[go: up one dir, main page]

JPH0660869A - Manufacture of manganese dry battery - Google Patents

Manufacture of manganese dry battery

Info

Publication number
JPH0660869A
JPH0660869A JP24851092A JP24851092A JPH0660869A JP H0660869 A JPH0660869 A JP H0660869A JP 24851092 A JP24851092 A JP 24851092A JP 24851092 A JP24851092 A JP 24851092A JP H0660869 A JPH0660869 A JP H0660869A
Authority
JP
Japan
Prior art keywords
positive electrode
manganese dioxide
carbon fiber
manganese
dry battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24851092A
Other languages
Japanese (ja)
Inventor
Akihiro Ogino
彰広 荻野
Kazunari Kobayashi
一成 小林
Hiroshi Kaneko
浩 金子
Kaoru Hosobuchi
馨 細渕
Nobuaki Chiba
信昭 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP24851092A priority Critical patent/JPH0660869A/en
Publication of JPH0660869A publication Critical patent/JPH0660869A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the short duration of discharge under a light load as a defect characteristic of a positive electrode mix using conventionally and chemically available manganese dioxide by mixing a chemical mix of manganese dioxide with carbon fiber. CONSTITUTION:This is a method for manufacturing a manganese dry battery featuring the preparation of a positive electrode mix through the following processes; natural manganese dioxide is calcined, and manganese oxide available therefrom is immersed in mineral acid solution. Furthermore, the oxide so obtained is water washed, dried and granulated for preparing chemically synthesized manganese dioxide powder. This powder is, then, mixed with carbon fiber prepared through a gaseous phase synthesizing method. Also, the positive electrode active substance obtained by mixing the powder with the carbon fiber is compressed, molded and crushed to manufacture a positive electrode mix as secondary particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化学合成一酸化マンガン
を用いた乾電池の正極の製造法に関し、放電性能の改善
を目的とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode of a dry battery using chemically synthesized manganese monoxide, and its object is to improve discharge performance.

【0002】[0002]

【従来の技術】従来、重負荷放電特性の優れているマン
ガン乾電池用二酸化マンガンとして、マンガン酸化物
(Mn,Mn)を酸処理して製造されたい
わゆる化学二酸化マンガンがあった。この化学二酸化マ
ンガンは重負荷放電特性が電解二酸化マンガンと同等、
ないしそれ以上の特性を示し、電解二酸化マンガンより
低コストで製造できる可能性があるため、近年注目をあ
びている。しかし、塩化亜鉛を主とした電解液の乾電池
では、重負荷放電特性が優れているが、逆に軽負荷放電
における化学二酸化マンガンの利用率が充分ではなかっ
た。
2. Description of the Related Art Conventionally, as manganese dioxide for manganese dry batteries, which has excellent heavy-load discharge characteristics, there is so-called chemical manganese dioxide produced by subjecting manganese oxides (Mn 2 O 3 , Mn 3 O 4 ) to acid treatment. It was This chemical manganese dioxide has the same heavy load discharge characteristics as electrolytic manganese dioxide,
It has been attracting attention in recent years because it has more or more properties and may be manufactured at lower cost than electrolytic manganese dioxide. However, in a dry battery of an electrolytic solution containing mainly zinc chloride, although the heavy load discharge characteristics are excellent, conversely, the utilization rate of the chemical manganese dioxide in the light load discharge was not sufficient.

【0003】[0003]

【発明が解決しようとする課題】この軽負荷放電特性を
改善するために、電解液の量を多くしたり、導電材であ
るアセチレンブラックの配合比を多くしたりしていた。
しかし、電解液量を多くすると電池の漏液が多発した
り、導電材の量を多くするとその分化学二酸化マンガン
の量が少なくなり、軽負荷放電容量が減少する等の問題
点があり、解決することが課題であった。本発明はこの
ような問題点を解決し、特にマンガン乾電池の軽負荷放
電特性の向上を図るものである。
In order to improve this light load discharge characteristic, the amount of the electrolytic solution is increased and the compounding ratio of acetylene black which is a conductive material is increased.
However, if the amount of electrolyte is increased, leakage of the battery will occur frequently, and if the amount of conductive material is increased, the amount of chemical manganese dioxide will be reduced accordingly and the light load discharge capacity will decrease. The task was to do so. The present invention solves such problems, and particularly aims to improve the light load discharge characteristics of a manganese dry battery.

