[go: up one dir, main page]

JPH0662284B2 - Method for producing inorganic oxide particles - Google Patents

Method for producing inorganic oxide particles

Info

Publication number
JPH0662284B2
JPH0662284B2 JP2091856A JP9185690A JPH0662284B2 JP H0662284 B2 JPH0662284 B2 JP H0662284B2 JP 2091856 A JP2091856 A JP 2091856A JP 9185690 A JP9185690 A JP 9185690A JP H0662284 B2 JPH0662284 B2 JP H0662284B2
Authority
JP
Japan
Prior art keywords
particles
seed
inorganic oxide
solution
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2091856A
Other languages
Japanese (ja)
Other versions
JPH0350105A (en
Inventor
三郎 中原
隆裕 武田
光生 武田
陽治 赤沢
忠弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2091856A priority Critical patent/JPH0662284B2/en
Publication of JPH0350105A publication Critical patent/JPH0350105A/en
Publication of JPH0662284B2 publication Critical patent/JPH0662284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、凝集粒子の生成が防止され、粒子径が任意に
制御された無機酸化物粒子の工業的に有利な製法に関す
る。該粒子はクロマト用担体、触媒用素材、顔料、固体
潤滑剤、塗料又は繊維、フィルム等合成樹脂成型物用等
の充填剤等として工業的価値のあるものである。
TECHNICAL FIELD The present invention relates to an industrially advantageous method for producing inorganic oxide particles in which generation of agglomerated particles is prevented and the particle diameter is arbitrarily controlled. The particles have industrial value as a carrier for chromatography, a material for a catalyst, a pigment, a solid lubricant, a paint or a filler for fibers, a synthetic resin molding such as a film, and the like.

〈従来の技術〉 従来、無機酸化物粒子の製造方法としては金属酸化物ゾ
ルを加熱された非極性溶媒中に噴霧圧入してゲル化させ
る方法、金属塩溶液を噴霧乾燥後焼成する方法、金属塩
溶液をエマルジョン化して界面重合させる方法、金属ア
ルコキシドを有機溶媒中又は気相中で加水分解や熱分解
する方法等が知られている。中でも、溶液中で原料化合
物を加水分解又は中和反応などにより粒子を製造する、
いわゆる湿式法は生成粒子径の制御、凝集粒子の生成防
止等が行い易い為に広く採用されている。湿式法の中で
も、金属アルコキシドを有機性溶媒中で加水分解する方
法は粒度分布が狭く分散性に優れた粒子を得る方法とし
て注目されてきている。例えば、テトラアルコキシシラ
ンを原料とする非晶質シリカ粒子を得る方法(W.St
berら、J.Colloid and Interface Scieuce 26,62
〜69(1968)など)、テトラエトキシチタンを原料とする
含水酸化チタン粒子を得る方法(Barrilnger等、Langmu
ir 1,414(1985)など)、トリsec −ブトキシアルミニウ
ムを原料として含水酸化アルミニウム粒子を得る方法
(D.L.Catone など、J.Colloid and Interface Scienc
e.,48,291(1974)など)がある。
<Prior Art> Conventionally, as a method for producing inorganic oxide particles, a method of spray-pressing a metal oxide sol into a heated non-polar solvent to cause gelation, a method of spray-drying a metal salt solution and then firing, a metal Known methods include emulsifying a salt solution for interfacial polymerization, and hydrolyzing or thermally decomposing a metal alkoxide in an organic solvent or in a gas phase. Among them, particles are produced by hydrolyzing or neutralizing a raw material compound in a solution,
The so-called wet method is widely used because it is easy to control the particle size of generated particles and prevent the formation of aggregated particles. Among the wet methods, the method of hydrolyzing a metal alkoxide in an organic solvent has been attracting attention as a method of obtaining particles having a narrow particle size distribution and excellent dispersibility. For example, a method of obtaining amorphous silica particles using tetraalkoxysilane as a raw material (W. St.
ber et al., J. Colloid and Interface Scieuce 26 , 62
~ 69 (1968)), a method for obtaining hydrous titanium oxide particles using tetraethoxy titanium as a raw material (Barrilnger et al., Langmu et al.
ir 1, 414 (1985), etc.), tri sec - butoxy aluminum a method of obtaining a hydrous aluminum oxide particles as a raw material (such as DLCatone, J.Colloid and Interface Scienc
e., 48 , 291 (1974)).

これらの文献から、アルコキシ金属化合物をアルコール
等の有機溶媒中で加水分解して球状の単分散した粒子を
得る基本的な反応条件が推察される。しかし、原料アル
コキシ金属化合物の種類が定まると有機溶媒、触媒の種
類や組成、反応温度などの反応条件を変化させても生成
粒子径には限界があった。中でも、テトラアルコキシシ
ランを原料とし有機溶媒として一価アルコールを使用す
る時、一価アルコールの炭素数が大きい程生成シリカ粒
子の粒子径は大きくなるが高くて2μmが限度であっ
た。更に、工業的な生産性を考慮して原料テトラアルコ
キシシランの濃度を高めて生成粒子濃度を高めたり、生
成粒子径を大きくしようとすると粒度分布が広がり、つ
いには粒子が凝集するという問題点があった。
From these documents, the basic reaction conditions can be inferred to obtain spherical monodisperse particles by hydrolyzing an alkoxy metal compound in an organic solvent such as alcohol. However, once the type of the raw material alkoxy metal compound is determined, there is a limit to the particle size of the produced particles even if the reaction conditions such as the organic solvent, the type and composition of the catalyst, and the reaction temperature are changed. In particular, when using tetraalkoxysilane as a raw material and a monohydric alcohol as an organic solvent, the larger the carbon number of the monohydric alcohol, the larger the particle size of the silica particles produced, but the higher the limit was 2 μm. Furthermore, considering the industrial productivity, if the concentration of the raw material tetraalkoxysilane is increased to increase the concentration of produced particles, or if it is attempted to increase the diameter of produced particles, the particle size distribution is broadened, and finally there is a problem that the particles aggregate. there were.

これらの問題を解決するために、シリカ粒子の製法とし
て特開昭62−72514 号公報にテトラアルコキシシランを
含水アルコール性溶液中で加水分解して得たスラリー中
のシリカ微粒子を種粒子として、引き続き原料アルコキ
シシランを供給する方法が提案されている。しかし、こ
の方法では粒子径は増大できても生産性を高めるために
原料濃度を高めると凝集粒子の生成が顕著となり単分散
シリカ粒子の工業的な製法とはなり難い。又、特開昭62
−72516 号公報において、原料アルコキシシラン化合物
をアルコール(一価アルコール)性溶液中に逐次的に供
給し生成粒子の粒子径を逐次増大させる際に、アルカリ
金属イオンを供給させる方法が提案されている。しかし
この方法ではシリカ粒子中にアルカリ金属が混入した
り、反応に長時間要し生産性が悪いという欠点があっ
た。
In order to solve these problems, as a method for producing silica particles, JP-A-62-72514 discloses that silica particles in a slurry obtained by hydrolyzing tetraalkoxysilane in a hydroalcoholic solution are used as seed particles. A method of supplying a raw material alkoxysilane has been proposed. However, even if the particle diameter can be increased by this method, when the raw material concentration is increased in order to increase the productivity, agglomerated particles are remarkably generated, and it is difficult to be an industrial production method of monodisperse silica particles. In addition, JP-A-62
-72516 proposes a method in which an alkali metal ion is supplied when the raw material alkoxysilane compound is sequentially supplied into an alcohol (monohydric alcohol) solution and the particle size of the produced particles is successively increased. . However, this method has the drawbacks that the alkali metal is mixed in the silica particles and the reaction takes a long time, resulting in poor productivity.

〈発明が解決しようとする課題〉 したがって、本発明の目的は、無機酸化物粒子の新規な
製造方法を提供することにある。
<Problems to be Solved by the Invention> Therefore, an object of the present invention is to provide a novel method for producing inorganic oxide particles.

本発明の他の目的は、所望する任意な粒子径の無機酸化
物粒子を凝集を起こすことなく高濃度で製造する工業的
に有利な方法を提供するものである。
Another object of the present invention is to provide an industrially advantageous method for producing inorganic oxide particles having a desired desired particle size at a high concentration without causing agglomeration.

