[go: up one dir, main page]

JPH0660315B2 - Lubricating base oil composition and method for producing the same - Google Patents

Lubricating base oil composition and method for producing the same

Info

Publication number
JPH0660315B2
JPH0660315B2 JP61113045A JP11304586A JPH0660315B2 JP H0660315 B2 JPH0660315 B2 JP H0660315B2 JP 61113045 A JP61113045 A JP 61113045A JP 11304586 A JP11304586 A JP 11304586A JP H0660315 B2 JPH0660315 B2 JP H0660315B2
Authority
JP
Japan
Prior art keywords
oil
ring
carbon
base oil
lubricating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61113045A
Other languages
Japanese (ja)
Other versions
JPS62270688A (en
Inventor
正史 古本
岳史 手塚
毅 鳥巣
邦雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP61113045A priority Critical patent/JPH0660315B2/en
Publication of JPS62270688A publication Critical patent/JPS62270688A/en
Publication of JPH0660315B2 publication Critical patent/JPH0660315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は弾性流体潤滑領域で使用される機械要素の潤滑
に好適な高い粘度・圧力係数を有する潤滑油基油組成物
及びその製造法に関する。
TECHNICAL FIELD The present invention relates to a lubricating base oil composition having a high viscosity and pressure coefficient suitable for lubricating mechanical elements used in an elastohydrodynamic lubrication region, and a method for producing the same. .

[従来の技術] 多くの機械要素はその摩擦係数が最小となる弾性流体潤
滑領域で使用されている。この弾性流体潤滑領域におい
ては、接触面に発生する圧力が極めて高くなり、この圧
力の増加に伴って潤滑剤の粘度が指数関数的に増大する
ので高圧下でも油膜を維持し、接触面を分離できるとい
われている。
[Prior Art] Many mechanical elements are used in an elastohydrodynamic lubrication region where the coefficient of friction is minimized. In this elastohydrodynamic lubrication region, the pressure generated on the contact surface becomes extremely high, and the viscosity of the lubricant exponentially increases with this increase in pressure, so the oil film is maintained even under high pressure and the contact surface is separated. It is said to be possible.

しかしながら、実際に用いられている機械要素、例えば
低速高荷重の滑り軸受や中荷重以上の転がり軸受等では
一部が境界摩擦状態となることが避けられず、油膜が破
断することにより金属間接触を起し、接触面の損傷が起
って摩擦の増大やピッチングの発生といった現象が生
じ、機械要素の寿命が短くなる。
However, in mechanical elements actually used, such as sliding bearings with low speed and high load, rolling bearings with medium load or more, it is unavoidable that part of them will be in a boundary friction state, and the oil film will break, resulting in metal-to-metal contact. As a result, the contact surface is damaged, and phenomena such as increased friction and pitting occur, which shortens the life of the mechanical element.

このような現象に対して潤滑油が有効であり、接触面に
入った潤滑油の油膜が厚い程金属間接触を防ぎ、その結
果機械要求の寿命を長くすることが知られている。そし
て、この油膜厚さは機械の運転条件が一定ならば潤滑油
の常圧粘度と粘度・圧力係数に比例することが知られて
いる。しかし、常圧粘度を大きくすると潤滑油自身の粘
性抵抗のために機械要素の運動が妨げられ、撹拌損失が
生じて発熱や摩擦係数の増大を招き、省エネルギーの面
から好ましくない。ところが、現在広く使用されている
鉱油や種々の合成油においては、粘度・圧力係数が小さ
く、油膜厚みを得るために必要以上に常圧粘度を大きく
しており、このために上記のような問題が生じている。
It is known that the lubricating oil is effective against such a phenomenon, and the thicker the oil film of the lubricating oil entering the contact surface is, the more the metal-to-metal contact is prevented, and as a result, the life required for the machine is extended. It is known that this oil film thickness is proportional to the normal pressure viscosity of the lubricating oil and the viscosity / pressure coefficient if the operating conditions of the machine are constant. However, if the atmospheric viscosity is increased, the movement of the mechanical elements is hindered due to the viscous resistance of the lubricating oil itself, resulting in stirring loss, resulting in heat generation and an increase in the friction coefficient, which is not preferable in terms of energy saving. However, in the widely used mineral oils and various synthetic oils, the viscosity and pressure coefficient are small, and the atmospheric viscosity is increased more than necessary to obtain the oil film thickness. Is occurring.

このような問題に対して金属間接触を防ぐために、機械
要素の表面粗さをより小さくできる安価な工法の開発が
望まれているが、いまだ実現していない。また、低粘度
でも有効な油膜を形成できる潤滑油もいまだ開発されて
いない。
In order to prevent metal-to-metal contact against such problems, it is desired to develop an inexpensive construction method capable of further reducing the surface roughness of the mechanical element, but it has not been realized yet. Further, a lubricating oil capable of forming an effective oil film even with a low viscosity has not been developed yet.

ところで、ナフテン系鉱油の粘度・圧力係数がパラフィ
ン系鉱油のそれに比較して大きいことが知られている
が、その絶対値は20センチストークス(cst、17℃)
で20ギガパスカル(G・Pa)程度であり、満足し得る
ものではない。また、いわゆるトラクションドライブ用
として開発された種々の合成油の中に高い粘度・圧力係
数を有するものも知られているが、この種の合成油は本
来、回転部材間の引張係数を向上させるために開発され
ており、その用途から容易に推察されるように機械要素
の接触面における摩擦係数が大きく、通常の潤滑用に使
用するには省エネルギーの面から問題があるほか、供給
できる粘度のグレードに制約があり、また、高価である
という問題もある。
By the way, it is known that the viscosity and pressure coefficient of naphthenic mineral oil are larger than that of paraffinic mineral oil, but the absolute value is 20 centistokes (cst, 17 ° C).
It is about 20 gigapascal (G · Pa), which is not satisfactory. Also, among various synthetic oils developed for so-called traction drives, those having high viscosity and pressure coefficient are known, but this kind of synthetic oil originally aims to improve the tensile coefficient between rotating members. The friction coefficient on the contact surface of the mechanical element is large as can be easily inferred from its application, there is a problem from the viewpoint of energy saving to use it for normal lubrication, and the viscosity grade that can be supplied. There is also a problem that it is expensive and expensive.