【0004】[0004]

【課題を解決するための手段】本発明は天然二酸化マン
ガンを焙焼し、得られたマンガン酸化物を鉱酸溶液に浸
漬し、水洗乾燥後造粒して製造した化学合成二酸化マン
ガン粉末(CMD)と、気相合成法により製造した炭素
繊維とを混合し、得られた正極作用物質を用いて正極合
剤を製造することを特徴とするマンガン乾電池の製造法
である。また、該炭素繊維と混合した後、圧縮成形粉砕
工程を加え、正極合剤を製造してもよい。
According to the present invention, a chemically synthesized manganese dioxide powder (CMD) produced by roasting natural manganese dioxide, immersing the obtained manganese oxide in a mineral acid solution, washing with water, drying and granulating. And a carbon fiber produced by a vapor phase synthesis method, and a positive electrode mixture is produced by using the obtained positive electrode active substance, which is a method for producing a manganese dry battery. In addition, the positive electrode mixture may be manufactured by adding a compression molding pulverization step after mixing with the carbon fiber.

【0005】本発明に使用されるCMDは、天然の二酸
化マンガン鉱石を850℃で焙焼し、三酸化ニマンガン
(Mn)を得る。ここで得られたMnを硫
酸等の鉱酸に酸処理を行う。硫酸で酸処理を行った場合
は、次のような不均化反応で化学合成二酸化マンガンを
製造する。 Mn+HSO→MnO+MnSO+H
The CMD used in the present invention is obtained by roasting natural manganese dioxide ore at 850 ° C. to obtain dimanganese trioxide (Mn 2 O 3 ). The Mn 2 O 3 obtained here is acid-treated with a mineral acid such as sulfuric acid. When acid treatment is performed with sulfuric acid, chemically synthesized manganese dioxide is produced by the following disproportionation reaction. Mn 2 O 3 + H 2 SO 4 → MnO 2 + MnSO 4 + H 2 O

【0006】また本発明に使用される気相合成法による
炭素繊維は、1000℃前後の水素ガス、アルゴンガス
等の不活性ガス雰囲気中に脂肪族、芳香族等の炭化水素
ガスを流し、鉄、ニッケル、コバルト等の金属粒子を分
散させることにより製造する。この繊維の特徴として
は、導電性が従来のアセチレンブラックと比べ良く、ま
た吸液性も優れている。
The carbon fiber produced by the vapor phase synthesis method used in the present invention is produced by flowing an aliphatic or aromatic hydrocarbon gas into an inert gas atmosphere such as hydrogen gas or argon gas at about 1000 ° C. It is manufactured by dispersing metal particles such as nickel, nickel and cobalt. The characteristics of this fiber are that the conductivity is better than that of conventional acetylene black, and that the liquid absorption is also excellent.

【0007】[0007]

【作用】本発明は天然二酸化マンガンから製造したCM
Dと、気相合成法より製造された炭素繊維とを混合する
ことにより、CMDの利用率が向上し、軽負荷放電が向
上する。また、本発明の正極作用物質はCMDと炭素繊
維を混合することにより、CMDの表面に炭素繊維が被
覆され、さらに成形粉砕して二次粒子にするため、CM
Dが炭素繊維網で固定され、CMDの一次粒子個々が炭
素繊維網と接続させているため、放電利用率が極めて向
上するものである。
The present invention is a CM produced from natural manganese dioxide.
By mixing D with carbon fiber produced by the vapor phase synthesis method, the utilization rate of CMD is improved and light load discharge is improved. Further, in the positive electrode active material of the present invention, the carbon fiber is coated on the surface of the CMD by mixing the CMD and the carbon fiber, and the carbon material is further molded and pulverized into secondary particles.
Since D is fixed by the carbon fiber network and each of the CMD primary particles is connected to the carbon fiber network, the discharge utilization rate is extremely improved.