〈課題を解決するための手段〉 これらの諸目的は、無機酸化物微粒子を種粒子として含
水アルコール性溶液中に分散させた種粒子懸濁液に、加
水分解および縮合可能な有機金属化合物を添加して該種
粒子を成長させ、非晶質球状であって、平均粒子径が
0.1〜20μmの範囲にあり、かつ粒子径の変動係数
が10%以下であって、上記範囲内において任意な粒子
径に制御された無機酸化物粒子を製造する方法におい
て、該含水アルコール性溶液中に炭素数2〜8のアルキ
レングリコールを1〜50重量%の範囲含有せしめるこ
とよりなる無機酸化物粒子の製造方法によった達成され
る。
<Means for Solving the Problems> These objects are to add a hydrolyzable and condensable organometallic compound to a seed particle suspension prepared by dispersing inorganic oxide fine particles as seed particles in a hydroalcoholic solution. The seed particles are grown to have an amorphous spherical shape, the average particle diameter is in the range of 0.1 to 20 μm, and the variation coefficient of the particle diameter is 10% or less. In the method for producing inorganic oxide particles having a controlled particle size, the inorganic oxide particles comprising the hydric alcoholic solution containing 1 to 50% by weight of an alkylene glycol having 2 to 8 carbon atoms. It is achieved according to the manufacturing method.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明においては、含水アルコール性溶液とは、後に述
べるアルキレングリコール(A)を含めたアルコール及
び水を必須成分とし、その他場合により添加される触
媒、アルコール以外の有機溶媒、界面活性剤等をすべて
含めた溶液をいう。
In the present invention, the hydroalcoholic solution includes alcohol and water including alkylene glycol (A) described later as essential components, and catalysts optionally added, organic solvents other than alcohol, surfactants, etc. The included solution.

アルコールは一価アルコールに限らず二価以上の多価ア
ルコールであっても良い。例えば、メタノール、エタノ
ール、イソプロパノール、ブタノール、イソアミルアル
コール等の一価アルコール、エチレングリコール、ジエ
チレングリコール、プロピレングリコール、1,4 −ブタ
ンジオール、ヘキサンジオール等の二価アルコール、グ
リセリン等の三価アルコール等が単独で又は混合物で用
いられる。本発明においては、上記に示す如くの二価ア
ルコールのうち炭素数2〜8のものをアルキレングリコ
ール(A)と称し、該アルキレングリコール(A)の量
を含水アルコール性溶液中に1〜50重量%、好ましく
は1〜30重量%の範囲とすることを特徴としている。
上記範囲からはずれると、本発明の目的である凝集粒子
の生成が防止され、単分散性に優れた無機酸化物粒子が
生産性良く製造することができない。
The alcohol is not limited to monohydric alcohol and may be polyhydric alcohol having a valence of 2 or more. For example, monohydric alcohols such as methanol, ethanol, isopropanol, butanol and isoamyl alcohol, dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol and hexanediol, and trihydric alcohols such as glycerin are used alone. Used in or in a mixture. In the present invention, among the dihydric alcohols as described above, those having 2 to 8 carbon atoms are referred to as alkylene glycol (A), and the amount of the alkylene glycol (A) is 1 to 50 wt% in the hydrous alcoholic solution. %, Preferably 1 to 30% by weight.
If the amount is out of the above range, the production of aggregated particles, which is the object of the present invention, is prevented, and the inorganic oxide particles excellent in monodispersity cannot be produced with good productivity.

溶液中の水は、有機金属化合物を加水分解するに必要な
当量以上存在させる。水含量は種粒子の成長過程に影響
を及ぼすので好ましい量に制御する必要があり、有機金
属化合物の種類及び添加量によって変化するが、含水ア
ルコール性溶液中に3〜30重量%の範囲が適当であ
り、好ましくは6〜25重量%である。
The water in the solution is present in an amount equal to or more than the amount required to hydrolyze the organometallic compound. The water content affects the growth process of the seed particles, so it is necessary to control it to a preferable amount, and it varies depending on the kind and addition amount of the organometallic compound, but the range of 3 to 30% by weight is suitable in the hydroalcoholic solution. And preferably 6 to 25% by weight.

溶液中に存在させる触媒は、有機金属化合物の加水分解
および縮合反応を制御する目的でNH4 +、Na+、K+等のカ
チオンやSO4 2-、H2PO4 -等のアニオンを生成しうる化合
物、又はエタノールアミン、イソプロパノールアミン、
テトラメチルアンモニウムハイドロオキサイド等の有機
アミン化合物が使用される。しかし、その有無及び量が
原料によって選択される。
The catalyst present in the solution produces cations such as NH 4 + , Na + and K + and anions such as SO 4 2− and H 2 PO 4 for the purpose of controlling the hydrolysis and condensation reaction of the organometallic compound. Possible compounds, or ethanolamine, isopropanolamine,
Organic amine compounds such as tetramethylammonium hydroxide are used. However, the presence or absence and the amount thereof are selected depending on the raw material.

アルコール以外の有機溶剤として、ジオキサン、アセト
ン、ジエチルエーテル、酢酸エチル、ベンゼン、トルエ
ン、ヘキサン等が又界面活性剤としてアニオン性、カチ
オン性、ノニオン性界面活性剤等が生成粒子の分散性を
より向上させる目的で溶液中に存在させることができ
る。
Dioxane, acetone, diethyl ether, ethyl acetate, benzene, toluene, hexane, etc., as organic solvents other than alcohol, and anionic, cationic, nonionic surfactants, etc. as surfactants further improve the dispersibility of generated particles. It can be present in the solution for the purpose of

本発明で使用される種粒子としての無機酸化物微粒子
(以後、種粒子とよぶ。)原料は、平均粒子径が0.0
1〜10μmであれば、粉体であってもスラリー状であ
ってもよい。種粒子の素材は酸化珪素、酸化チタン、酸
化ジルコニウム、酸化アルミニウム等を主成分とする無
機酸化物が好ましく、より好ましくは成長反応に用いる
有機金属化合物中の金属元素を少なくとも含む無機酸化
物である。
The inorganic oxide fine particles (hereinafter referred to as seed particles) raw material used as seed particles in the present invention has an average particle diameter of 0.0
If it is 1 to 10 μm, it may be in the form of powder or slurry. The material of the seed particles is preferably an inorganic oxide containing silicon oxide, titanium oxide, zirconium oxide, aluminum oxide or the like as a main component, and more preferably an inorganic oxide containing at least a metal element in the organometallic compound used for the growth reaction. .

種粒子を成長させて得る無機酸化物粒子(以後、成長粒
子とよぶ。)の性状は種粒子の影響を大きく受ける。即
ち、単分散性に優れた生成粒子を得るためには、種粒子
そのものゝ粒度分布、凝集粒子の有無だけではなく、含
水アルコール性溶液中に種粒子が単分散している必要が
ある。さらに種粒子の表面の性質によっても生成粒子の
単分散性に影響をおよぼすことが分った。こゝで単分散
とは、粒子の形状が揃って、粒度分布がシャープでしか
も凝集粒子が殆どない状態のことをいう。
The properties of the inorganic oxide particles (hereinafter referred to as grown particles) obtained by growing the seed particles are greatly influenced by the seed particles. That is, in order to obtain the produced particles having excellent monodispersity, it is necessary that the seed particles are monodispersed in the hydroalcoholic solution in addition to the seed particles themselves, the particle size distribution, and the presence or absence of aggregated particles. It was also found that the surface properties of the seed particles also influence the monodispersity of the produced particles. Here, monodisperse refers to a state in which the particle shapes are uniform, the particle size distribution is sharp, and there are few aggregated particles.

単分散性の種粒子は、例えば、水ガラスを水溶液中で酸
又はイオン交換樹脂等により中和してシリカ水ゾルとす
る方法、有機金属化合物をガス化して熱分解又は加水分
解して縮合させる方法、金属アルコキシドのような有機
金属化合物を含水有機溶剤溶液中で加水分解、縮合させ
る方法等により得ることができる。
The monodisperse seed particles are, for example, a method of neutralizing water glass in an aqueous solution with an acid or an ion exchange resin to obtain a silica water sol, and gasifying an organometallic compound to cause thermal decomposition or hydrolysis to condense it. It can be obtained by a method, a method of hydrolyzing and condensing an organic metal compound such as a metal alkoxide in a water-containing organic solvent solution, and the like.