本発明者等は、かかる観点に鑑み、潤滑油の分子構造と
その物性との関係について鋭意研究をした結果、縮合多
環脂環式化合物の環構成炭素及びその環に直接結合する
炭素の合計が全炭素の80%以上であり、縮合3環脂環
式化合物と縮合4環脂環式化合物の合計が40%以上で
あって、両者の比が1:6〜2:1の範囲内であると、
極めて高い粘度・圧力係数を示すことを見出し、本発明
に到達したものである。
In view of such a viewpoint, the inventors of the present invention have earnestly studied the relationship between the molecular structure of the lubricating oil and the physical properties thereof, and the total of the ring-constituting carbon of the condensed polycyclic alicyclic compound and the carbon directly bonded to the ring. Is 80% or more of the total carbon, and the total of the fused 3-ring alicyclic compound and the fused 4-ring alicyclic compound is 40% or more, and the ratio of the both is within the range of 1: 6 to 2: 1. If there,
The present invention has been achieved by finding that it exhibits extremely high viscosity and pressure coefficient.

[発明が解決しようとする問題点] すなわち、本発明の目的は、安価であって、しかも、高
い粘度・圧力係数を有する潤滑油基油組成物を提供する
ことであり、また、高い粘度・圧力係数を有する潤滑油
基油組成物を広範囲な粘度範囲に亘って提供することで
あり、さらに、高い粘度・圧力係数を有するだけでな
く、酸化安定性にも優れた潤滑油基油を提供することで
ある。
[Problems to be Solved by the Invention] That is, an object of the present invention is to provide a lubricating base oil composition which is inexpensive and has a high viscosity / pressure coefficient. The purpose of the present invention is to provide a lubricating base oil composition having a pressure coefficient over a wide range of viscosities, and further to provide a lubricating base oil having not only a high viscosity / pressure coefficient but also excellent oxidation stability. It is to be.

また、本発明の他の目的は、上記の如き特長を有する潤
滑油基油組成物を製造する方法を提供することであり、
さらに、上記の如き特長を有する潤滑油基油組成物を入
手し易い原料から効率よく安価に製造することができる
方法を提供することである。
Another object of the present invention is to provide a method for producing a lubricating base oil composition having the above characteristics,
Another object of the present invention is to provide a method capable of efficiently and inexpensively producing a lubricating base oil composition having the above-mentioned characteristics from readily available raw materials.

[問題点を解決するための手段] 従って、本発明は、縮合多環芳香族化合物を含有する原
料油を核水素化して得られ、縮合多環脂環式化合物の環
構成炭素及びその環に直接結合する炭素の合計が全炭素
の80%以上であり、縮合3環脂環式化合物と縮合4環
脂環式化合物の合計が40%以上で、両者の比が1:6
〜2:1の範囲内である潤滑油基油組成物を提供するも
のであり、また、本発明は、縮合多環芳香族化合物を含
有する原料油を蒸溜、熱分解及び水素化分解して環構成
炭素及びその環に直接結合する炭素の合計が全炭素の8
0%以上であり、縮合3環化合物と縮合4環化合物の合
計が40%以上で、両者の比が1:6〜2:1の範囲内
である炭化水素油を製造し、得られた炭化水素油を核水
素化する潤滑油基油組成物の製造法を提供するものであ
る。
[Means for Solving the Problems] Accordingly, the present invention is obtained by nuclear hydrogenating a feedstock oil containing a condensed polycyclic aromatic compound, and provides a ring-constituting carbon of the condensed polycyclic alicyclic compound and its ring. The total number of carbons directly bonded is 80% or more of the total carbon, the total of the condensed 3-ring alicyclic compound and the condensed 4-ring alicyclic compound is 40% or more, and the ratio of both is 1: 6.
The present invention provides a lubricating base oil composition in the range of ˜2: 1, and the present invention also comprises distilling, pyrolyzing and hydrocracking a feedstock containing a condensed polycyclic aromatic compound. The total number of carbon atoms in the ring and carbons directly bonded to the ring is 8
It is 0% or more, the total amount of the condensed 3-ring compound and the condensed 4-ring compound is 40% or more, and the ratio of the both is within the range of 1: 6 to 2: 1, and a hydrocarbon oil obtained is produced. The present invention provides a method for producing a lubricating base oil composition for nuclear hydrogenation of hydrogen oil.

先ず、第1番目の発明において、潤滑油基油組成物を構
成する脂環式化合物としては、縮合多環脂環化合物のう
ちの縮合3環脂環式化合物と縮合4環脂環式化合物の合
計が40%以上、より好ましくは60%以上で、両者の
比が1:6〜2:1の範囲内、より好ましくは1:6〜
1:1の範囲内である。縮合2環脂環式化合物(例え
ば、デカリン誘導体)及び5環以上の縮合多環脂環式化
合物についてはこれが60%を越えない範囲内で潤滑油
基油組成物中に存在してもよいが、縮合2環脂環式化合
物の含有量が多くなりすぎると潤滑油基油組成物の引火
点が低下しその用途が制約されて好ましくなく、また、
5環以上の縮合多環脂環式化合物の含有量が多くなりす
ぎると常圧粘度が高くなりすぎて省エネルギーの観点か
ら好ましくない。
First, in the first invention, as the alicyclic compound constituting the lubricating base oil composition, a condensed 3-ring alicyclic compound and a condensed 4-ring alicyclic compound of the condensed polycyclic alicyclic compounds are used. The total is 40% or more, more preferably 60% or more, and the ratio of both is in the range of 1: 6 to 2: 1, more preferably 1: 6 to.
It is within the range of 1: 1. Condensed bicyclic alicyclic compounds (for example, decalin derivatives) and fused polycyclic alicyclic compounds having 5 or more rings may be present in the lubricating base oil composition within a range not exceeding 60%. If the content of the condensed bicyclic alicyclic compound is too large, the flash point of the lubricating base oil composition is lowered and its use is restricted, which is not preferable.
If the content of the fused polycyclic alicyclic compound having 5 or more rings is too large, the viscosity at atmospheric pressure becomes too high, which is not preferable from the viewpoint of energy saving.

