[go: up one dir, main page]

JPH0661260B2 - Method of crushing bacterial cells - Google Patents

Method of crushing bacterial cells

Info

Publication number
JPH0661260B2
JPH0661260B2 JP12926386A JP12926386A JPH0661260B2 JP H0661260 B2 JPH0661260 B2 JP H0661260B2 JP 12926386 A JP12926386 A JP 12926386A JP 12926386 A JP12926386 A JP 12926386A JP H0661260 B2 JPH0661260 B2 JP H0661260B2
Authority
JP
Japan
Prior art keywords
solvent
temperature
pressure
separation tank
bacterial cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12926386A
Other languages
Japanese (ja)
Other versions
JPS62285774A (en
Inventor
浩俊 堀添
洋 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12926386A priority Critical patent/JPH0661260B2/en
Publication of JPS62285774A publication Critical patent/JPS62285774A/en
Publication of JPH0661260B2 publication Critical patent/JPH0661260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/08Homogenizing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は菌体が細胞膜内に生成した有用物質を細胞膜外
へ効率的に、かつ省エネルギー的に取り出すことを可能
とする菌体の粉砕方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for crushing bacterial cells, which enables efficient and energy-saving extraction of useful substances produced by bacterial cells inside the cell membrane to the outside of the cell membrane. Regarding

〔従来の技術〕[Conventional technology]

最近、新種の菌体や遺伝子組換え技術による菌を増殖さ
せて、大量の医薬品の原料を製造することが行われつつ
ある。これらの製造プロセスにおいては、菌体中から細
胞膜を経て特定の成分を抽出する操作が必要である。
Recently, a large amount of raw materials for pharmaceuticals are being produced by growing new strains of bacteria and bacteria by gene recombination technology. In these manufacturing processes, it is necessary to extract specific components from the cells through the cell membrane.

従来の抽出方法としては、ボールミルで前もつて菌体を
粉々にした後に特定成分を抽出する方法、又はクロロホ
ルム等の強力な溶剤を用いて菌体を細胞膜ごと溶解して
特定成分を抽出する方法等がある。
As a conventional extraction method, a method of extracting specific components after preliminarily shattering the bacterial cells with a ball mill, or a method of dissolving the bacterial cells together with the cell membrane using a strong solvent such as chloroform and extracting the specific components Etc.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記従来法のうち前者の方法は、菌体が
数ミクロンの大きさであり、ボールミルで処理した場合
菌体同志がすべり合つて、その間隙に入り込んでしまう
ので、粉々にするには長時間を要し、大量生産には不適
当な方法である。
However, the former method out of the above-mentioned conventional methods has a microbial cell size of a few microns, and when treated with a ball mill, the microbial cells slide into each other and enter the gap, so it is long to shatter. It is time consuming and unsuitable for mass production.

一方、後者の方法ではクロロホルム等の溶剤は有害であ
り、後処理工程でこれを除去することが必要である。こ
の場合、溶剤の分離に通常行われる加熱による蒸発分離
を行うと、加熱による有用成分の変性、蒸発潜熱の負荷
によるエネルギーコストの増大をきたし、好ましくなか
つた。特に溶剤量が多いとそれに比例してエネルギーコ
ストが顕著に増大してしまつた。
On the other hand, in the latter method, a solvent such as chloroform is harmful and it is necessary to remove it in a post-treatment step. In this case, if the evaporation separation by heating which is usually performed for the separation of the solvent is performed, the useful component is modified by the heating and the energy cost is increased due to the load of the latent heat of evaporation, which is not preferable. In particular, when the amount of solvent is large, the energy cost increases remarkably in proportion to it.