【0008】[0008]

【実施例】本発明の実施例を詳細に説明する。 実施例1 本発明により得られた化学合成二酸化マンガン(CM
D)60重量部、アセチレンブラック7.2重量部、気
相合成法により得られた炭素繊維0.8重量部、酸化亜
鉛0.6重量部とをよく混合し、電解液(ZnCl
5wt%NHCl2.5wt%の水溶液)49重量部
を加え混合し、均一な正極合剤を調整した。この正極合
剤を用いてR14型乾電池を製造した。
EXAMPLES Examples of the present invention will be described in detail. Example 1 Chemically synthesized manganese dioxide (CM) obtained by the present invention
D) 60 parts by weight, acetylene black 7.2 parts by weight, 0.8 parts by weight of carbon fibers obtained by the gas phase synthesis method, and 0.6 parts by weight of zinc oxide were mixed well, and an electrolytic solution (ZnCl 2 2
49 wt parts of 5 wt% NH 4 Cl 2.5 wt% aqueous solution) was added and mixed to prepare a uniform positive electrode mixture. An R14 type dry battery was manufactured using this positive electrode mixture.

【0009】即ち、図1中は負極を兼ねる有底円筒形の
亜鉛缶である。この亜鉛缶1内には、セパレータ2を介
して前述した方法で調製された正極合剤3が充填されて
いる。この正極合剤3の中心には、炭素棒4が挿入され
ている。この炭素棒4は、前記亜鉛缶1の上部付近に配
置され、その開口部を密閉するためのポリエチレン製封
口板5の透孔に嵌合されている。
That is, FIG. 1 shows a bottomed cylindrical zinc can that also serves as a negative electrode. The positive electrode mixture 3 prepared by the above-described method is filled in the zinc can 1 through the separator 2. A carbon rod 4 is inserted in the center of the positive electrode mixture 3. The carbon rod 4 is arranged in the vicinity of the upper portion of the zinc can 1, and is fitted into the through hole of the polyethylene sealing plate 5 for sealing the opening.

【0010】また、前記亜鉛缶1の底面には負極端子を
兼ねる金属底板6及び絶縁性リング状薄板7が重ねて配
置されており、かつこれら金属底板6及びリング状薄板
7は前記亜鉛缶1の外周面に配置され、加熱収縮された
塩化ビニル製絶縁チューブ8の内方向折曲部により固定
されている。
On the bottom surface of the zinc can 1, a metal bottom plate 6 also serving as a negative electrode terminal and an insulating ring-shaped thin plate 7 are arranged in an overlapping manner, and these metal bottom plate 6 and ring-shaped thin plate 7 are arranged on the zinc can 1 Are fixed on the outer peripheral surface of the vinyl chloride insulating tube 8 which is heat-shrinked and bent inward.

【0011】更に、前記炭素棒4の頭部には正極端子を
兼ねる金属キャップ9が嵌着されている。このキャップ
9の周縁上部には、絶縁性リング状薄板10が配置され
ており、かつ該リング状薄板10は前記絶縁チューブ8
に積層された金属外装筒11の上下開口部の内方への折
曲により固定されている。なお、図中の12は前記亜鉛
缶1の内部底面に配置された絶縁底板、13は前記正極
合剤3上に配置された絶縁つば紙である。
Further, a metal cap 9 also serving as a positive electrode terminal is fitted on the head of the carbon rod 4. An insulating ring-shaped thin plate 10 is arranged above the peripheral edge of the cap 9, and the ring-shaped thin plate 10 is the insulating tube 8 described above.
It is fixed by bending the upper and lower openings of the metal outer casing 11 laminated inwardly. In the figure, 12 is an insulating bottom plate arranged on the inner bottom surface of the zinc can 1, and 13 is an insulating brim paper arranged on the positive electrode mixture 3.