さらに、単環脂環式構造や単一の炭素−炭素単結合ある
いは単一のメチレン鎖等で2個以上連結された構造を有
する非縮合多環脂環式化合物は、その粘度・圧力係数が
高くても、摩擦係数が大きいのでこれを多量に含むのは
好ましくなく、この構造に属する炭素は全炭素の20%
以下、好ましくは10%以下であるのがよい。
Furthermore, a non-fused polycyclic alicyclic compound having a monocyclic alicyclic structure or a structure in which two or more are linked by a single carbon-carbon single bond or a single methylene chain has a viscosity / pressure coefficient Even if it is high, it is not preferable to include a large amount of it because the friction coefficient is large. Carbon belonging to this structure accounts for 20% of the total carbon.
Hereafter, it is preferably 10% or less.

本発明者等の研究によれば、縮合多環脂環式化合物の環
構成炭素及び/又はその環に直接結合する炭素の合計が
全炭素の殆どを占めるような高い粘度・圧力係数を有す
る潤滑油基油組成物と低い粘度・圧力係数を有する潤滑
油基油組成物とを混合した場合、その混合物の粘度・圧
力係数は低い粘度・圧力係数を有する潤滑油基油組成物
の影響をより強く受けることが判明した。従って、粘度
・圧力係数の向上に寄与しない化学構造に帰属する炭素
は本発明の潤滑油基油組成物中の全炭素の20%未満、
好ましくは10%未満であることが望ましい。具体的に
は、鎖状アルキル炭素に帰属する炭素(13C−NMR分
析で14.1ppm付近、19.7ppm付近、22.7ppm
付近、29.7ppm付近、32.0ppm付近)の合計が1
5%以下、好ましくは10%以下であることが望まし
い。鎖状アルキル炭素に帰属する炭素の合計がこの範囲
を逸脱すると、粘度・圧力係数が急速に低下する。
According to the research conducted by the present inventors, a lubrication having a high viscosity and pressure coefficient such that the total of ring-constituting carbons of a condensed polycyclic alicyclic compound and / or carbons directly bonded to the ring occupies most of all carbons. When an oil base oil composition is mixed with a lubricating base oil composition having a low viscosity / pressure coefficient, the viscosity / pressure coefficient of the mixture is more influenced by the lubricating base oil composition having a lower viscosity / pressure coefficient. It turned out to be strongly received. Therefore, the carbon belonging to the chemical structure that does not contribute to the improvement of the viscosity and the pressure coefficient is less than 20% of the total carbon in the lubricating base oil composition of the present invention,
It is preferably less than 10%. Specifically, carbon belonging to a chain alkyl carbon (around 14.1 ppm, around 19.7 ppm, and 22.7 ppm by 13 C-NMR analysis).
(Near, 29.7ppm, 32.0ppm) total is 1
It is desirable to be 5% or less, preferably 10% or less. When the total carbon belonging to the chain alkyl carbon deviates from this range, the viscosity / pressure coefficient rapidly decreases.

また、本発明の潤滑油基油組成物としては、その酸化安
定性の観点から芳香族化合物の環構成炭素に帰属する炭
素を実質的に含有しないものがよく、13C−NMR分析
で測定される芳香族化合物の環構成炭素に帰属する炭素
の合計が組成物中の全炭素に対して1%以下、好ましく
は検出限界以下であるのがよい。この場合、芳香族化合
物の環構成炭素に帰属する炭素は少なければ少ないほど
よく、この点は優れた酸化安定性を得るために芳香族化
合物の含有量について最適な範囲が存在する鉱油類と著
しく異なる点である。
Further, the lubricating base oil composition of the present invention is preferably one which does not substantially contain carbon belonging to the ring-constituting carbon of the aromatic compound from the viewpoint of its oxidation stability, and it is measured by 13 C-NMR analysis. The total amount of carbons belonging to the ring-constituting carbons of the aromatic compound is 1% or less, preferably less than the detection limit, based on the total carbons in the composition. In this case, the smaller the carbon belonging to the ring-constituting carbon of the aromatic compound, the better, and this point is significantly different from mineral oils in which the optimum range for the aromatic compound content exists in order to obtain excellent oxidative stability. It is a different point.

次に、第2番目の発明において、原料として使用する縮
合多環芳香族化合物を含有する原料油としては、例え
ば、製鉄用コークス製造時に副生するコールタール等の
石炭乾留油、各種の石炭液化油、接触分解デカントオイ
ル、接触分解重質リサイクル油等を挙げることができる
が、好ましくは高度に縮合した多環構造を得易いことか
ら石炭乾留油や石炭液化油であり、より好ましくは不要
なアルキル鎖をあまり含まず、場合によっては熱分解等
のアルキル基除去のための工程を省略することができる
ことから石炭の高温乾留時に副生するコールタールであ
る。
Next, in the second invention, examples of the feedstock oil containing a condensed polycyclic aromatic compound used as a feedstock include, for example, coal carbonized oil such as coal tar produced as a by-product during the production of coke for iron making, and various types of coal liquefaction. Oil, catalytically cracked decant oil, catalytically cracked heavy recycled oil and the like can be mentioned, but preferably coal carbonized oil or coal liquefied oil because it is easy to obtain a highly condensed polycyclic structure, and more preferably unnecessary. It is a coal tar that is by-produced during high-temperature carbonization of coal because it does not contain much alkyl chains and in some cases the step for removing alkyl groups such as thermal decomposition can be omitted.