本発明はこのような現状に鑑み、短時間でかつ溶剤の回
収も容易な方法により菌体の細胞膜を破壊して、菌体中
の有用成分を系外に取り出すことのできる方法を提供し
ようとするものである。
In view of such a situation, the present invention intends to provide a method capable of destroying the cell membrane of a bacterial cell in a short time and by a method that is also easy to recover a solvent, and extracting a useful component in the bacterial cell out of the system. To do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、菌体の培養液を臨界温度以上かつ臨界圧力以
上の温度、圧力条件下(以下、この状態を超臨界状態と
いう)又は臨界温度T以下で対臨界温度T=T/T
(但し、0.90<T<1.0)の温度で圧力はそ
の温度における溶解溶剤の飽和蒸気圧以上の温度、圧力
条件下(以下、この状態を擬臨界状態という)にある菌
体の細胞膜内を拡散する溶解溶剤と混合した後、圧力を
瞬時に下げ、そのままの温度で分離槽に導入し、該分離
槽の下部より菌体粉砕物を回収するとともに該分離槽の
上部より溶剤を回収し、次に回収溶剤を圧縮し、それに
より発生する圧縮熱を上記分離槽の加熱源として用い、
圧縮された溶剤は上記培養液と混合して再利用すること
を特徴とする菌体の粉砕法である。
The present invention is directed to a critical temperature T R = T / T of a culture of a microbial cell at a temperature above the critical temperature and above the critical pressure, under pressure conditions (hereinafter, this state is referred to as the supercritical state) or below the critical temperature T c.
C (where 0.90 <T R <1.0), the pressure is higher than the saturated vapor pressure of the dissolving solvent at that temperature, and the condition is under pressure (hereinafter, this state is referred to as pseudocritical state). After mixing with a dissolving solvent that diffuses inside the cell membrane of the body, the pressure is instantly lowered and introduced into the separation tank at the same temperature, and the crushed bacterial cells are collected from the lower part of the separation tank and from the upper part of the separation tank. The solvent is recovered, the recovered solvent is then compressed, and the heat of compression generated thereby is used as a heating source for the separation tank.
The compressed solvent is a method for pulverizing bacterial cells, which is characterized by being mixed with the above culture solution and reused.

まず本発明の基礎となる考え方から説明する。First, the concept underlying the present invention will be described.

前記のとおり、本発明にいう超臨界状態とは、溶解溶剤
の臨界温度以上かつ臨界圧力以上の温度、圧力条件での
状態を意味し、擬臨界状態とは、溶解溶剤の臨界温度T
c以下で、対臨界温度T=T/Tc(但し、0.90
<T<1.0)の温度Tで、圧力はその温度における
溶解溶剤の飽和蒸気圧以上の状態を意味する。
As mentioned above, the term "supercritical state" as used in the present invention means a state under a temperature or pressure condition that is not lower than the critical temperature of the dissolving solvent and not lower than the critical pressure, and the pseudocritical state is the critical temperature T of the dissolving solvent.
c below, versus the critical temperature T R = T / Tc (where 0.90
At a temperature T of <T R <1.0), pressure means a state on the saturated vapor pressure of the dissolved solvent in the temperature.

臨界点近傍では溶解溶剤の密度は圧力により急激に変化
することが知られており、本発明はこれを活用したもの
である。すなわち、臨界点近傍の溶解溶剤は液並みの密
度であり、又容易に細胞膜内に拡散することにより、こ
の状態から急激に圧力を下げると、細胞膜内に拡散した
高密度の溶解溶剤は急激に膨張し、この膨張力に細胞膜
は抗しきれないので、これを粉々に破壊することができ
る。
It is known that the density of the dissolved solvent rapidly changes with pressure near the critical point, and the present invention utilizes this. That is, the dissolution solvent near the critical point has a density similar to that of a liquid, and when it is easily diffused into the cell membrane, if the pressure is rapidly lowered from this state, the high-density dissolution solvent diffused into the cell membrane rapidly Since it expands and the cell membrane cannot withstand this expansion force, it can be broken into pieces.

