system | |
JP3257054B2 (en) | Droplet discharge device and driving method thereof | |
JPS6325944B2 (en) | ||
JP2008126583A (en) | Inkjet head | |
JP3348738B2 (en) | Driving method of ink ejecting apparatus and apparatus therefor | |
US20020140784A1 (en) | Piezoelectric transducer and ink ejector using piezoelectric transducer | |
JP2866847B2 (en) | Droplet discharge device and driving method thereof | |
JP2960182B2 (en) | Droplet ejection recording device | |
JP3144174B2 (en) | Ink ejecting apparatus and driving method thereof | |
JPH04341856A (en) | Ink jet head | |
JP2004009548A (en) | Driving method of inkjet head and inkjet printer | |
JP3109338B2 (en) | Ink ejecting apparatus and driving method thereof. | |
EP0716926A2 (en) | Length-mode drop-on-demand ink jet printhead for ejecting orthogonally directed droplets at improved operating speeds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011106 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081207 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081207 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091207 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 11 |