本発明方法においては、上記いずれの原料油を使用した
場合でも、その原料油を蒸溜、熱分解又は水素化分解し
た際に、芳香族化合物又は脂環式化合物の環構成炭素又
はその環に直接結合する炭素のいずれかに帰属する炭素
が全炭素の80%以上、好ましくは90%以上を占める
ような炭化水素油を与えるものであることが必要であ
る。炭化水素油中における環構成炭素又はその環に直接
結合する炭素のいずれかに帰属する炭素の割合が80%
より少ないと、本発明の潤滑油基油組成物を得るため
に、核水素化の後に鎖状アルキル炭素を除去する工程が
必要になってコスト的に不利である。
In the method of the present invention, when any of the above feedstocks is used, when the feedstock is distilled, pyrolyzed or hydrocracked, it is directly attached to the ring-constituting carbon of the aromatic compound or alicyclic compound or its ring. It is necessary to provide a hydrocarbon oil in which carbon belonging to any of the carbons to be bonded accounts for 80% or more, preferably 90% or more, of the total carbon. The ratio of carbon belonging to either ring-constituting carbon in the hydrocarbon oil or carbon directly bonded to the ring is 80%
When the amount is smaller, a step of removing the chain alkyl carbon after the nuclear hydrogenation is required to obtain the lubricating base oil composition of the present invention, which is a cost disadvantage.

このようにして得られた炭化水素油には、通常その原料
油に由来する硫黄化合物が元素硫黄分に換算して0.0
2〜2重量%含有され、また、窒素化合物が元素窒素分
に換算して0.1〜3重量%含有されているが、これら
硫黄分や窒素分については、次の核水素化工程を円滑に
遂行するため、好ましくは水素化精製により硫黄分を1
00ppm以下、窒素分を1,000ppm以下にする。
In the hydrocarbon oil thus obtained, the sulfur compound derived from the raw material oil is usually 0.0 in terms of elemental sulfur content.
It is contained in an amount of 2 to 2% by weight, and a nitrogen compound is contained in an amount of 0.1 to 3% by weight in terms of elemental nitrogen content. However, regarding the sulfur content and the nitrogen content, the next nuclear hydrogenation process is smoothly performed. In order to carry out the sulfur content preferably by hydrorefining
The amount of nitrogen is set to 00 ppm or less and the nitrogen content is set to 1,000 ppm or less.

この目的で行う炭化水素油の水素化精製は、例えばM
o、W、Ni、Co等の周期律表第VI族又は第VIII族の
金属から選択された少くとも1種の金属成分をアルミナ
やシリカ等の担体に担持させた触媒の存在下にバッチ式
や流通式で行うことができるが、好ましくは流通式であ
り、この場合の反応条件としては、反応温度が200〜
500℃、好ましくは350〜400℃であり、反応圧
力が20〜300kg/cm2・G、好ましくは50〜20
0kg/cm2・Gであり、液空間速度(LHSV)が0.1〜
10.0hr-1であり、また、液・ガス比が100〜5,
000−H/−oilである。本発明の潤滑油基油
組成物を効率良く得るためには分解ガス化といった副反
応を極力避ける必要があり、かかる観点から反応温度に
いては400℃以下であることが望ましい。
Hydrorefining of hydrocarbon oils carried out for this purpose can be carried out, for example, by M
Batch type in the presence of a catalyst in which at least one metal component selected from Group VI or Group VIII metals such as o, W, Ni, Co, etc. is supported on a carrier such as alumina or silica. Or a flow system, but a flow system is preferred, and the reaction conditions in this case are a reaction temperature of 200 to
500 ° C., preferably 350-400 ° C., reaction pressure 20-300 kg / cm 2 · G, preferably 50-20
0 kg / cm 2 · G, liquid hourly space velocity (LHSV) is 0.1
It is 10.0 hr -1 , and the liquid-gas ratio is 100 to 5,
It is a 000-H 2 / -oil. In order to efficiently obtain the lubricating base oil composition of the present invention, it is necessary to avoid side reactions such as cracked gasification as much as possible, and from this viewpoint, the reaction temperature is preferably 400 ° C or lower.

必要に応じて脱硫・脱窒素され、硫黄分100ppm以下
及び窒素分1,000ppm以下に精製された炭化水素油
は、次に核水素化される。この核水素化は、例えばN
i、Pt、Ru等の周期律表第VIII族の金属から選択さ
れた少くとも1種の金属成分を含有する触媒の存在下に
バッチ式や流通式で行うことができるが、好ましくは流
通式であり、この場合の反応条件としては、反応温度が
50〜300℃、好ましくは150〜250℃であり、
反応圧力が50〜300kg/cm2・G、好ましくは50
〜200kg/cm2・Gであり、液空間速度(LHSV)が
0.1〜10.0hr-1であり、また、液・ガス比が10
0〜5,000−H/−oilである。
The hydrocarbon oil, which is desulfurized and denitrogenated as required, and is refined to have a sulfur content of 100 ppm or less and a nitrogen content of 1,000 ppm or less, is then subjected to nuclear hydrogenation. This nuclear hydrogenation is carried out, for example, with N
It can be carried out batchwise or in a flow system in the presence of a catalyst containing at least one metal component selected from metals of Group VIII of the periodic table such as i, Pt, Ru, etc., but preferably in a flow system. The reaction conditions in this case are that the reaction temperature is 50 to 300 ° C., preferably 150 to 250 ° C.
Reaction pressure is 50 to 300 kg / cm 2 · G, preferably 50
~ 200 kg / cm 2 · G, liquid hourly space velocity (LHSV) 0.1 ~ 10.0 hr -1 , liquid-gas ratio 10
Is a 0~5,000-H 2 / -oil.