したがつて本発明では菌体の培養液を、超臨界状態又は
擬臨界状態の溶剤と混合し、溶解溶剤を菌体の細胞膜内
に拡散させた後に、圧力を瞬時に下げ、そのままの温度
に保持して、菌体の細胞膜を粉砕し、次いで該菌体粉砕
物と該溶解溶媒を別々に回収する。
Therefore, in the present invention, the culture solution of the bacterial cells is mixed with a solvent in a supercritical state or a pseudocritical state, and after the dissolving solvent is diffused into the cell membrane of the bacterial cells, the pressure is instantly lowered to the temperature as it is. While retaining, the cell membrane of the microbial cells is crushed, and then the crushed bacterial cell product and the dissolving solvent are separately recovered.

ここで圧力を下げて温度がその臨界点近傍であるため、
溶解溶剤の菌体粉砕物からの分離を、溶解溶媒の蒸発潜
熱を必要とせずに省エネルギー的になしうるもので、分
離槽の下方からは菌体粉砕物を又上方からは溶解溶剤を
回収する。回収した溶解溶剤は圧縮器にて圧縮して再び
超もしくは擬臨界状態での菌体粉砕に用い、圧縮器に発
生する圧縮熱は分離工程の加熱源に用いるので、全工程
を非常に短時間にかつ溶剤回収は簡単で再利用でき、エ
ネルギーを有効に利用して菌体中の有効成分を系外に取
り出すことができる。
Now the pressure is reduced and the temperature is near its critical point,
The dissolution solvent can be separated from the crushed bacterial cells in an energy-saving manner without the need for latent heat of vaporization of the dissolution solvent. The crushed bacterial cells are recovered from the lower part of the separation tank and the dissolved solvent is recovered from the upper part. . The recovered dissolved solvent is compressed in a compressor and used again for cell crushing in a super or pseudocritical state, and the compression heat generated in the compressor is used as a heat source for the separation process, so the entire process is extremely short. In addition, the solvent recovery is simple and can be reused, and the effective components in the bacterial cells can be taken out of the system by effectively utilizing energy.

以下に本発明をさらに詳細に説明する。The present invention will be described in more detail below.

溶解溶剤は超臨界状態においてその密度が液並みである
一方、その拡散係数は液の場合の数十倍の大きさとなり
菌体の細胞膜を通過しやすいので、擬臨界状態よりは超
臨界状態の溶解溶剤を用いることが好ましい。
While the dissolution solvent has a density similar to that of a liquid in the supercritical state, its diffusion coefficient is several tens of times larger than that of a liquid, and it easily passes through the cell membranes of bacterial cells. It is preferable to use a dissolving solvent.

本発明で使用する溶解溶剤としては、菌体の細胞膜内を
拡散する溶剤が好ましく、例えば炭酸ガスCO、炭素
数2〜4の炭化水素例えばC、C等及びこ
れらの混合物等の他にその臨界温度が菌体の熱変性温度
以下である無機もしくは有機溶剤又はこれらの混合溶剤
が使用可能である。下表に本発明で用いられる主な溶剤
を例示する。
The dissolution solvent used in the present invention is preferably a solvent that diffuses in the cell membrane of the bacterial cells, such as carbon dioxide CO 2 , hydrocarbons having 2 to 4 carbon atoms such as C 2 H 4 , C 2 H 6 and the like. In addition to the mixture and the like, an inorganic or organic solvent whose critical temperature is lower than the heat denaturation temperature of the bacterial cells or a mixed solvent thereof can be used. The following table illustrates the main solvents used in the present invention.