【0012】この乾電池を20℃、2Ωで連続放電及び
75Ω連続放電を行い、その放電持続時間(終止電圧
0.9V)を測定した。その結果2Ω放電を図2及び7
5Ω放電を表1に示す。
This dry battery was continuously discharged at 20 ° C. and 2 Ω and 75 Ω continuously, and the discharge duration (final voltage 0.9 V) was measured. As a result, a 2Ω discharge was generated in Figs.
The 5Ω discharge is shown in Table 1.

【0013】実施例2 アセチレンブラック6.4重量部、気相合成法により造
られた炭素繊維1.6重量部に変えた他は、実施例1と
全く同様の同型乾電池を製造試験した。
Example 2 The same type of dry cell as in Example 1 was manufactured and tested, except that 6.4 parts by weight of acetylene black and 1.6 parts by weight of carbon fiber produced by the vapor phase synthesis method were used.

【0014】比較例1 アセチレンブラック8重量部に変え、炭素繊維を用ない
ほかは、実施例1と全く同様の同型乾電池を製造、試験
した。その結果を図2、表1に示す。 比較例2 アセチレンブラック8重量部に変え、化学合成二酸化マ
ンガンを天然二酸化マンガンに変えたほかは、実施例1
と全く同様の同型乾電池を製造、試験した。 比較例3 実施例1の化学合成二酸化マンガンを天然二酸化マンガ
ンに変えたほかは、実施例1と全く同様の同型乾電池を
製造、試験した。
Comparative Example 1 The same type of dry battery as in Example 1 was manufactured and tested, except that 8 parts by weight of acetylene black was used and no carbon fiber was used. The results are shown in FIG. 2 and Table 1. Comparative Example 2 Example 1 was repeated except that the acetylene black was changed to 8 parts by weight and the chemically synthesized manganese dioxide was changed to natural manganese dioxide.
The same type of dry battery as the above was manufactured and tested. Comparative Example 3 The same type of dry battery as in Example 1 was manufactured and tested, except that the chemically synthesized manganese dioxide of Example 1 was changed to natural manganese dioxide.

【0015】[0015]

【表1】 [Table 1]

【0016】図2、表1から明らかなように、本発明マ
ンガン乾電池は炭素繊維を用いない比較例1に比較し、
図2の重負荷放電においてその作動電位が向上し、それ
に伴って放電持続時間も若干伸びている。さらに表1の
75Ω連続放電の結果より、実施例1,2電池は優れた
放電性能を示している。又、その効果は比較例2,3で
使用した天然二酸化マンガンよりも顕著に現れている。
さらに、表1から明らかなように気相合成法より製造さ
れた炭素材料の配合重量比は、アセチレンブラック対炭
素材料が90:10の配合が好ましいことがわかる。以
上詳述したように、本発明により特に軽負荷放電性能の
優れたマンガン乾電池を提供できる。
As is clear from FIG. 2 and Table 1, the manganese dry battery of the present invention is compared with Comparative Example 1 in which carbon fiber is not used,
In the heavy load discharge of FIG. 2, the operating potential is improved, and the discharge duration is also slightly extended accordingly. Furthermore, from the results of 75Ω continuous discharge in Table 1, the batteries of Examples 1 and 2 show excellent discharge performance. Further, the effect is more prominent than the natural manganese dioxide used in Comparative Examples 2 and 3.
Further, as is clear from Table 1, the blending weight ratio of the carbon material produced by the vapor phase synthesis method is preferably 90:10 of acetylene black and the carbon material. As described in detail above, the present invention can provide a manganese dry battery having excellent light load discharge performance.