さらに、上記炭化水素油中に残留する不純物を除去する
目的で、上記核水素化の前及び/又は後に必要に応じて
硫酸洗浄処理及び/又は固体吸着処理による精製処理を
行ってもよく、この際これら処理については、そのいず
れか一方の処理のみを行ってもよいほか、両者を行って
もよく、また、両者の処理を行う場合その順序は任意で
あって、いずれか一方の処理を核水素化の前に行って他
方の処理を核水素化の後に行うようにしてもよい。
Further, for the purpose of removing impurities remaining in the hydrocarbon oil, purification treatment by sulfuric acid washing treatment and / or solid adsorption treatment may be carried out before and / or after the nuclear hydrogenation, if necessary. At this time, either of these processes may be performed, or both processes may be performed. In the case of performing both processes, the order is arbitrary and one of the processes is the core. It may be carried out before the hydrogenation and the other treatment may be carried out after the nuclear hydrogenation.

核水素化されて生成し、また、必要に応じて硫酸洗浄処
理及び/又は固体吸着処理によって精製された生成油
は、蒸溜、好ましくは減圧蒸溜によって適当な沸点範囲
の留分に分離し、あるいは、このようにして得られた留
分を適当に配合することにより、種々の常圧粘度範囲の
高い粘度・圧力係数を有する潤滑油基油組成物を得るこ
とができる。
The product oil produced by nuclear hydrogenation and optionally purified by sulfuric acid washing treatment and / or solid adsorption treatment is separated into fractions having an appropriate boiling point range by distillation, preferably vacuum distillation, or By appropriately blending the thus obtained fractions, it is possible to obtain a lubricating base oil composition having a high viscosity and pressure coefficient in various atmospheric viscosity ranges.

本発明の潤滑油基油組成物は、種々の機械要素に使用さ
れる汎用の潤滑油として有用であるだけでなく、例え
ば、軸受油、ギヤ油、冷凍機油等の特殊な用途にも使用
できる。
The lubricating base oil composition of the present invention is not only useful as a general-purpose lubricating oil used for various machine elements, but can also be used for special applications such as bearing oil, gear oil, and refrigerating machine oil. .

[実施例] 以下、実施例に基いて、本発明を具体的に説明する。[Examples] Hereinafter, the present invention will be specifically described based on Examples.

実施例1 高温乾留コールタールを減圧蒸溜し、常圧換算沸点35
0〜480℃の炭化水素油を得た。この炭化水素油は、
13C−NMR分析の結果、芳香族化合物の環構成炭素及
びその環に直接結合する炭素の合計の割合が全炭素に対
して97%であった。
Example 1 High-temperature dry distillation coal tar was distilled under reduced pressure to obtain a boiling point of 35 at atmospheric pressure.
A hydrocarbon oil of 0 to 480 ° C was obtained. This hydrocarbon oil is
As a result of 13 C-NMR analysis, the total ratio of the ring-constituting carbon of the aromatic compound and the carbon directly bonded to the ring was 97% with respect to the total carbon.

次に、市販のNi−Mo/Al触媒が充填された
流通式反応器を使用し、上記炭化水素油を反応温度40
0℃、反応圧力180kg/cm2・G、液空間速度(LHS
V)0.2hr-1及び液・ガス比1,000−H
−oilの条件で水素化精製を行った。この水素化精製に
おいて反応中のガス化による炭素損失は1%以下であ
り、得られた水素化精製油の硫黄分は20ppmで、窒素
分は650ppmであった。
Next, a commercially available Ni-Mo / Al 2 O 3 catalyst is used in a flow-type reactor, and the hydrocarbon oil is reacted at a reaction temperature of 40.
0 ℃, reaction pressure 180kg / cm 2 · G, liquid space velocity (LHS
V) 0.2 hr -1 and liquid-gas ratio 1,000-H 2 /
Hydrorefining was carried out under the condition of -oil. In this hydrorefining, the carbon loss due to gasification during the reaction was 1% or less, the sulfur content of the obtained hydrorefined oil was 20 ppm, and the nitrogen content was 650 ppm.

さらに、上記水素化精製油を120℃及び液空間速度
(LHSV)1hr-1の条件で活性白土処理した後、市販のN
i/ケイソウ土触媒が充填された流通式反応器を使用
し、上記活性白土処理した水素化精製油を反応温度22
0℃、反応圧力180kg/cm2・G、液空間速度(LHS
V)0.3hr-1及び液・ガス比1,500−H
−oilの条件で核水素化し、核水素化油を得た。
Further, the hydrotreated oil was treated with activated clay under the conditions of 120 ° C. and liquid hourly space velocity (LHSV) of 1 hr −1 , and then commercially available N
i / diatomaceous earth catalyst was used as a flow reactor, and the hydrogenated refined oil treated with activated clay was used at a reaction temperature of 22
0 ℃, reaction pressure 180kg / cm 2 · G, liquid space velocity (LHS
V) 0.3 hr -1 and liquid-gas ratio 1,500-H 2 /
Nuclear hydrogenation was performed under the condition of -oil to obtain nuclear hydrogenated oil.

得られた核水素化油を減圧蒸溜により常圧換算沸点30
0〜430℃の間で10留分に分画し、各留分を適当な
割合で混合して4種の粘度グレード(ISO VG:10、2
2、54及び100)の潤滑油基油組成物を調製した。
得られた各粘度グレードの潤滑油基油組成物について、
全炭素に対する環構成炭素及びその環に直接結合する炭
素の合計(CΓ+Cα)の割合、全炭素に対する鎖状ア
ルキル炭素に帰属する炭素(Calkyl)の割合、全炭素
に対する芳香族化合物の環構成炭素に帰属する炭素(C
aroma.)の割合、粘度・圧力係数(高圧落球粘度計)及
び酸化安定性を調べた。結果を第1表に示す。
The nuclear hydrogenated oil obtained was distilled under reduced pressure to obtain a boiling point of 30 at atmospheric pressure.
Fractionation into 10 fractions between 0 and 430 ° C, mixing each fraction at an appropriate ratio, and preparing 4 viscosity grades (ISO VG: 10, 2
2, 54 and 100) lubricant base oil compositions were prepared.
Regarding the obtained lubricating base oil composition of each viscosity grade,
Ratio of total (C Γ + C α ) of ring-constituting carbon and carbon directly bonded to the ring to total carbon, ratio of carbon (C alkyl ) belonging to chain alkyl carbon to total carbon, aromatic compound to total carbon Carbon belonging to ring-constituting carbon (C
aroma. ) ratio, viscosity / pressure coefficient (high pressure falling ball viscometer), and oxidation stability. The results are shown in Table 1.