このような種粒子は、成長反応を行なう以前に反応溶媒
である含水アルコール性溶液中に単分散させる。その
際、種粒子を予め該溶液の一部に単分散させて種粒子単
分散体スラリーとし、最終的に該溶液の残分と合一して
含水アルコール性溶液に単分散した種粒子とする方法が
好ましい。その具体的な方法には、上述した種粒子の製
造法の中で、水ガラスよりシリカ水ゾルとする方法や、
金属アルコキシドのような有機金属化合物を加水分解、
縮合して無機酸化物微粒子の有機溶液スラリーとする方
法等、従来公知の種粒子スラリーの製法が適用しうる。
より好ましい種粒子単分散体スラリーとして無機酸化物
微粒子のアルキレングリコールの単分散体が挙げられ
る。種粒子のアルキレングリコールの単分散体は、例え
ば、シリカ水ゾルや無機酸化物微粒子の有機溶液スラリ
ー等の溶媒をアルキレングリコールに溶媒置換すること
によって得る事ができる。種粒子をアルキレングリコー
ルの単分散体として用いることにより、生成粒子濃度を
高めても生成粒子の凝集を防止する本発明の効果をより
高める事ができる点で好ましい。その理由は明らかでな
いが、種粒子の粒子表面がアルキレングリコールと親和
性が向上するためではないかと考えられる。その根拠と
して、特に種粒子表面にアルキレングリコールを結合せ
しめ、アルキレングリコールの結合量が種粒子1g当り
0.003ミリモル以上、好ましくは0.01ミリモル以
上、さらに好ましくは0.1〜5ミリモルとなるように
すると凝集防止効果が一層高められる事実から推察され
る。
Such seed particles are monodispersed in a hydroalcoholic solution as a reaction solvent before the growth reaction. At that time, seed particles are previously monodispersed in a part of the solution to form a seed particle monodisperse slurry, and finally combined with the rest of the solution to form seed particles monodispersed in a hydroalcoholic solution. The method is preferred. The specific method, in the method of manufacturing the seed particles described above, a method of silica water sol from water glass,
Hydrolyzes organometallic compounds such as metal alkoxides,
A conventionally known method for producing seed particle slurry, such as a method for condensing into an organic solution slurry of inorganic oxide fine particles, can be applied.
A more preferable seed particle monodisperse slurry is a monodisperse dispersion of alkylene glycol of inorganic oxide fine particles. The alkylene glycol monodisperse of the seed particles can be obtained, for example, by substituting the solvent such as silica water sol or the organic solution slurry of the inorganic oxide fine particles with alkylene glycol. The use of seed particles as a monodisperse dispersion of alkylene glycol is preferable in that the effect of the present invention of preventing agglomeration of produced particles can be further enhanced even if the produced particle concentration is increased. Although the reason is not clear, it is considered that the particle surface of the seed particles has improved affinity with alkylene glycol. As a basis for this, in particular, alkylene glycol is bound to the surface of the seed particles, and the amount of alkylene glycol bound is 1 g of seed particles.
It is inferred from the fact that the aggregation preventing effect is further enhanced by setting the concentration to 0.003 mmol or more, preferably 0.01 mmol or more, and more preferably 0.1 to 5 mmol.

このような無機酸化物微粒子のアルキレングリコールの
単分散体の製法は特開昭63−185439号公報や USP 2,92
1,913号等に記載されている方法が適用しうる。
A method for producing such a monodisperse dispersion of inorganic oxide fine particles of alkylene glycol is disclosed in JP-A-63-185439 and USP 2,92.
The method described in No. 1,913 can be applied.

例えば、特開昭63−185439号公報に記載の方法によれ
ば、熱処理時間の圧力は減圧、常圧、加圧系のいずれで
も良いが減圧又は常圧系が操作がし易く有利である。熱
処理温度(T℃)は、アルキレングリコールの操作圧力
における沸点をT℃とした時(但T≧70)70≦
T≦T+10の範囲とするのが好ましく、更に好まし
くは、T≦T≦T+10の範囲とする。Tはアル
キレングリコールが一種の場合は単一のグリコールの、
二種以上の混合グリコールの場合はその組成比での混合
グリコールの圧力−沸点関係を示す沸点曲線によって定
まっている値である。
For example, according to the method described in JP-A-63-185439, the pressure during the heat treatment may be any of reduced pressure, atmospheric pressure and pressurized system, but the reduced pressure or atmospheric system is advantageous because it is easy to operate. The heat treatment temperature (T ° C.) is 70 ≦ when the boiling point of the alkylene glycol at the operating pressure is T B ° C. (where T B ≧ 70).
The range of T ≦ T B +10 is preferable, and the range of T B ≦ T ≦ T B +10 is more preferable. T B is a single glycol when one kind of alkylene glycol is used,
In the case of two or more kinds of mixed glycols, the value is determined by the boiling point curve showing the pressure-boiling point relationship of the mixed glycols in the composition ratio.

例えばグリコールがエチレングリコールの場合、T
197.6(常圧)、100(18Torr)、75(4.1Torr)
と定められる。他のグリコール類についても同様に圧力
が決まれば定められる。
For example, when the glycol is ethylene glycol, T B is
197.6 (normal pressure), 100 (18 Torr), 75 (4.1 Torr)
Is determined. The same applies to other glycols if the pressure is determined.

TがTを越える場合があるのは微粒子によるアルキレ
ングリコールの沸点上昇がある理由による。従って熱処
理温度(T℃)の上限(T+10)℃は沸点上昇を加味
した温度上限を意味している。熱処理温度は高い程、分
散安定性効果は高く、処理時間は短時間で効果があり、
低温程長時間を必要とする。T<70の場合熱処理効果
は小さく好ましくない。
The reason that T may exceed T B is because the boiling point of alkylene glycol is increased by the fine particles. Therefore, the upper limit (T B +10) ° C. of the heat treatment temperature (T ° C.) means the upper limit of temperature in consideration of the boiling point increase. The higher the heat treatment temperature, the higher the dispersion stability effect, and the shorter the treatment time, the more effective.
The lower the temperature, the longer the time required. When T <70, the heat treatment effect is small and not preferable.

種粒子をアルキレングリコールの単分散体として添加し
て、最終的に含水アルコール性溶液の種粒子懸濁体とす
る方法は、該溶液中で種粒子を容易に単分散させること
が出来ると共に、アルキレングリコールの添加も同時に
行える点で最も好ましい実施態様である。
The method of adding seed particles as a monodisperse of alkylene glycol to finally form a suspension of seed particles in a hydroalcoholic solution is such that the seed particles can be easily monodispersed in the solution and the alkylene is This is the most preferred embodiment in that glycol can be added at the same time.

本発明における種粒子としての無機酸化物微粒子及び成
長粒子である無機酸化物粒子の無機酸化物とは、金属原
子が酸素原子との結合を介して三次元のネットワークを
構成した金属の酸素化合物と定義され、金属原子には部
分的にネットワークに関与していない基、例えば原料由
来の非加水分解性基や未加水分解の加水分解性残基、水
酸基、カップリング剤による処理基などを有するものも
含むものである。
The inorganic oxide fine particles as the seed particles in the present invention and the inorganic oxide of the inorganic oxide particles that are grown particles, and an oxygen compound of the metal forming a three-dimensional network through the bond between the metal atom and the oxygen atom. A metal atom that has a group that is defined and is not partly involved in the network, such as a non-hydrolyzable group derived from a raw material, an unhydrolyzable hydrolyzable residue, a hydroxyl group, or a group treated with a coupling agent. It also includes.

成長粒子の原料である有機金属化合物は、加水分解性有
機基を有し、加水分解縮合して三次元に(金属−酸素)
結合鎖を形成しうる化合物で、工業的に入手しやすく安
価であるものとしてシリコン、チタン、ジルコニウム、
アルミニウム等のアルコキシ金属化合物が好適に用いら
れる。それらは一般式I R1 mM(OR2 (I) (但し、Mは金属元素、Rは水素原子及び置換基があ
ってもよい炭素数1〜10、好ましくは1〜4のアルキ
ル基、アリール基および不飽和脂肪族残基よりなる群か
ら選ばれる少なくとも一種の基、Rはアルキル基を表
わし、mは0又は正の整数、nは1以上の整数であり、
かつm+n=金属元素Mの原子価を満足する。また、m
個のRは異なっていてもよく、n個のRも異なって
いてもよい。)で示されるが、金属元素Mとして好まし
くはシリコン、チタン、ジルコニウム、アルミニウムが
挙げられる。
The organometallic compound, which is a raw material for growing particles, has a hydrolyzable organic group, and is hydrolyzed and condensed into three-dimensional (metal-oxygen).
Silicon, titanium, zirconium, which is a compound capable of forming a bonding chain and which is industrially available and inexpensive
An alkoxy metal compound such as aluminum is preferably used. They are represented by the general formula I R 1 m M (OR 2 ) n (I) (where M is a metal element, R 1 is a hydrogen atom and a carbon atom which may have a substituent, preferably 1 to 10, preferably 1 to 4). At least one group selected from the group consisting of an alkyl group, an aryl group and an unsaturated aliphatic residue, R 2 represents an alkyl group, m is 0 or a positive integer, n is an integer of 1 or more,
Further, m + n = the valence of the metal element M is satisfied. Also, m
R 1 s may be different, and n R 2 s may also be different. ), The metal element M is preferably silicon, titanium, zirconium, or aluminum.