表 溶剤名 臨界温度(℃) CO 31.1 C 9.7 C 32.4 NO 36.5 C 92.3 C 96.8 HS 100.4 C10 152.0 本発明における溶解溶剤としては、臨界温度が常温近傍
であり、無害で回収の容易な炭酸ガスが特に好ましい。
炭酸ガスの場合、その臨界温度は31.1℃であり、温
度35℃において、圧力100Kg/cm2Gで密度は約
0.8であり、常圧では密度は10−3のオーダーであ
り、この約1000倍の密度差が膨張力となるので、そ
の力は非常に大きいことがわかる。
Table Solvent name Critical temperature (° C.) CO 2 31.1 C 2 H 4 9.7 C 2 H 6 32.4 N 2 O 36.5 C 3 H 6 92.3 C 3 H 8 96.8 H 2 S 100.4 C 4 H 10 152.0 As the dissolving solvent in the present invention, carbon dioxide gas, which has a critical temperature near room temperature and is harmless and easy to recover, is particularly preferable.
In the case of carbon dioxide gas, its critical temperature is 31.1 ° C., and at a temperature of 35 ° C., the density is about 0.8 at a pressure of 100 kg / cm 2 G, and at normal pressure the density is on the order of 10 −3 , This density difference of about 1000 times becomes the expansion force, so it can be seen that the force is very large.

本発明における溶解溶剤の添加量は、菌体培養液1重量
部に対して1〜10重量部の範囲とすることが好まし
い。
The addition amount of the dissolution solvent in the present invention is preferably in the range of 1 to 10 parts by weight with respect to 1 part by weight of the bacterial cell culture solution.

本発明の対象とできる菌体培養液としては、特に限定さ
れるところはない。一例としては不飽和脂肪酸のr−リ
ノレン酸を選択的に生産する糸状菌の一種であるモルテ
イエレラ菌が挙げられる。
There is no particular limitation on the bacterial cell culture medium that can be the subject of the present invention. One example is Mortierella spp., Which is a type of filamentous fungus that selectively produces r-linolenic acid, an unsaturated fatty acid.

培養液は、好ましくは遠心分離器等により前もつて水分
を可能なかぎり除去されるべきである。かかる水分の存
在は、溶解溶剤の拡散抵抗の増大をもたらすため好まし
くない。
The culture medium should preferably be preliminarily dewatered by a centrifuge or the like as far as possible. The presence of such water is not preferable because it causes an increase in the diffusion resistance of the dissolving solvent.

以下、本発明の実施態様を第1図に示すフローシートに
従つて詳述する。菌体培養液1重量部を菌体培養液供給
ライン1より菌体培養液高圧送液ポンプ2にて圧送し、
一方溶解溶剤1〜10重量部を溶解溶剤供給ライン3よ
り供給し、両者を例えばスタテイクミキサー等の混合器
4にて混合する。該混合器4において溶解溶剤の超臨界
状態又は擬臨界状態となるように、圧力と温度を制御す
る。9は加熱器である。次に減圧弁5によりその圧力を
常圧付近まで瞬時に下げて、混合物を第1分離槽6に導
入し、該分離槽下部の菌体処理物取り出し口8より、細
胞膜が破壊された菌体を回収し、上部の溶解溶剤取り出
し口7より溶解溶剤を回収する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the flow sheet shown in FIG. 1 part by weight of the bacterial cell culture liquid was pumped from the bacterial cell culture liquid supply line 1 by a high pressure bacterial cell culture liquid pump 2.
On the other hand, 1 to 10 parts by weight of the dissolving solvent is supplied from the dissolving solvent supply line 3, and both are mixed by a mixer 4 such as a static mixer. The pressure and temperature are controlled so that the dissolved solvent in the mixer 4 is in a supercritical state or a pseudocritical state. 9 is a heater. Then, the pressure is instantly reduced to near normal pressure by the pressure reducing valve 5, the mixture is introduced into the first separation tank 6, and the cell body whose cell membrane has been destroyed is discharged from the cell-treated product outlet 8 at the bottom of the separation vessel. Is collected, and the dissolving solvent is collected from the dissolving solvent outlet 7 on the upper side.