実施例2 核水素化の際の反応温度を230℃とした以外は実施例
1と同様にして4種の粘度グレードの潤滑油基油組成物
を調製し、各粘度グレードの潤滑油基油組成物について
環構成炭素及びその環に直接結合する炭素の合計(CΓ
+Cα)の割合、鎖状アルキル炭素に帰属する炭素(C
alkyl)の割合、芳香族化合物の環構成炭素に帰属する
炭素(Caroma.)の割合、粘度・圧力係数及び酸化安定
性を調べた。結果を第1表に示す。
Example 2 Four kinds of viscosity grade lubricating base oil compositions were prepared in the same manner as in Example 1 except that the reaction temperature at the time of nuclear hydrogenation was 230 ° C., and each viscosity grade lubricating base oil composition was prepared. The sum of the ring-constituting carbons and the carbons directly bonded to the ring (C Γ
+ C α ), carbon belonging to chain alkyl carbon (C
The ratio of alkyl ), the ratio of carbon (C aroma. ) belonging to the ring-constituting carbon of the aromatic compound, the viscosity / pressure coefficient, and the oxidation stability were examined. The results are shown in Table 1.

実施例3 高温乾留コールタールを蒸溜して得られた軟ピッチを水
素化触媒の存在下に水素化処理し、得られた水素化ピッ
チをディレードコーカーで熱分解して炭化水素油を得
た。
Example 3 A soft pitch obtained by distilling high-temperature dry distillation coal tar was hydrotreated in the presence of a hydrogenation catalyst, and the obtained hydrogenated pitch was pyrolyzed by a delayed coker to obtain a hydrocarbon oil.

この炭化水素油を、Ni−Mo/Al触媒が充填
された流通式反応器に、反応温度400℃、反応圧力1
80kg/cm2・G、液空間速度(LHSV)0.2hr-1及び
液・ガス比1,000−H/−oilの条件で流通
させて水素化精製を行った。得られた水素化精製油の硫
黄分は1.5ppmで、窒素分は45ppmであった。分析の
ためにこの水素化精製油の一部を白金触媒で脱水素し、
13C−NMR分析及びH−NMR分析で測定した結果、
この脱水素油において芳香族化合物の環構成炭素及びα
位炭素の合計は全炭素に対して93%であった。
The hydrocarbon oil, the flow reactor that Ni-Mo / Al 2 O 3 catalyst is filled, the reaction temperature 400 ° C., a reaction pressure 1
The hydrorefining was carried out under the conditions of 80 kg / cm 2 G, liquid hourly space velocity (LHSV) 0.2 hr −1 and liquid-gas ratio of 1,000-H 2 / -oil. The hydrogenated refined oil thus obtained had a sulfur content of 1.5 ppm and a nitrogen content of 45 ppm. A portion of this hydrorefined oil was dehydrogenated with a platinum catalyst for analysis,
As a result of measurement by 13 C-NMR analysis and H-NMR analysis,
In this dehydrogenated oil, the ring constituent carbon and α of the aromatic compound
The total carbon content was 93% based on the total carbon.

次に、Ru/Al触媒が充填された流通式反応器
を使用し、上記水素化精製油を反応温度200℃、反応
圧力180kg/cm2・G、液空間速度(LHSV)0.5hr
-1及び液・ガス比1,000−H/−oilの条件
で核水素化し、核水素化油を得た。
Next, using a flow reactor filled with a Ru / Al 2 O 3 catalyst, the hydrogenated refined oil was treated at a reaction temperature of 200 ° C., a reaction pressure of 180 kg / cm 2 · G, and a liquid hourly space velocity (LHSV) of 0. 5 hr
1 and the liquid-gas ratio 1,000-H 2 / nuclear hydrogenation under the conditions of -Oil, to obtain a nuclear hydrogenated oil.

得られた核水素化油をもとに、実施例1と同様にして4
種の粘度グレードの潤滑油基油組成物を調製し、各粘度
グレードの潤滑油基油組成物について環構成炭素及びそ
の環に直接結合する炭素の合計(CΓ+Cα)の割合、
鎖状アルキル炭素に帰属する炭素(Calkyl)の割合、
芳香族化合物の環構成炭素に帰属する炭素(Caroma.
の割合、粘度・圧力係数及び酸化安定性を調べた。結果
を第1表に示す。
Based on the obtained nuclear hydrogenated oil, 4 was prepared in the same manner as in Example 1.
Of various viscosity grades of the lubricating base oil composition, and for each viscosity grade of the lubricating base oil composition, the ratio of the ring-constituting carbon and the total carbon (C Γ + C α ) directly bonded to the ring,
Ratio of carbon (C alkyl ) belonging to chain alkyl carbon,
Carbon belonging to ring-constituting carbon of an aromatic compound (C aroma. )
The ratio, viscosity / pressure coefficient, and oxidative stability were investigated. The results are shown in Table 1.

実施例4 モーエル褐炭から得られた石炭液化油をディレードコー
カーで熱分解し、得られた熱分解油を減圧蒸溜して常圧
換算沸点350〜500℃の炭化水素油を得た。
Example 4 A coal liquefied oil obtained from Moell brown coal was pyrolyzed by a delayed coker, and the obtained pyrolyzed oil was distilled under reduced pressure to obtain a hydrocarbon oil having a boiling point of 350 to 500 ° C at atmospheric pressure.