は好ましくは炭素数1〜8、好ましくは1〜4の低
級アルキル基が用いられる。nが3以上のアルコキシ金
属化合物は単独で作用可能であるが、n=1又は2で表
される化合物は加水分解性有機基を3個以上有する原料
と共に使用しうる。上記一般式R1 mM(OR2で示
される有機金属化合物の具体例としてはテトラメトキシ
シラン、テトラエトキシシラン、テトライソプロポキシ
シラン、テトラブトキシシラン、トリメトキシシラン、
トリエトキシシラン、メチルトリメトキシシラン、トリ
メトキシビニルシラン、トリエトキシビニルシラン、3
−グリシドキシプロピルトリメトキシシラン、3−クロ
ロプロピルトリメトキシシラン、3−メルカプトプロピ
ルトリメトキシシラン、3−(2−アミノエチルアミノ
プロピル)トリメトキシシラン、フェニルトリメトキシ
シラン、フェニルトリエトキシシラン、ジメトキシジメ
チルシラン、ジメトキシメチルシラン、ジエトキシメチ
ルシラン、ジエトキシ−3−グリシドキシプロピルメチ
ルシラン、3−クロロプロピルジメトキシメチルシラ
ン、ジメトキシジフェニルシラン、ジメトキシジメチル
フェニルシラン、トリメチルメトキシシラン、トリメチ
ルエトキシシラン、ジメチルエトキシシラン、ジメトキ
シジエトキシシラン、チタニウムテトラメトキシド、チ
タニウムテトラエトキシド、チタニウムテトライソプロ
ポキシド、チタニウムテトラブトキシド、チタニウムジ
エトキシジブトキシド、ジルコニウムテトラメトキシ
ド、ジルコニウムテトラエトキシド、ジルコニウムテト
ライソプロポキシド、チタニウムテトラ(2−エチルヘ
キシルオキシド)、アルミニウムトリメトキシド、アル
ミニウムトリエトキシド、アルミニウムトリイソプロポ
キシド、アルミニウムトリブトキシドなどが挙げられ
る。
R 2 is preferably a lower alkyl group having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. An alkoxy metal compound in which n is 3 or more can act alone, but the compound represented by n = 1 or 2 can be used together with a raw material having 3 or more hydrolyzable organic groups. Specific examples of the organometallic compound represented by the above general formula R 1 m M (OR 2 ) n include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, trimethoxysilane,
Triethoxysilane, methyltrimethoxysilane, trimethoxyvinylsilane, triethoxyvinylsilane, 3
-Glycidoxypropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- (2-aminoethylaminopropyl) trimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxy Dimethylsilane, dimethoxymethylsilane, diethoxymethylsilane, diethoxy-3-glycidoxypropylmethylsilane, 3-chloropropyldimethoxymethylsilane, dimethoxydiphenylsilane, dimethoxydimethylphenylsilane, trimethylmethoxysilane, trimethylethoxysilane, dimethylethoxy Silane, Dimethoxydiethoxysilane, Titanium tetramethoxide, Titanium tetraethoxide, Titanium tetraisopropoxide, Titanium Tetrabutoxide, titanium diethoxydibutoxide, zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetraisopropoxide, titanium tetra (2-ethylhexyl oxide), aluminum trimethoxide, aluminum triethoxide, aluminum triisopropoxide, Aluminum tributoxide and the like can be mentioned.

また、他の好ましい有機金属化合物としてこれらアルコ
キシ金属化合物の誘導体がある。一例として一部のアル
コキシド基(OR2)がカルボキシル基あるいはβ−ジ
カルボニル基など、キレート化合物を形成しうる基で置
換された化合物、あるいはこれらアルコキシ金属化合物
またはアルコキシ基置換化合物を部分的に加水分解して
得られる低収縮物などである。
Further, other preferable organometallic compounds include derivatives of these alkoxymetal compounds. As an example, a compound in which a part of the alkoxide group (OR 2 ) is substituted with a group capable of forming a chelate compound such as a carboxyl group or a β-dicarbonyl group, or a partial hydrolysis of these alkoxy metal compound or alkoxy group-substituted compound. It is a low shrinkage product obtained by decomposition.

その他の有機金属化合物としては、例えばジルコニウム
アセテート、ジルコニウムオキサレート、ジルコニウム
ラクテート、チタンラクテート、アルミニウムラクテー
トなどのチタン、ジルコニウムまたはアルミニウムのア
シレート化合物;チタンアセチルアセトナート、ジルコ
ニウムアセチルアセトナート、チタンオクチルグリコラ
ート、チタントリエタノールアミネート、アルミニウム
アセチルアセトナート、などチタン、ジルコニウムまた
はアルミニウムのグリコール、β−ジケトン、ヒドロキ
シカルボン酸、ケトエステル、ケトアルコール、アミノ
アルコール、キノリンなどのキレート化合物などが挙げ
られる。
Examples of other organometallic compounds include titanium, zirconium or aluminum acylate compounds such as zirconium acetate, zirconium oxalate, zirconium lactate, titanium lactate and aluminum lactate; titanium acetylacetonate, zirconium acetylacetonate, titanium octyl glycolate, Titanium triethanol aminate, aluminum acetylacetonate and the like, and chelate compounds such as titanium, zirconium or aluminum glycol, β-diketone, hydroxycarboxylic acid, ketoester, ketoalcohol, aminoalcohol and quinoline.

成長粒子は、上述した種粒子と有機金属化合物を原料と
するものであるが、成長反応過程で上記した有機金属化
合物以外にナトリウム、カリウム、ルビジウム、セシウ
ム、マグネシウム、カルシウム、ストロンチウム、バリ
ウム、ホウ素、ガリウム、イソジウム、錫、鉄、銅など
の有機金属化合物または無機塩を共存せしめて加水分解
することにより、シリコン、チタン、ジルコニウムおよ
び/またはアルミニウムの酸化物と上記金属の酸化物の
複合体粒子とすることもできる。その際、種粒子の組成
も含めた最終成長粒子中のシリコン、チタン、ジルコニ
ウムおよび/またはアルミニウムの酸化物の割合は特に
限定されるものではないが、70重量%以上とするのが
好ましい。
The grown particles, which are obtained by using the seed particles and the organometallic compound described above as raw materials, include sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, and boron in addition to the organometallic compound described above in the growth reaction process. A composite particle of an oxide of silicon, titanium, zirconium and / or aluminum and an oxide of the above metal, which is obtained by allowing an organic metal compound such as gallium, isodium, tin, iron, copper or the like or an inorganic salt to coexist and hydrolyze. You can also do it. At that time, the ratio of the oxides of silicon, titanium, zirconium and / or aluminum in the finally grown particles including the composition of the seed particles is not particularly limited, but is preferably 70% by weight or more.

上述したように、本発明はアルキレングリコールが、特
定範囲量含有した含水アルコール性溶液中に種粒子が分
散した種粒子懸濁液に、有機金属化合物を添加して種粒
子を成長させる方法であってその反応方法は特に限定さ
れない。具体的には、撹拌装置を有する反応容器に種粒
子懸濁液の全量を導入し、その後有機金属化合物を連続
的又は間歇的に添加する方法や、上記した反応容器又は
管型のラインミキサーに種粒子懸濁液及び有機金属化合
物を連続的に供給する方法等、回分式、連続式又はそれ
らを組み合せた方法であってもよい。又、種粒子、アル
キレングリコール、アルキレングリコール以外のアルコ
ール、水、触媒、アルコール以外の有機溶剤、有機金属
化合物等の原料はそれぞれ独立に分割して供給すること
もできる。その際、含水アルコール性溶液とは成長反応
が終了する時点までに添加した上記原料のうち、種粒
子、有機金属化合物及びその分解生成物を除いた組成の
溶液をいう。
As described above, the present invention is a method for growing seed particles by adding an organometallic compound to a seed particle suspension in which seed particles are dispersed in a hydrous alcoholic solution containing alkylene glycol in a specific range. The reaction method is not particularly limited. Specifically, the total amount of the seed particle suspension is introduced into a reaction vessel having a stirring device, and then a method of continuously or intermittently adding an organometallic compound, or the above-mentioned reaction vessel or a tubular line mixer. A batch method, a continuous method, or a combination thereof may be used, such as a method of continuously supplying the seed particle suspension and the organometallic compound. Further, the seed particles, alkylene glycol, alcohol other than alkylene glycol, water, catalyst, organic solvent other than alcohol, and raw materials such as organic metal compound may be separately supplied separately. At that time, the hydrous alcoholic solution means a solution having a composition in which the seed particles, the organometallic compound and the decomposition products thereof are excluded from the above-mentioned raw materials added by the time when the growth reaction is completed.

