[go: up one dir, main page]

JPH0660323B2 - Pressure sintering method for powder material - Google Patents

Pressure sintering method for powder material

Info

Publication number
JPH0660323B2
JPH0660323B2 JP63149579A JP14957988A JPH0660323B2 JP H0660323 B2 JPH0660323 B2 JP H0660323B2 JP 63149579 A JP63149579 A JP 63149579A JP 14957988 A JP14957988 A JP 14957988A JP H0660323 B2 JPH0660323 B2 JP H0660323B2
Authority
JP
Japan
Prior art keywords
container
powder material
powder
metal
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63149579A
Other languages
Japanese (ja)
Other versions
JPH01316401A (en
Inventor
一郎 高須
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP63149579A priority Critical patent/JPH0660323B2/en
Publication of JPH01316401A publication Critical patent/JPH01316401A/en
Publication of JPH0660323B2 publication Critical patent/JPH0660323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、粉末材料を焼結する方法にかゝり、特に粉
末金属またはこれとセラミック等の非金属との複合粉末
を金属容器に収容して、高温下で加圧圧縮や押出しなど
のキャンニング加工を行って、焼結させる方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method of sintering a powder material, and in particular, a powder metal or a composite powder of the powder metal and a nonmetal such as ceramic is contained in a metal container. Then, the present invention relates to a method of performing canning processing such as pressure compression and extrusion under high temperature and sintering.

<従来の技術> 従来、偏析がなく均質な材料や、組織の粒径が細かくて
緻密な材料や、所望の形状を有する難加工性材料などを
得る目的で、金属粉末材料またはこれと非金属との複合
粉末材料を金属容器内に封入し、これを加熱して加圧加
工或いは押出加工し、冷却後に容器を開いて内部の焼結
体を取出すキャンニング加工が行われている。
<Prior Art> Conventionally, for the purpose of obtaining a homogeneous material without segregation, a fine material having a fine grain size of a structure, or a hard-to-process material having a desired shape, a metal powder material or a non-metal material A canning process is performed in which a composite powder material of (1) and (2) is enclosed in a metal container, which is heated to perform pressure processing or extrusion processing, and after cooling, the container is opened to take out a sintered body inside.

<発明が解決しようとする課題> 上述の従来のキャンニング加工方法においては、容器の
寸法が熱間圧縮され、これに伴って内部の粉末材料も熱
間圧縮されて焼結する。その場合、容器は内面が平坦な
状態のまゝ圧縮されず、不規則な凹凸を生じ易い。容器
を形成している金属と内部で造られた焼結体とは、キュ
ーリー点や熱膨張率の違いによって、加工後の冷却時に
は互いに異なった収縮動作を営む。そのために、特に金
属と非金属との複合材料や金属間化合物のような脆い材
料を加工する場合、この冷却過程で、容器の変形が著し
い部分を起点にして、焼結体内部にクラックが発生し易
い。このクラックは、容器の不規則な変形が多い隅角部
分に多発する。
<Problems to be Solved by the Invention> In the conventional canning method described above, the size of the container is hot-compressed, and the powder material inside is also hot-compressed and sintered. In that case, the inner surface of the container is not compressed, and irregularities are likely to occur. The metal forming the container and the internally formed sintered body perform different shrinking actions during cooling after processing due to the difference in Curie point and thermal expansion coefficient. Therefore, especially when processing a brittle material such as a composite material of metal and nonmetal or an intermetallic compound, cracks occur inside the sintered body in the cooling process, starting from the part where the deformation of the container is remarkable. Easy to do. These cracks frequently occur in the corners where the container is irregularly deformed.

この発明は、上述のようなキャンニング加工において、
容器内で粉末材料を加圧焼結させた後の冷却過程で、焼
結体にクラックが発生するのを防止しようとするもので
ある。
This invention, in the above-mentioned canning process,
It is intended to prevent cracks from being generated in the sintered body in the cooling process after the powder material is pressure-sintered in the container.