第1分離槽6内の圧力が低い程、減圧弁5の前後での差
圧が大きく破砕効果が大きくなるが、溶解溶剤を再圧縮
して再利用する際にそれだけ多くのエネルギーを要する
ので、第1分離槽6の圧力は10〜50atmの範囲とす
ることが好ましい。50atmを越える圧力では、分離槽
上部7の溶解溶剤中に菌体中の成分が多量に溶解しはじ
めるので好ましくはない。
The lower the pressure in the first separation tank 6 is, the larger the differential pressure before and after the pressure reducing valve 5 is, and the greater the crushing effect is, but since more energy is required when re-compressing and reusing the dissolved solvent, The pressure in the first separation tank 6 is preferably in the range of 10 to 50 atm. When the pressure exceeds 50 atm, a large amount of components in the bacterial cells start to dissolve in the dissolving solvent in the upper part of the separation tank 7, which is not preferable.

本発明者らは、第1分離槽6の温度を溶解溶剤の臨界点
近傍とし、圧力を急激に下げることによつて、菌体の破
砕が促進できると共に、菌体と溶解溶剤の分離が溶解溶
剤の蒸発潜熱を必要とせず行えるので、この方法が非常
に省エネルギーの観点からも有利であることを見出し
た。
The inventors of the present invention set the temperature of the first separation tank 6 near the critical point of the dissolution solvent and drastically lowered the pressure to accelerate the crushing of the microbial cells, and at the same time, to separate the microbial cells and the dissolution solvent from each other. It has been found that this method is very advantageous from the viewpoint of energy saving as it can be carried out without requiring latent heat of vaporization of the solvent.

一方菌体は菌体処理物取り出し口8から減圧弁14にて
第2分離槽15に導入される。第2分離槽15の設置目
的は、菌体処理物中に溶解している溶解溶剤を回収し
て、その損失を防止することにある。したがつて、第2
分離槽15の圧力は大気圧近傍とすることが好ましく、
温度は溶解溶剤の蒸気圧を高めるために20〜50℃と
することが好ましい。50℃を越える温度とすることは
エネルギー的に損失となり好ましくない。
On the other hand, the bacterial cells are introduced into the second separation tank 15 from the bacterial cell treated product outlet 8 by the pressure reducing valve 14. The purpose of installing the second separation tank 15 is to collect the dissolved solvent dissolved in the treated bacterial cell product and prevent its loss. Therefore, the second
It is preferable that the pressure in the separation tank 15 be near atmospheric pressure,
The temperature is preferably 20 to 50 ° C. in order to increase the vapor pressure of the dissolving solvent. It is not preferable to set the temperature over 50 ° C. because of energy loss.

本発明者らの研究によれば、温度20〜50℃におい
て、溶解溶剤は容易に回収されることが見出された。
According to the research conducted by the present inventors, it was found that the dissolved solvent is easily recovered at a temperature of 20 to 50 ° C.

菌体は菌体処理物取り出し口17から回収され、溶解溶
剤取り出し口16及び7から回収された溶解溶剤は、各
々圧縮器12及び18で圧縮された後に溶解溶剤供給ラ
イン3により混合器4に供給され再利用される。本発明
者らは、この圧縮器12及び18の圧縮熱を第1図に示
すように第1分離槽6の及び/又は第2分離槽15の加
熱源として用いることで、エネルギーを有効利用できる
ことをも見出した。なお第1図において13は加熱器、
10は減圧弁をあらわす。
The microbial cells are collected from the treated microbial cell withdrawal port 17, and the lysing solvent collected from the lysing solvent withdrawing ports 16 and 7 are compressed by the compressors 12 and 18, respectively, and then transferred to the mixer 4 by the lysing solvent supply line 3. Supplied and reused. The inventors can effectively use energy by using the compression heat of the compressors 12 and 18 as a heating source of the first separation tank 6 and / or the second separation tank 15 as shown in FIG. I also found In FIG. 1, 13 is a heater,
10 represents a pressure reducing valve.