成長反応における反応温度は0〜100℃の範囲、好ま
しくは0〜50℃の範囲か適当であり、反応時間は温
度、触媒の種類及び量等その他の反応条件によって変化
するが10分〜5時間で充分である。
The reaction temperature in the growth reaction is in the range of 0 to 100 ° C., preferably in the range of 0 to 50 ° C., and the reaction time varies depending on other reaction conditions such as temperature, kind and amount of catalyst, but 10 minutes to 5 hours. Is enough.

〈発明の効果〉 含水アルコール性溶液に分散させた種粒子懸濁液に、加
水分解、縮合可能な有機金属化合物を添加して種粒子を
成長させ、任意な粒子径を有する無機酸化物粒子を製造
する際に、含水アルコール性溶液中にアルキレングリコ
ールを特定範囲量共存せしめる本発明方法に従えば、従
来法に比べ凝集粒子の生成防止、粒子濃度の増加、反応
時間の短縮に効果がある。従って、本発明による無機酸
化物粒子の製造方法は生産性が良く、工業的安価な方法
であると共に、本発明方法によって得られた無機酸化物
粒子は凝集粒子がなく、更に種粒子及び反応条件を好適
に選ぶことによって、非晶質球状で平均粒子径が0.1 〜
20μm、好ましくは0.5 〜15μmの範囲でかつ、変
動係数が10%以下、好ましくは5%以下のような単分
散粒子となる。
<Effects of the Invention> To a seed particle suspension dispersed in a hydroalcoholic solution, a seed particle is grown by adding an organometallic compound capable of being hydrolyzed and condensed, and an inorganic oxide particle having an arbitrary particle diameter is added. According to the method of the present invention in which a specific amount of alkylene glycol is allowed to coexist in a hydroalcoholic solution at the time of production, it is effective in preventing the formation of aggregated particles, increasing the particle concentration, and shortening the reaction time as compared with the conventional method. Therefore, the method for producing inorganic oxide particles according to the present invention has good productivity and is an industrially inexpensive method, and the inorganic oxide particles obtained by the method according to the present invention have no agglomerated particles, and further seed particles and reaction conditions. Amorphous spheres with an average particle size of 0.1-
The monodispersed particles are in the range of 20 μm, preferably 0.5 to 15 μm, and the coefficient of variation is 10% or less, preferably 5% or less.

〈実施例〉 以下本発明を実施例により更に詳細に説明するが、本発
明はこれら実施例のみに制限されるものではない。
<Examples> The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.

なお、実施例および比較例で得られた球状微粒子の物性
は下記の方法により分析、評価した。
The physical properties of the spherical fine particles obtained in Examples and Comparative Examples were analyzed and evaluated by the following methods.

*平均粒子径および標準偏差値 球状微粒子の粒子径の平均値および標準偏差値は該粒子
200個の電子顕微鏡撮影像を画像処理装置を用いて処
理することにより求めた(電子顕微鏡 日立製作所製
S-570型、画像処理装置 ピアス製LA-1000)。
* Average particle size and standard deviation value The average value and standard deviation value of the particle size of the spherical fine particles were determined by processing 200 electron microscopic images of the particles using an image processing device (electron microscope manufactured by Hitachi, Ltd.).
Model S-570, image processing device LA-1000 made by Pierce.

但し *凝集粒子の有無 試料をスラリーの状態のまま1000倍の光学顕微鏡で観察
し評価した。
However * Presence or absence of aggregated particles The sample was observed in a slurry state under an optical microscope of 1000 times and evaluated.

すなわち、スラリー中の粒子が単分散している場合、電
子顕微鏡及び遠心沈降式粒度分布測定機により得られた
それぞれの平均粒子径の中には一定の相関がある。しか
し、粒子が凝集していると、その関係からずれてくる。
そのずれの程度から凝集の程度が判断できる。これらの
評価結果を総合評価して凝集粒子の有無の程度を下記の
基準に従い4段階評価した。
That is, when the particles in the slurry are monodispersed, there is a certain correlation between the respective average particle sizes obtained by an electron microscope and a centrifugal sedimentation type particle size distribution analyzer. However, when the particles are agglomerated, the relationship deviates.
The degree of aggregation can be judged from the degree of deviation. The evaluation results were comprehensively evaluated, and the degree of presence or absence of aggregated particles was evaluated in four levels according to the following criteria.

◎ 凝集粒子が全くない。◎ No aggregated particles.

○ 凝集粒子が僅かである。○ There are few aggregated particles.

△ 凝集粒子が少しある。△ There are some agglomerated particles.

× 凝集粒子が多くある。× There are many agglomerated particles.

実施例1 撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にエタノール707.3g、28%アンモニア
水275.3g及び水24.0gを添加して混合した。
該混合液を30±0.5℃に調整し、撹拌しながらテト
ラエトキシシラン134.1gを滴下口より1時間かけ
て滴下し、滴下後も1時間撹拌を続け加水分解、縮合を
行ない、球状シリカ微粒子の懸濁体(1−a)を得た。
Example 1 707.3 g of ethanol, 275.3 g of 28% ammonia water and 24.0 g of water were added and mixed into a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer.
The mixed solution was adjusted to 30 ± 0.5 ° C., 134.1 g of tetraethoxysilane was added dropwise from the dropping port over 1 hour while stirring, and after the dropping, stirring was continued for 1 hour to carry out hydrolysis and condensation to form spherical particles. A suspension (1-a) of fine silica particles was obtained.

この懸濁液にエチレングリコール100gを添加し、エ
バポレーターを用いて常圧で濃縮し、内温が150℃に
なったところで1時間加熱を続けエチレングリコールの
結合した球状シリカ微粒子のエチレングリコールのスラ
リー(微粒子濃度26.8重量%)を得た。これを種粒
子スラリー(1−b)とした。
Ethylene glycol (100 g) was added to this suspension, and the mixture was concentrated under atmospheric pressure using an evaporator. When the internal temperature reached 150 ° C, heating was continued for 1 hour, and ethylene glycol-bonded spherical silica fine particle slurry of ethylene glycol ( A fine particle concentration of 26.8% by weight) was obtained. This was used as seed particle slurry (1-b).

撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール586.9g、28%アンモニア
水267.9g、エチレングリコール52g及び種粒子
スラリー(1−b)33.2gを滴下して混合した。該
混合液を20±1℃に調整し、撹拌しがらメタノール1
87gにテトラエトキシシラン373gを溶解した液を
滴下口より3時間かけて滴下し、滴下後も1時間撹拌を
続け加水分解、縮合により種粒子を成長させて球状シリ
カ微粒子の懸濁体(1−c)を得た。
To a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 586.9 g of methanol, 267.9 g of 28% ammonia water, 52 g of ethylene glycol and 33.2 g of seed particle slurry (1-b) were dropped. Mixed. The mixed solution was adjusted to 20 ± 1 ° C. and stirred with methanol 1
A liquid in which 373 g of tetraethoxysilane was dissolved in 87 g was dropped from the dropping port over 3 hours, and after the dropping, stirring was continued for 1 hour to grow seed particles by hydrolysis and condensation to obtain a suspension of spherical silica fine particles (1- c) was obtained.

結果を表−1に示す。The results are shown in Table-1.

実施例2 撹拌機、滴下口および温度計を備えた2リットルのガラ
ス製反応器にメタノール397.1g、28%のアンモ
ニア水204.7g、水1.4g、エチレングリコール
75g及び実施例1により得られた球状シリカ微粒子の
懸濁体(1−a)261.8g(SiO23.4重量%)を添加
して混合した。該混合液を20±1℃に調整し、撹拌し
ながらメタノール187gにテトラエトキシシラン37
3gを溶解した液を滴下口より3時間かけて滴下し、滴
下後も1時間撹拌を続け加水分解、縮合により種粒子を
成長させて球状シリカ微粒子の懸濁体を得た。結果を表
−1に示す。
Example 2 In a 2 liter glass reactor equipped with stirrer, dropping port and thermometer, 397.1 g of methanol, 204.7 g of 28% ammonia water, 1.4 g of water, 75 g of ethylene glycol and obtained according to Example 1. 261.8 g (3.4% by weight of SiO 2 ) of the obtained spherical silica fine particle suspension (1-a) was added and mixed. The mixed solution was adjusted to 20 ± 1 ° C., and 187 g of methanol was added to tetraethoxysilane 37 while stirring.
A liquid in which 3 g was dissolved was dropped from the dropping port over 3 hours, and after the dropping, stirring was continued for 1 hour to grow seed particles by hydrolysis and condensation to obtain a suspension of spherical silica fine particles. The results are shown in Table-1.