<課題を解決するための手段> この発明は、金属容器内に粉末材料を収容し、容器を密
封して加圧を伴なう熱間加工を行い、冷却後に内部の焼
結体を利用するキャンニング加工法において、金属容器
内に粉末材料を収容する際に、金属容器内壁面と粉末材
料との間に可塑性黒鉛シートを介在させるものである。
<Means for Solving the Problems> According to the present invention, a powder material is housed in a metal container, the container is sealed and hot working accompanied by pressurization is performed, and the internal sintered body is used after cooling. In the canning method, when the powder material is stored in the metal container, the plastic graphite sheet is interposed between the inner wall surface of the metal container and the powder material.

使用する可塑性黒鉛シートとしては、例えば東洋炭素株
式会社製の「パーマフオイル」が適当であり、0.3〜1m
m程度の厚さのものを使用する。用法は、予め金属容器
の内面の全部または一部、特に焼結体にクラックが多発
する隅角部に重点を置いて貼り付けておいたり、可塑性
黒鉛シートの袋を金属容器内へ予め納めておいたり、粉
末材料を収容した可塑性黒鉛シートの袋を金属容器内に
入れたり、適宜の方法を選ぶ。
As the plastic graphite sheet to be used, for example, "Permuff oil" manufactured by Toyo Tanso Co., Ltd. is suitable, and it is 0.3 to 1 m.
Use one with a thickness of about m. The usage is that all or part of the inner surface of the metal container is attached in advance, especially with emphasis on the corners where cracks frequently occur in the sintered body, or the plastic graphite sheet bag is put in the metal container beforehand. Appropriate method is selected, such as placing or placing a bag of a plastic graphite sheet containing a powder material in a metal container.

なお、加熱の手段としては、雰囲気加熱、抵抗加熱、誘
導加熱など、適宜の方法を採用できるが、短時間内に昇
温するように、加熱に先立って金属容器ごと冷間静水圧
プレスなどによって予備圧縮し、内部の粉末材料の空隙
率を減少させてもよい。
As the heating means, an appropriate method such as atmosphere heating, resistance heating, or induction heating can be adopted.However, in order to raise the temperature in a short time, the metal container together with the cold isostatic press is used before the heating. It may be pre-compressed to reduce the porosity of the powder material inside.

粉末材料を焼結させるめの熱間加圧加工は、金属容器を
シリンダ状のダイス内に収容してパンチで押圧するが、
金属容器の不規則な変形を少くするために、金属容器の
外径はなるべくダイスの内径に近い方がよい。
In hot pressing for sintering powder material, a metal container is housed in a cylindrical die and pressed by a punch.
In order to reduce irregular deformation of the metal container, the outer diameter of the metal container should be as close as possible to the inner diameter of the die.

<作用> 圧縮に際しては、容器の底及び蓋は比較的に変形が少な
いが、容器の周壁、特にこれと底及び蓋との境界部分は
大きく変形するために、内壁面に凹凸を生じがちであ
る。この内壁面に粉末材料が直接に接触して焼結が行わ
れた場合は、焼結体はこの凹凸に食込んで形成されるた
め、冷却時に金属容器が焼結体とは異なる収縮挙動をす
るときは、その食込み部分に大きな応力が現われ、これ
を起点として焼結体内にクラックが発生する。
<Operation> During compression, the bottom and lid of the container are relatively little deformed, but the peripheral wall of the container, especially the boundary portion between this and the bottom and the lid, is greatly deformed, so that the inner wall surface tends to be uneven. is there. When the powder material comes into direct contact with this inner wall surface and is sintered, the sintered body is formed by digging into these irregularities, so the cooling behavior of the metal container during cooling is different from that of the sintered body. When doing so, a large stress appears in the bite portion, and cracks occur in the sintered body starting from this.

この発明においては、圧縮時に容器の内壁面に凹凸を生
じても、この凹凸に順応して可塑性黒鉛シートが焼結体
との間に介在する。そして、冷却時には、可塑性黒鉛シ
ートの緩衝作用と潤滑作用とにより、焼結体が容器と異
なる収縮動作を営むことが可能になるため、応力を軽減
し、クラックの発生を少なくすることができる。その結
果、従来加工が極めて難しかった金属間化合物のような
材料でも、粉末を原料にして、クラックを生ずることな
く焼結させることができる。
In the present invention, even if unevenness is generated on the inner wall surface of the container during compression, the plastic graphite sheet adapts to this unevenness and is interposed between the plastic graphite sheet and the sintered body. During cooling, the sintered body can perform a contracting operation different from that of the container due to the buffering action and the lubricating action of the plastic graphite sheet, so that stress can be reduced and cracks can be reduced. As a result, even a material such as an intermetallic compound, which has been extremely difficult to process in the related art, can be sintered using powder as a raw material without causing cracks.