次に、市販のNi−Mo/Al触媒が充填された
流通式反応器を使用し、上記炭化水素油を反応温度40
0℃、反応圧力150kg/cm2・G、液空間速度(LHS
V)0.3hr-1及び液・ガス比500−H/−oil
の条件で水素化精製を行った。得られた水素化精製油の
硫黄分は15ppmで、窒素分は180ppmであった。分析
のためにこの水素化精製油の一部を白金触媒で脱水素
し、13C−NMR分析及びH−NMR分析で測定した結
果、この脱水素油において芳香族化合物の環構成炭素及
びα位炭素の合計は全炭素に対して86%であった。
Next, a commercially available Ni-Mo / Al 2 O 3 catalyst is used in a flow-type reactor, and the hydrocarbon oil is reacted at a reaction temperature of 40.
0 ℃, reaction pressure 150kg / cm 2 · G, liquid space velocity (LHS
V) 0.3 hr -1 and liquid-gas ratio 500-H 2 / -oil
Hydrorefining was carried out under the conditions of. The hydrorefined oil thus obtained had a sulfur content of 15 ppm and a nitrogen content of 180 ppm. A part of this hydrorefined oil was dehydrogenated with a platinum catalyst for analysis and measured by 13 C-NMR analysis and H-NMR analysis. Was 86% of the total carbon.

次に、上記水素化精製油中に10重量%のRu/C触媒
を添加し、オートクレーブ中に仕込んで、反応温度18
0℃及び水素圧力140kg/cm2・Gの条件で10時間
水素化し、核水素化油を得た。
Next, 10% by weight of Ru / C catalyst was added to the hydrorefined oil and charged in an autoclave at a reaction temperature of 18
Hydrogenation was carried out at 0 ° C. and hydrogen pressure of 140 kg / cm 2 · G for 10 hours to obtain a nuclear hydrogenated oil.

得られた核水素化油を減圧蒸溜して常圧換算沸点300
〜450℃の間で6留分に分画し、各留分を適当な割合
で混合して実施例1と同様に4種の粘度グレードの潤滑
油基油組成物を調製し、各粘度グレードの潤滑油基油組
成物について環構成炭素及びその環に直接結合する炭素
の合計(CΓ+Cα)の割合、鎖状アルキル炭素に帰属
する炭素(Calkyl)の割合、芳香族化合物の環構成炭
素に帰属する炭素(Caroma.)の割合、粘度・圧力係数
及び酸化安定性を調べた。結果を第1表に示す。
The nuclear hydrogenated oil obtained is distilled under reduced pressure to obtain a boiling point of 300 at atmospheric pressure.
Fractionation into 6 fractions between ˜450 ° C., mixing each fraction at an appropriate ratio to prepare a lubricating base oil composition of four viscosity grades in the same manner as in Example 1, and preparing each viscosity grade. Of the lubricating base oil composition, the ratio of the total of the ring-constituting carbon and the carbon directly bonded to the ring (C Γ + C α ), the ratio of carbon (C alkyl ) belonging to the chain alkyl carbon, and the ring of the aromatic compound. The ratio of carbon (C aroma. ) Belonging to the constituent carbons, the viscosity / pressure coefficient and the oxidation stability were examined. The results are shown in Table 1.

比較例1及び2 比較例1としてナフテン系鉱油を使用し、また、比較例
2としてパラフィン系鉱油を使用し、上記各実施例の場
合と同じ4種の粘度グレードの潤滑油基油組成物を調製
し、各粘度グレードの潤滑油基油組成物について環構成
炭素及びその環に直接結合する炭素の合計(CΓ
α)の割合、鎖状アルキル炭素に帰属する炭素(C
alkyl)の割合及び粘度・圧力係数及び酸化安定性を調
べた。結果を第1表に示す。
Comparative Examples 1 and 2 A naphthene-based mineral oil was used as Comparative Example 1, and a paraffin-based mineral oil was used as Comparative Example 2, and the same four types of viscosity base oil base oil compositions as in each of the above Examples were prepared. The sum of the ring-constituting carbons and the carbons directly attached to the rings (C Γ +) for each viscosity grade lubricating base oil composition prepared.
C α ), carbon belonging to the chain alkyl carbon (C
Alkyl ) ratio, viscosity / pressure coefficient and oxidative stability were investigated. The results are shown in Table 1.

[発明の効果] 本発明の潤滑油基油組成物は、安価であって、しかも、
高い粘度・圧力係数を有し、優れた潤滑性能を発揮する
だけでなく、広範囲な常圧粘度範囲に亘って高い粘度・
圧力係数を発揮し、また、酸化安定性にも優れている。
[Effects of the Invention] The lubricating base oil composition of the present invention is inexpensive and
It has a high viscosity and pressure coefficient, and not only exhibits excellent lubricating performance, but also a high viscosity over a wide range of normal pressure viscosity.
It exhibits a pressure coefficient and is also excellent in oxidative stability.