実施例3 実施例1のなかでエチレングリコールの代りにプロピレ
ングリコールを使用する以外は全て同じ方法で行った。
結果を表−1に示す。
Example 3 The procedure of Example 1 was repeated except that propylene glycol was used instead of ethylene glycol.
The results are shown in Table-1.

実施例4 撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール675.4g及び28%アンモニ
ア水275.3gを添加して混合した。該混合液を20
±0.5℃に調整し、撹拌しながらメタノール55.9
gにテトラメトキシシラン111.8gを溶解した液を
滴下口より1時間かけて滴下し、滴下後も1時間撹拌を
続け加水分解縮合を行ない、球状リシカ微粒子の懸濁体
(4−a)を得た。
Example 4 675.4 g of methanol and 275.3 g of 28% ammonia water were added and mixed to a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer. 20 times the mixture
Adjust to ± 0.5 ℃, stirring with stirring 55.9
The liquid in which 111.8 g of tetramethoxysilane was dissolved in g was added dropwise from the dropping port over 1 hour, and after the dropping, stirring was continued for 1 hour to carry out hydrolysis and condensation to obtain a suspension (4-a) of spherical lysica fine particles. Obtained.

この懸濁液にエチレングリコール150gを添加し、エ
バポレーターを用いて常圧で濃縮し、内温が190℃に
なったところで1時間加熱を続けエチレングリコールの
結合した球状シリカ微粒子のエチレングリコールのスラ
リー(微粒子濃度28.0重量%)を得た。これを種粒
子スラリー(4−b)とした。
150 g of ethylene glycol was added to this suspension, which was concentrated at normal pressure using an evaporator, and when the internal temperature reached 190 ° C., heating was continued for 1 hour, and a slurry of ethylene glycol of spherical silica fine particles bonded with ethylene glycol ( A fine particle concentration of 28.0% by weight was obtained. This was used as seed particle slurry (4-b).

撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール329.7g、28%アンモニア
水267.9g、水24.0g及び種粒子スラリー(4
−b)71.1gを添加して混合した。該混合液を20
±1℃に調整し、撹拌しながらメタノール269gにテ
トラメトキシシラン538gを溶解した液を滴下口より
1時間かけて滴下し、滴下後も1時間撹拌を続け加水分
解、縮合により種粒子を成長させて球状シリカ微粒子の
懸濁体を得た。結果を表−1に示す。
In a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 329.7 g of methanol, 267.9 g of 28% ammonia water, 24.0 g of water and seed particle slurry (4
-B) 71.1 g was added and mixed. 20 times the mixture
The temperature was adjusted to ± 1 ° C, and while stirring, a solution prepared by dissolving 538 g of tetramethoxysilane in 269 g of methanol was added dropwise over 1 hour, and stirring was continued for 1 hour after the addition to grow seed particles by hydrolysis and condensation. To obtain a suspension of spherical silica fine particles. The results are shown in Table-1.

実施例5 実施例1により得られた球状シリカ微粒子の懸濁体(1
−a)をエバポレーターにて濃縮乾固した。このように
して得られた粉体を400℃で1時間焼成した。この粉
体をメタノールに添加後、超音波処理を行ない分散を良
好にした。この分散体を紙で過して種粒子スラリー
(5−b)を得た。
Example 5 A suspension of spherical silica fine particles (1
-A) was concentrated to dryness with an evaporator. The powder thus obtained was calcined at 400 ° C. for 1 hour. After adding this powder to methanol, ultrasonic treatment was performed to improve dispersion. The dispersion was filtered with paper to obtain a seed particle slurry (5-b).

撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール567.1g、28%アンモニア
水267.9g、エチレングリコール75.0g及び種
粒子スラリー(5−b)30.0g(SiO225.8重量
%)を添加して混合した。該混合液を20±1℃に調整
し、撹拌しながらメタノール187gにテトラエトキシ
シラン373gを溶解した液を滴下口より3時間かけて
滴下し、滴下後も1時間撹拌を続け加水分解、縮合によ
り種粒子を成長させて球状シリカ微粒子の懸濁体を得
た。結果を表−1に示す。
In a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 567.1 g of methanol, 267.9 g of 28% ammonia water, 75.0 g of ethylene glycol and 30.0 g of seed particle slurry (5-b) ( SiO 2 ( 25.8 wt%) was added and mixed. The mixed solution was adjusted to 20 ± 1 ° C., and a solution in which 373 g of tetraethoxysilane was dissolved in 187 g of methanol was added dropwise with stirring over 3 hours, and after the addition, stirring was continued for 1 hour by hydrolysis and condensation. The seed particles were grown to obtain a suspension of spherical silica fine particles. The results are shown in Table-1.

実施例6 実施例1により得られた球状シリカ微粒子の懸濁体(1
−c)にエチレングリコール500gを添加し、エバポ
レーターを用いて常圧で濃縮し、内温を197.6℃に
しエチレングリコールを除々に留出させながら1時間加
熱を続けエチレングリコールの結合した球状シリカ微粒
子のエチレングリコールのスラリー(微粒子濃度31.
2重量%)を得た。これを種粒子スラリー(6−b)と
した。
Example 6 A suspension (1) of spherical silica fine particles obtained in Example 1
Ethylene glycol (500 g) was added to -c), the mixture was concentrated at normal pressure using an evaporator, the internal temperature was adjusted to 197.6 ° C., and ethylene glycol was gradually distilled off while continuously heating for 1 hour. Slurry of fine particle ethylene glycol (fine particle concentration 31.
2% by weight). This was used as seed particle slurry (6-b).

撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール389.7g、28%アンモニア
水267.9g、エチレングリコール60g及び種粒子
スラリー(6−b)51.4gを添加して混合した。該
混合液を20±1℃に調整し、撹拌しながらメタノール
244gにテトラエトキシシラン487gを溶解した液
を滴下口より3時間かけて滴下し、滴下後も1時間撹拌
を続け加水分解、縮合により種粒子を成長させて球状シ
リカ微粒子の懸濁体(6−c)を得た。
To a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 389.7 g of methanol, 267.9 g of 28% ammonia water, 60 g of ethylene glycol and 51.4 g of seed particle slurry (6-b) were added. Mixed. The mixed solution was adjusted to 20 ± 1 ° C., and while stirring, a solution of 487 g of tetraethoxysilane dissolved in 244 g of methanol was added dropwise over 3 hours, and stirring was continued for 1 hour after the addition, by hydrolysis and condensation. Seed particles were grown to obtain a suspension (6-c) of spherical silica fine particles.

実施例7 実施例6により得られた球状シリカ微粒子の懸濁体(6
−c)1000gにエチレングリコール 350gを添加し、エ
バポレーターを用いて常圧で濃縮し、内温を197.6
℃にしエチレングリコールを除々に留出させながら1時
間加熱を続けエチレングリコールの結合した球状シリカ
微粒子のエチレングリコールのスラリー(微粒子濃度2
5.0重量%)を得た。これを種粒子スラリー(7−
b)とした。
Example 7 A suspension of spherical silica fine particles (6
-C) 350 g of ethylene glycol was added to 1000 g, and the mixture was concentrated under atmospheric pressure using an evaporator, and the internal temperature was adjusted to 197.6.
The mixture is heated to 1 ° C and ethylene glycol is gradually distilled off, and heating is continued for 1 hour. Ethylene glycol slurry of spherical silica fine particles bonded with ethylene glycol (fine particle concentration 2
5.0% by weight) was obtained. The seed particle slurry (7-
b).

撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール372.8g、28%アンモニア
水294.6g、エチレングリコール37.2g及び種
粒子スラリー(7−b)60.4gを添加して混合し
た。該混合液を20±1℃に調整し、撹拌しながらメタ
ノール245gにテトラメトキシシラン490gを溶解
した液を滴下口より2時間かけて滴下し、滴下後も1時
間撹拌を続け加水分解、縮合により種粒子を成長させて
球状シリカ微粒子の懸濁体を得た。結果を表−1に示
す。
A 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer was charged with 372.8 g of methanol, 294.6 g of 28% ammonia water, 37.2 g of ethylene glycol and 60.4 g of seed particle slurry (7-b). Add and mix. The mixed solution was adjusted to 20 ± 1 ° C., and while stirring, a solution of 490 g of tetramethoxysilane dissolved in 245 g of methanol was added dropwise over 2 hours from the dropping port, and stirring was continued for 1 hour after the dropping, by hydrolysis and condensation. The seed particles were grown to obtain a suspension of spherical silica fine particles. The results are shown in Table-1.