<実施例> 実施例1 Nd2Fe14Bの原子%組成を有する合金を、冷却ローラ上に
溶射して平均厚さ30μの急冷薄帯を造り、これを粉砕し
て、最大粒子寸法500μ、平均粒子寸法230μの粉末にし
た。この粉末は、空気中で自然に燃焼することなく、か
なりの耐酸化性が認められた。
<Example> Example 1 An alloy having an atomic% composition of Nd 2 Fe 14 B was sprayed on a cooling roller to prepare a quenched ribbon having an average thickness of 30μ, which was crushed to have a maximum particle size of 500μ. It was made into a powder having an average particle size of 230μ. This powder did not spontaneously burn in air and was found to have considerable oxidation resistance.

この粉末を、第1表に示す4通りの金属容器A、B、
C、Dに、容器内壁面との間に厚さ0.4mmの可塑性黒鉛
シートを介在させて、第1図(a)または第2図(a)のよう
に充填し、金属容器A、B及びCの場合は電子ビーム溶
接により内部を排気して蓋を施こし、金属容器Dの場合
はアルゴン溶接によって蓋を施こした後に、容器内を脱
気した。なお、図中、1は容器で、2はその周壁、3は
その底であり、4は可塑性黒鉛シート、5は原料粉末、
6は蓋である。
This powder was put into four types of metal containers A and B shown in Table 1,
A plastic graphite sheet having a thickness of 0.4 mm is interposed between C and D and the inner wall surface of the container, and the container is filled as shown in FIG. 1 (a) or FIG. 2 (a). In the case of C, the inside was evacuated by electron beam welding to apply a lid, and in the case of the metal container D, the inside of the vessel was deaerated after applying a lid by argon welding. In the figure, 1 is a container, 2 is its peripheral wall, 3 is its bottom, 4 is a plastic graphite sheet, 5 is raw material powder,
6 is a lid.

粉末材料を封入した容器A、B及びCは、これをホット
プレス用のダイス内に収容し、ダイスを誘導加熱するこ
とにより容器内の原料粉末を700℃に昇温させ、縦型100
トン圧縮プレス機を用いて、上記ダイス内で圧縮した。
The containers A, B, and C in which the powder material is enclosed are housed in a hot press die, and the raw material powder in the container is heated to 700 ° C. by induction heating the die, and the vertical mold 100
It was compressed in the die using a ton compression press.

粉末材料を封入した容器Dは、誘導加熱により内部の粉
末材料を700℃に加熱し、押出口を閉塞した横型2000ト
ン熱間押出機に装填して圧縮した。
In the container D in which the powder material was enclosed, the powder material inside was heated to 700 ° C. by induction heating, and loaded in a horizontal 2000 ton hot extruder with the extrusion port closed to be compressed.

圧縮後、各容器の外部寸法及び焼結体の寸法を第2表に
示す。なお、図中、11は圧縮された容器、12はその周
壁、13はその底、14は可塑性黒鉛シート、15は焼結体、
16は容器の蓋である。
After compression, the external dimensions of each container and the dimensions of the sintered body are shown in Table 2. In the figure, 11 is a compressed container, 12 is its peripheral wall, 13 is its bottom, 14 is a plastic graphite sheet, 15 is a sintered body,
16 is the lid of the container.

比較例1 比較のために、実施例1と同じ粉末材料を、第1表に示
す容器A、B、C及びDに直かに充填し、実施例1と同
手段で加熱圧縮した結果を第3表に示す。
Comparative Example 1 For comparison, the same powder material as in Example 1 was directly filled in the containers A, B, C and D shown in Table 1 and the result of heating and compression by the same means as in Example 1 was used. It is shown in Table 3.