〔実施例〕〔Example〕

実施例1 糸状菌の一種であるモルテイエラ菌の培養液を遠心分離
器で脱水して含水率50重量%とした菌体培養液1重量
部と、CO22重量部を、容量1のオートクレープ中に
仕込み、温度40℃、圧力105Kg/cm2Gにて5分間
混合し、次に急激にバルプを開けることにより該オート
クレープから容量10、20Kg/cm2Gの分離槽へと
混合物を導入し、CO2を該分離槽上部より排出し、下部
に残つた菌体培養物を顕微鏡で観察したところ、殆んど
すべての菌体の細胞膜は破れており、外部に脂肪酸が分
散していた。
And which is one type Moruteiera centrifuge at dehydrated moisture content 50% by weight and the cell culture solution 1 part by weight of culture of bacteria Example 1 filamentous fungi, the CO 2 2 parts by weight, volume 1 of the autoclave The mixture was charged into the autoclave and mixed for 5 minutes at a temperature of 40 ° C. and a pressure of 105 kg / cm 2 G, and then the mixture was introduced from the autoclave into a separation tank having a capacity of 10 and 20 kg / cm 2 G by rapidly opening the valve. Then, CO 2 was discharged from the upper part of the separation tank, and the cell culture remaining in the lower part was observed under a microscope. As a result, the cell membranes of almost all the cell bodies were broken, and fatty acids were dispersed outside. .

一方、回収されたCO2中には不純物は殆んど検出されな
かつた。このCO2を圧縮器で温度40℃、圧力20Kg/c
m2Gから110Kg/cm2Gに圧縮したところ約85℃と
なつたので、この熱を加熱源として使用できることが分
つた。
On the other hand, almost no impurities were detected in the recovered CO 2 . This CO 2 is compressed by a compressor at a temperature of 40 ° C and a pressure of 20 kg / c.
When compressed from m 2 G to 110 kg / cm 2 G, the temperature was about 85 ° C. It was found that this heat can be used as a heating source.

なお上記実施例においては超臨界状態で行つたが、擬臨
界状態でも、ほゞ同様の結果が得られた。
Although the above example was performed in the supercritical state, almost the same result was obtained even in the pseudocritical state.

〔発明の効果〕〔The invention's effect〕

本発明は以上詳記したように、超臨界状態又は擬臨界状
態の溶解溶剤を用いることにより、容易かつ短時間に菌
体の細胞膜を破壊することができ、溶解溶剤の回収も容
易であり、回収された溶解溶剤及びこれを再び超もしく
は擬臨界状態として再利用すること及びその時に発生す
る圧縮熱を熱源として利用するので、省資源、省エネル
ギーにて菌体からの有用成分を大量生産することが可能
な産業上非常に有利な方法である。
The present invention, as described in detail above, by using a dissolution solvent in the supercritical state or pseudocritical state, it is possible to easily and quickly destroy the cell membrane of the bacterial cells, and the recovery of the dissolution solvent is also easy, Since the recovered dissolved solvent and the recycled solvent is reused as a super or pseudocritical state and the compression heat generated at that time is used as a heat source, it is possible to mass-produce useful components from bacterial cells by saving resources and energy. This is a very advantageous industrial method.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施態様を説明するフローシートであ
る。
FIG. 1 is a flow sheet for explaining an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】菌体の培養液を臨界温度以上かつ臨界圧力
以上の温度、圧力条件下又は臨界温度T以下で対臨界
温度T=T/T(但し、0.90<T<1.0)
の温度で圧力はその温度における溶解溶剤の飽和蒸気圧
以上の温度、圧力条件下にある菌体の細胞膜内を拡散す
る溶解溶剤と混合した後、圧力を瞬時に下げ、そのまま
の温度で分離槽に導入し、該分離槽の下部より菌体粉砕
物を回収するとともに該分離槽の上部より溶剤を回収
し、次に回収溶剤を圧縮し、それにより発生する圧縮熱
を上記分離槽の加熱源として用い、圧縮された溶剤は上
記培養液と混合して再利用することを特徴とする菌体の
粉砕法。
1. A culture solution of a microbial cell at a temperature above the critical temperature and above the critical pressure, under pressure conditions or below the critical temperature T C to a critical temperature T R = T / T C (where 0.90 <T R <1.0)
At that temperature, the pressure is equal to or higher than the saturated vapor pressure of the dissolving solvent at that temperature, and after mixing with the dissolving solvent that diffuses inside the cell membrane of the cells under pressure conditions, the pressure is instantly lowered and the separation tank is maintained at that temperature. And recovering the crushed bacterial cells from the lower part of the separation tank and recovering the solvent from the upper part of the separation tank, and then compressing the recovered solvent, and the heat of compression generated thereby is applied to the heating source of the separation tank. The method for crushing bacterial cells, characterized in that the compressed solvent is reused after being mixed with the above culture solution.
JP12926386A 1986-06-05 1986-06-05 Method of crushing bacterial cells Expired - Lifetime JPH0661260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12926386A JPH0661260B2 (en) 1986-06-05 1986-06-05 Method of crushing bacterial cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12926386A JPH0661260B2 (en) 1986-06-05 1986-06-05 Method of crushing bacterial cells