実施例8 撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール1368.7g及び水11.3gを添加
して混合した。該混合液を20±0.5℃に調整し、撹
拌しながらメタノール60gにテトライソプロポキシチ
タネート60gを溶解した液を滴下口より1時間かけて
滴下し、滴下後も1時間撹拌を続け加水分解、縮合を行
ない、球状チタニア微粒子の懸濁体を得た。
Example 8 To a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 1368.7 g of methanol and 11.3 g of water were added and mixed. The mixed solution was adjusted to 20 ± 0.5 ° C., and while stirring, a solution of 60 g of tetraisopropoxy titanate dissolved in 60 g of methanol was dropped from the dropping port over 1 hour, and stirring was continued for 1 hour after the dropping to hydrolyze. Then, condensation was carried out to obtain a suspension of spherical titania fine particles.

この懸濁液にエチレングリコール200gを添加し、エ
バポレーターを用いて常圧で濃縮し、内温が197.6
℃になったところで1時間加熱を続けエチレングリコー
ルの結合した球状チタニア微粒子のエチレングリコール
のスラリー(微粒子濃度14.0重量%)を得た。これ
を種粒子スラリー(8−b)とした。
200 g of ethylene glycol was added to this suspension, and the suspension was concentrated under atmospheric pressure using an evaporator, and the internal temperature was 197.6.
When the temperature reached 0 ° C., heating was continued for 1 hour to obtain a slurry of ethylene glycol of fine particles of spherical titania bonded with ethylene glycol (fine particle concentration 14.0% by weight). This was used as seed particle slurry (8-b).

撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール336.5g、28%アモニア水
267.9g及び種粒子スラリー(8−b)103.6
gを添加して混合した。該混合液を20±1℃に調整
し、撹拌しながらメタノール396gにテトラメトキシ
シラン264gとテトライソプロポキシチタネート13
2gを溶解した液を滴下口より4時間かけて滴下し、滴
下後も1時間撹拌を続け加水分解、縮合により種粒子を
成長させて球状チタニア−シリカ微粒子の懸濁体を得
た。結果を表−1に示す。
In a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 336.5 g of methanol, 267.9 g of 28% ammonia water and 103.6 of seed particle slurry (8-b).
g was added and mixed. The mixed solution was adjusted to 20 ± 1 ° C., and while stirring, 396 g of methanol and 264 g of tetramethoxysilane and 13 parts of tetraisopropoxy titanate were mixed.
A liquid in which 2 g was dissolved was dropped from the dropping port over 4 hours, and stirring was continued for 1 hour after the dropping, and seed particles were grown by hydrolysis and condensation to obtain a suspension of spherical titania-silica fine particles. The results are shown in Table-1.

実施例9 撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にエタノール875.1g及び水31.5gを
添加して混合した。該混合液を25±0.5℃に調整
し、撹拌しながらエタノール 134.1gにテトラブトキシ
ジルコネート134.1gを溶解した液を滴下口より1
時間かけて滴下し、滴下後も1時間撹拌を続け加水分
解、縮合を行ない、球状ジルコニア微粒子の懸濁体を得
た。
Example 9 To a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 875.1 g of ethanol and 31.5 g of water were added and mixed. The mixed solution was adjusted to 25 ± 0.5 ° C., and while stirring, a solution prepared by dissolving 134.1 g of tetrabutoxyzirconate in 134.1 g of ethanol was added through a dropping port.
The solution was dropped over a period of time, and after the dropping, stirring was continued for 1 hour to carry out hydrolysis and condensation to obtain a suspension of spherical zirconia fine particles.

この懸濁液にエチレングリコール350gを添加し、エ
バポレーターを用いて常圧で濃縮し、内温が197.6
℃になったところで1時間加熱を続けエチレングリコー
ルの結合した球状ジルコニア微粒子のエチレングリコー
ルのスラリー(微粒子濃度15.0重量%)を得た。こ
れを種粒子スラリー(9−b)とした。
To this suspension, 350 g of ethylene glycol was added and concentrated under atmospheric pressure using an evaporator, and the internal temperature was 197.6.
When the temperature reached ℃, heating was continued for 1 hour to obtain a slurry of ethylene glycol of fine particles of spherical zirconia bonded with ethylene glycol (fine particle concentration: 15.0% by weight). This was used as seed particle slurry (9-b).

撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール515.5g、28%アンモニア
水267.9g及び種粒子スラリー(9−b)130.
0gを添加して混合した。該混合液を20±1℃に調整
し、撹拌しながらエタノール293.3gにテトラメト
キシシラン200gとテトラブトキシジルコネート9
3.3gを溶解した液を滴下口より4時間かけて滴下
し、滴下後も1時間撹拌を続け加水分解、縮合により種
粒子を成長させて球状ジルコニア−シリカ微粒子の懸濁
体を得た。結果を表−1に示す。
In a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 515.5 g of methanol, 267.9 g of 28% ammonia water and 130.
0 g was added and mixed. The mixed solution was adjusted to 20 ± 1 ° C., while stirring, 293.3 g of ethanol was added to 200 g of tetramethoxysilane and 9 parts of tetrabutoxyzirconate.
A liquid in which 3.3 g was dissolved was added dropwise from a dropping port over 4 hours, and after the dropping, stirring was continued for 1 hour to grow seed particles by hydrolysis and condensation to obtain a suspension of spherical zirconia-silica fine particles. The results are shown in Table-1.

実施例10 撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にイソプロパノール827.8g、28%アン
モニア水191.3g及び水32.7gを添加して混合
した。該混合液を20±0.5℃に調整し、撹拌しなが
らイプロパノール98.0gにアルミニウムトリイソプ
ロポキシド98.0gを溶解した液を滴下口より1時間
かけて滴下し、滴下後も1時間撹拌を続け加水分解、縮
合を行ない、球状アルミナ微粒子の懸濁体を得た。
Example 10 To a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 827.8 g of isopropanol, 191.3 g of 28% aqueous ammonia and 32.7 g of water were added and mixed. The mixed solution was adjusted to 20 ± 0.5 ° C., and a solution of 98.0 g of aluminum triisopropoxide dissolved in 98.0 g of ipropanol was added dropwise from the dropping port over 1 hour, and after the dropping, 1 was added. Hydrolysis and condensation were carried out by continuously stirring for a period of time to obtain a suspension of spherical alumina fine particles.

この懸濁液にプロピレングリコール270gを添加し、
エバポレーターを用いて常圧で濃縮し、内温が170℃
になったところで1時間加熱を続けプロピレングリコー
ルの結合した球状アルミナ微粒子のプロピレングリコー
ルの結合した球状アルミナ微粒子のプロピレングリコー
ルのスラリー(微粒子濃度15.0重量%)を得た。こ
れを種粒子スラリー(10−b)とした。
270 g of propylene glycol was added to this suspension,
Concentrated at atmospheric pressure using an evaporator, the internal temperature is 170 ℃
At that point, heating was continued for 1 hour to obtain a slurry (fine particle concentration: 15.0% by weight) of propylene glycol of spherical alumina fine particles of propylene glycol bonded spherical alumina fine particles of propylene glycol bonded. This was used as seed particle slurry (10-b).

撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にイソプロパノール448.8g、28%アン
モニア水267.9g及び種粒子スラリー(10−b)
63.3gを添加して混合した。該混合液を20±1℃
に調整し、撹拌しながらイソプロパノール360gアル
ミニウムトリイソプロポキシド120gとにテトラメト
キシシラン 240gを溶解した液を滴下口より4時間かけ
て滴下し、滴下後も1時間撹拌を続け加水分解、縮合に
より種粒子を成長させて球状アルミナ−シリカ微粒子の
懸濁体を得た。結果を表−1に示す。
In a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 448.8 g of isopropanol, 267.9 g of 28% aqueous ammonia and seed particle slurry (10-b).
63.3 g was added and mixed. 20 ± 1 ° C of the mixture
The solution prepared by dissolving tetramethoxysilane (240 g) in isopropanol (360 g) and aluminum triisopropoxide (120 g) was added dropwise with stirring over 4 hours, and stirring was continued for 1 hour after the addition to produce seeds by hydrolysis and condensation. The particles were grown to obtain a suspension of spherical alumina-silica fine particles. The results are shown in Table-1.

比較例1 実施例2の中でエチレングリコールをメタノールに置き
換えた以外は全て同じ方法で行った。結果を表−1に示
す。
Comparative Example 1 The same procedure as in Example 2 was repeated except that ethylene glycol was replaced with methanol. The results are shown in Table-1.