実施例2 Nd2Fe14Bの原子%組成を有する合金を、アルゴンガスア
トマイズ法により粉末化(平均粒径150μ)し、この粉
末を実施例1と同様に、第1表に示した金属容器A、
B、C及びDに、容器内壁面との間に厚さ0.4mmの可塑
性黒鉛シートを介在させて充填し、実施例1と全く同じ
手法により封止し、加熱し、圧縮した。圧縮後の各部の
寸法を第4表に示す。
Example 2 An alloy having an atomic% composition of Nd 2 Fe 14 B was pulverized by an argon gas atomizing method (average particle size: 150 μ), and this powder was treated in the same manner as in Example 1 with the metal container A shown in Table 1. ,
B, C, and D were filled with a 0.4 mm-thick plastic graphite sheet interposed between the inner wall surface of the container and the container, sealed in exactly the same manner as in Example 1, heated, and compressed. Table 4 shows the dimensions of each part after compression.

比較例2 比較のために、実施例2と同じ粉末材料を、第1表に示
す容器A、B、C及びDに直かに充填し、実施例1と同
手段で加熱圧縮した結果を第5表に示す。
Comparative Example 2 For comparison, the same powder material as in Example 2 was directly filled in the containers A, B, C and D shown in Table 1 and the result of heating and compression by the same means as in Example 1 was used. It is shown in Table 5.

実施例3 各目上Mn−Alの原子%組成を有する合金を、アルゴン
ガスアトマイズ法により粉末化(平均粒径150μ)し、
この粉末を実施例1と同様に、第1表に示した金属容器
A、B、C及びDに、容器内壁面との間に厚さ0.4mmの
可塑性黒鉛シートを介在させて充填し、実施例1と全く
同じ手法により封止し、加熱し、圧縮した。圧縮後の各
部の寸法を第6表に示す。
Example 3 An alloy having an atomic% composition of Mn-Al is powdered (average particle size 150 μm) by an argon gas atomizing method,
This powder was filled in the same manner as in Example 1 in the metal containers A, B, C and D shown in Table 1 with a 0.4 mm thick plastic graphite sheet interposed between them and the inner wall surface of the container. It was sealed, heated and compressed in exactly the same manner as in Example 1. Table 6 shows the dimensions of each part after compression.

比較例3 比較のために、実施例3と同じ粉末材料を、第1表に示
す容器A、B、C及びDに直かに充填し、実施例1と同
手段で加熱圧縮した結果を第7表に示す。
Comparative Example 3 For comparison, the same powder material as in Example 3 was directly filled in the containers A, B, C and D shown in Table 1, and the result of heating and compression by the same means as in Example 1 was measured. It is shown in Table 7.

比較結果 上記各実施例及び各比較例による焼結体を冷却後に容器
から取出してクラックの有無を検査した結果を、第8表
に示す。
Comparative Results Table 8 shows the results of examining the presence or absence of cracks by taking out the sintered bodies according to the respective Examples and Comparative Examples described above after cooling.

以上のように、金属間化合物のようなクラックを発生し
易い材料の場合でも、クラックを発生させずに粉末材料
をキャンニング加工によって焼結させることができた。
As described above, even in the case of a material such as an intermetallic compound that easily causes cracks, the powder material could be sintered by the canning process without causing cracks.