【0017】さらに、本発明の別の実施例を詳細に説明
する。 実施例3 前記のCMD粉末1.0kgと前記の炭素繊維を10g
(0.99重量%)加えよく混合し、さらに水1kgを
加え5分間混合した。次にこの混合物を乾燥後ロールプ
レス機にかけ、3トン/cmの圧力で圧縮成形し、こ
の成形体を粋砕し、100メッシュ以下の2次粒子の粉
末とした。この粉末を正極作用物質として、以下に示す
方法により乾電池を製造した。炭素繊維を添加し成形粉
砕した正極作用物質13.26gと、アセチレンブラッ
ク2.39gとをよく混合し、25重量%の塩化亜鉛、
2.5重量%の塩化アンモニウムとを含有する電解液1
2.39gを加え、均一な正極合剤とし、これを用いて
R14型乾電池を製造した。
Further, another embodiment of the present invention will be described in detail. Example 3 1.0 kg of the CMD powder and 10 g of the carbon fiber
(0.99% by weight) was added and mixed well, and 1 kg of water was further added and mixed for 5 minutes. Next, this mixture was dried and then subjected to a roll pressing machine to perform compression molding at a pressure of 3 ton / cm 2 , and this molded body was finely crushed to obtain a powder of secondary particles of 100 mesh or less. Using this powder as a positive electrode acting substance, a dry battery was manufactured by the following method. 13.26 g of the positive electrode active substance, to which carbon fiber was added and molded and pulverized, and 2.39 g of acetylene black were well mixed, and 25% by weight of zinc chloride,
Electrolyte solution containing 2.5% by weight of ammonium chloride 1
2.39 g was added to form a uniform positive electrode mixture, and this was used to manufacture an R14 type dry battery.

【0018】比較例4 実施例3に用いたCMDに炭素繊維を添加せず、成形粋
砕もしないで、以下は同様に操作した正極作用物質1
3.14gを用いた同型の乾電池を製造した。 比較例5 実施例3に用いたCMD1.0kgに同炭素繊維0.5
g(0.05重量%)と添加し、成形粉砕した正極作用
物質13.27gを用いて同型乾電池を製造した。 比較例6 同じくCMD1.01kgに同炭素繊維30g(2.9
1重量%)を添加し、成形粋砕した正極使用物質13.
53gを用いて、同型乾電池を製造した。以上実施例
3、比較例4、5、6を、20℃、75Ωで連続放電を
行い、その放電持続時間(終止電圧0.9V)を測定し
た。その結果を表2に示す。
COMPARATIVE EXAMPLE 4 The following was operated in the same manner as in Example 1, except that the CMD used in Example 3 was not added with carbon fiber and was not crushed by molding.
The same type of dry battery using 3.14 g was manufactured. Comparative Example 5 The same carbon fiber 0.5 was added to 1.0 kg of CMD used in Example 3.
The same type of dry battery was manufactured by using 13.27 g of the positive electrode active substance which was added with g (0.05% by weight) and molded and pulverized. Comparative Example 6 Similarly, 1.01 kg of CMD and 30 g of the same carbon fiber (2.9
1% by weight), and molded and crushed.
The same type of dry battery was manufactured using 53 g. The above Example 3 and Comparative Examples 4, 5, and 6 were continuously discharged at 20 ° C. and 75Ω, and the discharge duration time (end voltage 0.9 V) was measured. The results are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上のように、本発明のCMDと炭素繊
維とを混合してなる正極作用物質を用いたマンガン乾電
池、また、該混合後、正極作用物質を圧縮成形粉砕した
二次粒子を用いたマンガン乾電池は、軽負荷放電特性を
向上せしめることができた。
INDUSTRIAL APPLICABILITY As described above, the manganese dry battery using the positive electrode active material obtained by mixing the CMD of the present invention and the carbon fiber, and the secondary particles obtained by compressing and crushing the positive electrode active material after the mixing. The manganese dry battery used was able to improve the light load discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によりなるマンガン乾電池の半裁断面図
である。
FIG. 1 is a half sectional view of a manganese dry battery according to the present invention.