比較例2 撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール467.1g、28%アンモニア
水204.7g、水1.4g、エチレングリコール5.
0g及び実施例1で得られた球状シラカ微粒子の懸濁体
(1−a)261.8g(SiO23.4重量%)を添加し
て混合した。該混合液を20±1℃に調整し、撹拌しな
がらメタノール187gにテトラエトキシシラン373
gを溶解した液を滴下口より3時間かけて滴下し、滴下
後も1時間撹拌を続け加水分解、縮合により種粒子を成
長させて球状シリカ微粒子の懸濁体を得た。結果を表−
1に示す。
Comparative Example 2 In a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 467.1 g of methanol, 204.7 g of 28% ammonia water, 1.4 g of water, and ethylene glycol of 5.
0 g and 261.8 g of a suspension (1-a) of spherical silica squid fine particles obtained in Example 1 (3.4% by weight of SiO 2 ) were added and mixed. The mixed solution was adjusted to 20 ± 1 ° C., and 187 g of methanol was added to tetraethoxysilane 373 while stirring.
A liquid in which g was dissolved was added dropwise from the dropping port over 3 hours, and after the addition, stirring was continued for 1 hour to grow seed particles by hydrolysis and condensation to obtain a suspension of spherical silica fine particles. Table of results
Shown in 1.

比較例3 撹拌機、滴下口及び温度計を備えた2リットルのガラス
製反応器にメタノール97.7g、エチレングリコール
541.2g、28%アンモニア水267.9g及び実
施例1で得られた種粒子スラリー(1−b)33.2g
(SiO226.8重量%)を添加して混合した。該混合液
を20±1℃に調整し、撹拌しながらメタノール187
gにテトラエトキシシラン373gを溶解した液を滴下
口より3時間かけて滴下し、滴下後も1時間撹拌を続け
加水分解、縮合により種粒子を成長させて球状シリカ微
粒子の懸濁体を得た。結果を表−1に示す。
Comparative Example 3 In a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 97.7 g of methanol, 541.2 g of ethylene glycol, 267.9 g of 28% ammonia water and seed particles obtained in Example 1 were used. 33.2 g of slurry (1-b)
(26.8 wt% SiO 2 ) was added and mixed. The mixture was adjusted to 20 ± 1 ° C. and stirred with methanol 187
A solution in which 373 g of tetraethoxysilane was dissolved in g was added dropwise over 3 hours from a dropping port, and after the dropping, stirring was continued for 1 hour to grow seed particles by hydrolysis and condensation to obtain a suspension of spherical silica fine particles. . The results are shown in Table-1.

比較例4 実施例5の中でエレチングリコールをメタノールに置き
換えた以外は全て同じ方法で行った。結果を表−1に示
す。
Comparative Example 4 The same procedure as in Example 5 was repeated except that eletin glycol was replaced with methanol. The results are shown in Table-1.

フロントページの続き (72)発明者 赤沢 陽治 兵庫県姫路市網干区興浜字西沖992番地の 1 日本触媒化学工業株式会社姫路製造所 内 (72)発明者 米田 忠弘 大阪府吹田市西御旅町5番8号 日本触媒 化学工業株式会社中央研究所内 審査官 石井 良夫 (56)参考文献 特開 昭63−182204(JP,A) 特開 昭62−132708(JP,A)Front page continued (72) Inventor, Yoji Akazawa, 992, Nishi-oki, Kinohama, Aboshi-ku, Himeji-shi, Hyogo, Japan Himeji Plant, Nippon Catalytic Chemical Co., Ltd. Yoshio Ishii, Examiner, Central Research Laboratory, Nippon Shokubai Kagaku Kogyo Co., Ltd. (56) Reference JP-A-63-182204 (JP, A) JP-A-62-132708 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】無機酸化物粒子を種粒子として含水アルコ
ール性溶液に分散させた種粒子懸濁液に、加水分解およ
び縮合可能な有機金属化合物を添加して該種粒子を成長
させて、非晶質球状であって、平均粒子径が0.1〜2
0μmの範囲にあり、かつ粒子径の変動係数が10%以
下である無機酸化物粒子を製造する方法であって、該反
応を該含水アルコール性溶液中に炭素数2〜8のアルキ
レングリコールを1〜50重量%の範囲含有させて行う
ことを特徴とする単分散性に優れた無機酸化物粒子の製
造法。
1. An organic metal compound capable of being hydrolyzed and condensed is added to a seed particle suspension prepared by dispersing inorganic oxide particles as seed particles in a hydrous alcoholic solution to grow the seed particles. Crystalline spheres with an average particle size of 0.1 to 2
A method for producing inorganic oxide particles having a particle size variation coefficient of 0 μm and a particle size variation coefficient of 10% or less, wherein the reaction is carried out by adding 1 to 2 carbon atoms of alkylene glycol to the hydroalcoholic solution. The method for producing inorganic oxide particles having excellent monodispersibility, characterized in that the content is in the range of 50 wt%.
JP2091856A 1989-04-07 1990-04-06 Method for producing inorganic oxide particles Expired - Lifetime JPH0662284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091856A JPH0662284B2 (en) 1989-04-07 1990-04-06 Method for producing inorganic oxide particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-87066 1989-04-07
JP8706689 1989-04-07
JP2091856A JPH0662284B2 (en) 1989-04-07 1990-04-06 Method for producing inorganic oxide particles

Publications (2)

Publication Number Publication Date
JPH0350105A JPH0350105A (en) 1991-03-04
JPH0662284B2 true JPH0662284B2 (en) 1994-08-17

Family

ID=26428381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091856A Expired - Lifetime JPH0662284B2 (en) 1989-04-07 1990-04-06 Method for producing inorganic oxide particles

Country Status (1)

Country Link
JP (1) JPH0662284B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558605A (en) * 1991-08-29 1993-03-09 Mitsubishi Materials Corp Production of ceramic composite powder
JP4857526B2 (en) * 2004-05-06 2012-01-18 トヨタ自動車株式会社 Method for producing composite oxide powder
JP2007091549A (en) * 2005-09-29 2007-04-12 Showa Denko Kk Shell component-containing perovskite composite oxide powder and its manufacturing method
JP4996885B2 (en) * 2006-06-30 2012-08-08 川研ファインケミカル株式会社 Alumina glycol dispersion and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132708A (en) * 1985-12-03 1987-06-16 Nok Corp Production of ultrafine ceramic particle
JPS63182204A (en) * 1987-01-22 1988-07-27 Nippon Shokubai Kagaku Kogyo Co Ltd Production of monodisperse body of fine inorganic oxide particle in organic solvent

Also Published As

Publication number Publication date
JPH0350105A (en) 1991-03-04

Similar Documents

Publication Publication Date Title
KR950001660B1 (en) Preparation method of inorganic oxide particles
JP5080061B2 (en) Method for producing neutral colloidal silica
TWI436947B (en) Colloidal silica and process for producing the same
JP5477192B2 (en) Method for producing silica particles
JPS6374911A (en) Production of fine spherical silica
JP5267758B2 (en) Method for producing hydrophobic silica powder
JP6854683B2 (en) Manufacturing method of silica sol
US5338353A (en) Method for production of powder of fine inorganic particles
JP2014529561A (en) Method for producing high-purity metal oxide particles and material produced therefor
JP4171850B2 (en) Modified titanium oxide-zirconium oxide-stannic oxide composite sol and method for producing the same
JP3584485B2 (en) Method for producing silica sol
JPH053407B2 (en)
TWI741116B (en) Silica particle dispersion liquid and its manufacturing method
CN102781839A (en) Method for making high purity metal oxide particles and materials made therof
JP2008037700A (en) Silica-based composite oxide particle aggregate and method for producing the same
JP4458396B2 (en) Method for producing high-purity hydrophilic organic solvent-dispersed silica sol, high-purity hydrophilic organic solvent-dispersed silica sol obtained by the method, method for producing high-purity organic solvent-dispersed silica sol, and high-purity organic solvent-dispersed silica sol obtained by the method
US20050011409A1 (en) Inorganic oxide
JP4925706B2 (en) Method for producing silica-based composite oxide particles
JPH054325B2 (en)
JPH0662284B2 (en) Method for producing inorganic oxide particles
CN108821296A (en) A kind of preparation method of mesoporous spherical nano Sio 2 particle
JPH01230407A (en) Production of particulate metallic compound
JPH0657317B2 (en) Glycol monodisperse of inorganic oxide fine particles and method for producing the same
JP3387969B2 (en) Composite oxide particles
JP2600278B2 (en) Method for producing particulate metal compound

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 16