<発明の効果> 以上のようにこの発明によるときは、粉末材料をキャン
ニング加工により焼結させるに際し、焼結体にクラック
が発生するのを効果的に防止することができる。よっ
て、特に金属と非金属の複合材料や、金属間化合物のよ
うな、クラックを発生し易い材料の焼結加工に極めて好
適である。
<Effects of the Invention> As described above, according to the present invention, it is possible to effectively prevent cracks from being generated in the sintered body when the powder material is sintered by the canning process. Therefore, it is extremely suitable for the sintering process of a composite material of a metal and a nonmetal, or a material such as an intermetallic compound, which easily causes a crack.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例における粉末を充填した容器
の熱間加圧前及び熱間加圧後の縦断面図、第2図はこの
発明の実施例における粉末を充填した異なる形状の容器
の熱間加圧前及び熱間加圧後の縦断面図である。 1及び11……金属容器、4及び14……可塑性黒鉛シー
ト、5……粉末材料、15……焼結体。
FIG. 1 is a vertical cross-sectional view of a container filled with powder according to an embodiment of the present invention before and after hot pressing, and FIG. 2 is a container having different shapes filled with powder according to an embodiment of the present invention. FIG. 3 is a vertical sectional view before and after hot pressing. 1 and 11 ... Metal container, 4 and 14 ... Plastic graphite sheet, 5 ... Powder material, 15 ... Sintered body.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属容器内に、この金属容器内壁面との間
に可塑性黒鉛シートを挟んで粉末材料を収容し、この容
器を密封して加圧を伴なう熱間加工を行なうことを特徴
とする粉末材料の加圧焼結方法。
1. A powder material is contained in a metal container with a plastic graphite sheet sandwiched between the metal container inner wall surface and the metal container, and the container is sealed to perform hot working accompanied by pressurization. A method for pressure-sintering a powder material characterized.
JP63149579A 1988-06-16 1988-06-16 Pressure sintering method for powder material Expired - Lifetime JPH0660323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63149579A JPH0660323B2 (en) 1988-06-16 1988-06-16 Pressure sintering method for powder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63149579A JPH0660323B2 (en) 1988-06-16 1988-06-16 Pressure sintering method for powder material

Publications (2)

Publication Number Publication Date
JPH01316401A JPH01316401A (en) 1989-12-21
JPH0660323B2 true JPH0660323B2 (en) 1994-08-10

Family

ID=15478283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63149579A Expired - Lifetime JPH0660323B2 (en) 1988-06-16 1988-06-16 Pressure sintering method for powder material

Country Status (1)

Country Link
JP (1) JPH0660323B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212145A (en) * 1975-07-17 1977-01-29 Sumitomo Chem Co Ltd Improved process for preparation of aromatic sulfonic acid alkali salt
DE2532420A1 (en) * 1975-07-19 1977-02-03 Boehringer Mannheim Gmbh PHENYL ACID DERIVATIVES AND THE PROCESS FOR THEIR PRODUCTION
JPS62142703A (en) * 1985-12-17 1987-06-26 Kobe Steel Ltd Hot hydrostatic pressing method
JPS637132U (en) * 1986-06-28 1988-01-18
JPS6345305A (en) * 1986-08-12 1988-02-26 Kobe Steel Ltd Hot hydrostatic pressing method

Also Published As

Publication number Publication date
JPH01316401A (en) 1989-12-21

Similar Documents

Publication Publication Date Title
US4673549A (en) Method for preparing fully dense, near-net-shaped objects by powder metallurgy
US3356496A (en) Method of producing high density metallic products
JPH0443961B2 (en)
JPH0347903A (en) Density increase of powder aluminum and aluminum alloy
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
GB1424109A (en) Method of manufacturing high speed steel from powdered metallic material
US6080341A (en) Process for making an indium-tin-oxide shaped body
US8133329B2 (en) Selective sintering of compacted components
JP2000128648A (en) Manufacturing method of sintered body
JPS646241B2 (en)
JPH0354189B2 (en)
JPH0660323B2 (en) Pressure sintering method for powder material
CN109355541B (en) A kind of method for preparing high density tungsten copper alloy
JP3252446B2 (en) Capsule for hot isostatic pressing and method of hot isostatic pressing
US3724050A (en) Method of making beryllium shapes from powder metal
US4980126A (en) Process for HIP canning of composites
GB2140825A (en) Method of consolidating a metallic or ceramic body
US4534937A (en) Process for sintering aluminum alloy powders under pressure
JPS6152201B2 (en)
GB1362396A (en) Method of manufacturing billets from powder
JPH0678561B2 (en) Method for manufacturing substrate for sputtering target
EP0127312A1 (en) A process for the consolidation of metal powder
JP2928821B2 (en) Method for producing high-density chromium-based cermet sintered body
JPS6217001B2 (en)
JPH01129904A (en) Manufacturing method of high-density sintered body