Publications (2)

Publication Number Publication Date
JPS62285774A JPS62285774A (en) 1987-12-11
JPH0661260B2 true JPH0661260B2 (en) 1994-08-17

Family

ID=15005246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12926386A Expired - Lifetime JPH0661260B2 (en) 1986-06-05 1986-06-05 Method of crushing bacterial cells

Country Status (1)

Country Link
JP (1) JPH0661260B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048314B2 (en) 2005-02-23 2015-06-02 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004508A (en) * 1997-08-01 1999-12-21 The Coca-Cola Company Method and apparatus for super critical treatment of liquids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048314B2 (en) 2005-02-23 2015-06-02 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US9368583B2 (en) 2005-02-23 2016-06-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication

Also Published As

Publication number Publication date
JPS62285774A (en) 1987-12-11

Similar Documents

Publication Publication Date Title
US3172546A (en) Size reduction of biological substances
US20140134069A1 (en) Carbon Dioxide Corn Germ Oil Extraction System
JP5654461B2 (en) Cell disruption of plant or animal material by a combination of spraying and vacuum for selective extraction and separation of useful intracellular components
EP3372560A1 (en) Method and apparatus for drying biological solid material employing both microwave irradiation and solvent extraction
US20120301550A1 (en) Method for producing extracts from materials and device for realizing same
US20090126719A1 (en) Method for processing sugar cane filter cake mud and extracting component products
CN110575679A (en) Natural animal and plant extraction system and method
US6403661B1 (en) Volume reducing agents for expanded polystyrene, methods and apparatus for processing expanded polystyrene using the same
JPH0661260B2 (en) Method of crushing bacterial cells
JPH069502B2 (en) Method of crushing bacterial cells
CN103215119B (en) Preposed oil cell disruption process of producing aromatics by cubcritical fluid low-temperature extraction equipment
JPH0659225B2 (en) Extraction and separation method of bacterial cells
CN104591993B (en) The extracting method of coenzyme Q10 in a kind of fermentation thalli
CN101851268A (en) Process for directly preparing soybean concentrated protein by wet soybean meal
CN106913590A (en) A method for extracting small molecule active ingredients from plant endophytic fungi
CN103421600A (en) Method for extracting wet algae oil
CN111448298B (en) Method for separating microbial oil
US9994791B1 (en) Method for extracting lipids from algae
CN118402962B (en) A process for extracting turmeric wall-broken ganoderma lucidum spore powder
CN1788822A (en) Low-temperature differential pressure type extractive technique
AU2008318273B2 (en) Extracting an extract substance from a raw material
JPH06184348A (en) Method and device for collecting foaming gas in heat insulating material
CN105622353A (en) Method for extracting Cakile Maritima phenolic substance from supercritical carbon dioxide
CN112979673A (en) Extraction and purification method of artemisinin
WO2008024266A2 (en) Carbon dioxide extraction of corn germ oil from corn germ

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term