【図2】本発明の実施例乾電池と比較例乾電池との2Ω
連続放電の比較した放電曲線図である。
FIG. 2 shows 2Ω between an example dry battery of the present invention and a comparative dry battery.
It is a discharge curve figure which compared continuous discharge.

【符号の説明】 1 亜鉛缶 2 セパレータ 3 正極合剤[Explanation of symbols] 1 zinc can 2 separator 3 positive electrode mixture

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細渕 馨 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 (72)発明者 千葉 信昭 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kaoru Hobuchi 3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd. (72) Nobuaki Chiba 3-4-1-10 Minami-Shinagawa, Shinagawa-ku, Tokyo No. within Toshiba Battery Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 天然二酸化マンガンを焙焼し、得られた
マンガン酸化物を鉱酸溶液に浸漬し、水洗乾燥後造粒し
て製造した化学合成二酸化マンガン粉末と、気相合成法
により製造した炭素繊維とを混合し、得られた正極作用
物質を用いて正極合剤を製造することを特徴とするマン
ガン乾電池の製造法。
1. A chemically synthesized manganese dioxide powder produced by roasting natural manganese dioxide, immersing the obtained manganese oxide in a mineral acid solution, washing with water, drying and granulating, and a vapor phase synthesis method. A method for producing a manganese dry battery, which comprises mixing a carbon fiber and using the obtained positive electrode active substance to produce a positive electrode mixture.
【請求項2】 該化学合成二酸化マンガンと該炭素繊維
とを混合した後、圧縮成形粉砕し、正極合剤を製造する
ことを特徴とする請求項1記載のマンガン乾電池の製造
法。
2. The method for producing a manganese dry battery according to claim 1, wherein the chemically synthesized manganese dioxide and the carbon fiber are mixed and compression-molded to produce a positive electrode mixture.
JP24851092A 1992-08-05 1992-08-05 Manufacture of manganese dry battery Pending JPH0660869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24851092A JPH0660869A (en) 1992-08-05 1992-08-05 Manufacture of manganese dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24851092A JPH0660869A (en) 1992-08-05 1992-08-05 Manufacture of manganese dry battery

Publications (1)

Publication Number Publication Date
JPH0660869A true JPH0660869A (en) 1994-03-04

Family

ID=17179260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24851092A Pending JPH0660869A (en) 1992-08-05 1992-08-05 Manufacture of manganese dry battery

Country Status (1)

Country Link
JP (1) JPH0660869A (en)

Similar Documents

Publication Publication Date Title
AU741721B2 (en) Lithium manganate, method of producing the same, and lithium cell produced by the method
JPH0660870A (en) Manufacture of dry battery
JP2002060225A (en) Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
WO2000006496A1 (en) Process for producing spinel type lithium manganate
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
WO2001047814A1 (en) Method for producing lithium manganate and lithium cell using said lithium manganate
JPH0660869A (en) Manufacture of manganese dry battery
JP3822437B2 (en) Method for producing lithium manganate and lithium battery using the lithium manganate
JPH10316432A (en) Production of nickel oxyhydroxide and nonaqueous electrolytic battery
JP2925630B2 (en) Alkaline batteries
JP3353588B2 (en) Method for producing manganese oxide for battery and battery
JP2522328B2 (en) Organic electrolyte battery
JPH0660878A (en) Manufacture of dry battery
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same
US20070218358A1 (en) Alkaline Battery
JP3344638B2 (en) Method for producing lithium manganate for lithium secondary battery
JPH04184867A (en) Silver oxide battery
JP2797528B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPH0311554A (en) Manganese dry battery
JPS6137732B2 (en)
JPH05225978A (en) Magnesium-manganese dioxide dry battery
JPH02145429A (en) Production of manganese oxide for dry cell
JPH0410356A (en) Manganese dry cell
JPH0815080B2 (en) Method for producing positive electrode active material for dry cell