また、本発明の潤滑油基油組成物の製造法によれば、上
記の如き特長を有する潤滑油基油組成物を入手し易い原
料から効率よく安価に製造することができる。
Further, according to the method for producing a lubricating base oil composition of the present invention, a lubricating base oil composition having the above-mentioned features can be efficiently produced at low cost from easily available raw materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10N 40:30 60:02 (56)参考文献 特開 昭58−154799(JP,A) 特開 昭62−184095(JP,A) 特開 昭62−148597(JP,A) 特開 昭62−148596(JP,A) 特開 昭62−4785(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C10N 40:30 60:02 (56) References JP-A-58-154799 (JP, A) JP-A JP-A-62-184095 (JP, A) JP-A-62-148597 (JP, A) JP-A-62-148596 (JP, A) JP-A-64-2785 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】縮合多環芳香族化合物を含有する原料油を
核水素化して得られ、縮合多環脂環式化合物の環構成炭
素及びその環に直接結合する炭素の合計が全炭素の80
%以上であり、縮合3環脂環式化合物と縮合4環脂環式
化合物の合計が40%以上で、両者の比が1:6〜2:
1の範囲内であることを特徴とする潤滑油基油組成物。
1. A ring-containing carbon of a condensed polycyclic alicyclic compound obtained by nuclear hydrogenation of a feedstock oil containing a condensed polycyclic aromatic compound, and the total of carbons directly bonded to the ring is 80 total carbons.
% Or more, the total of the fused 3-ring alicyclic compound and the fused 4-ring alicyclic compound is 40% or more, and the ratio of both is 1: 6 to 2:
The lubricating base oil composition is characterized in that it is in the range of 1.
【請求項2】縮合多環芳香族化合物を含有する原料油を
蒸溜、熱分解及び水素化分解して環構成炭素及びその環
に直接結合する炭素の合計が全炭素の80%以上であ
り、縮合3環化合物と縮合4環化合物の合計が40%以
上で、両者の比が1:6〜2:1の範囲内である炭化水
素油を製造し、得られた炭化水素油を核水素化すること
を特徴とする潤滑油基油組成物の製造法。
2. The total of carbon constituting the ring-constituting carbon and carbon directly bonded to the ring obtained by distilling, pyrolyzing and hydrolyzing a feedstock containing a condensed polycyclic aromatic compound is 80% or more, Producing a hydrocarbon oil in which the total of the condensed 3-ring compound and the condensed 4-ring compound is 40% or more, and the ratio of both is within the range of 1: 6 to 2: 1, and the obtained hydrocarbon oil is subjected to nuclear hydrogenation. A method for producing a lubricating base oil composition, comprising:
【請求項3】炭化水素油を水素化精製により脱硫及び脱
窒素して硫黄分を100ppm以下及び窒素分を1,00
0ppm以下にした後、核水素化する特許請求の範囲第2
項記載の潤滑油基油組成物の製造法。
3. Hydrodesulfurization and denitrification of hydrocarbon oil by hydrorefining to obtain a sulfur content of 100 ppm or less and a nitrogen content of 1,00.
Claim 2 in which nuclear hydrogenation is carried out after the concentration is reduced to 0 ppm or less.
A method for producing the lubricating base oil composition according to the item.
【請求項4】水素化精製を周期律表第VI族又は第VIII族
の金属から選ばれた少くとも1種の金属成分を含有する
触媒の存在下に、反応温度200〜500℃、反応圧力
20〜300kg/cm2・G、液空間速度0.1〜10.
0hr-1、液・ガス比100〜5,000-H2/-oilの
条件で行う特許請求の範囲第3項記載の潤滑油基油組成
物の製造法。
4. The hydrorefining is carried out at a reaction temperature of 200 to 500 ° C. under a reaction pressure of 200 to 500 ° C. in the presence of a catalyst containing at least one metal component selected from metals of Group VI or Group VIII of the periodic table. 20-300 kg / cm 2 · G, liquid space velocity 0.1-10.
The method for producing a lubricating base oil composition according to claim 3, which is carried out under the conditions of 0 hr -1 and a liquid-gas ratio of 100 to 5,000-H 2 / -oil.
【請求項5】核水素化を周期律表第VIII族の金属から選
ばれた少なくとも1種の金属成分を含有する触媒の存在
下に、反応温度50〜300℃、反応圧力20〜300
kg/cm2・G、液空間速度0.1〜10.0hr-1、液・
ガス比100〜5,000-H2/-oilの条件で行う特
許請求の範囲第2項又は第3項記載の潤滑油基油組成物
の製造法。
5. A reaction temperature of 50 to 300 ° C. and a reaction pressure of 20 to 300 in the presence of a catalyst containing at least one metal component selected from metals of Group VIII of the periodic table for nuclear hydrogenation.
kg / cm 2 · G, liquid space velocity 0.1 to 10.0 hr −1 , liquid ·
Preparation of gas ratio 100 to 5,000-H 2 / range the second term of the claims conducted in -oil conditions or lubricant base oil composition of paragraph 3 wherein.
【請求項6】原料油が石炭乾留油又は石炭液化油である
特許請求の範囲第2項記載の潤滑油基油組成物の製造
法。
6. The method of producing a lubricating base oil composition according to claim 2, wherein the feedstock oil is coal carbonized oil or coal liquefied oil.
JP61113045A 1986-05-17 1986-05-17 Lubricating base oil composition and method for producing the same Expired - Lifetime JPH0660315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61113045A JPH0660315B2 (en) 1986-05-17 1986-05-17 Lubricating base oil composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61113045A JPH0660315B2 (en) 1986-05-17 1986-05-17 Lubricating base oil composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPS62270688A JPS62270688A (en) 1987-11-25
JPH0660315B2 true JPH0660315B2 (en) 1994-08-10

Family

ID=14602092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61113045A Expired - Lifetime JPH0660315B2 (en) 1986-05-17 1986-05-17 Lubricating base oil composition and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0660315B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055720C (en) * 1997-09-10 2000-08-23 中国石油化工总公司 Denitrification process for base oil of lubricating oil
CN108980605B (en) * 2018-08-22 2020-08-11 杨信一 Calculation method for liquid-gas ratio of recondensor of LNG receiving station

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3151938A1 (en) * 1981-12-30 1983-07-07 Optimol Oelwerke Gmbh TRACTION FLUID
JPS624785A (en) * 1985-07-02 1987-01-10 Nippon Oil Co Ltd Fluid for traction drive
JPS62148596A (en) * 1985-12-23 1987-07-02 Idemitsu Kosan Co Ltd Traction drive fluid
JPS62148597A (en) * 1985-12-24 1987-07-02 Mitsui Petrochem Ind Ltd Applications of substituted aromatic hydrocarbons with hydrogenated aromatics
JPS62184095A (en) * 1986-02-07 1987-08-12 Nippon Oil Co Ltd Production of traction drive fluid

Also Published As

Publication number Publication date
JPS62270688A (en) 1987-11-25

Similar Documents

Publication Publication Date Title
KR100592138B1 (en) Low viscosity lubricating base oil
KR100449798B1 (en) Biodegradable High Performance Hydrocarbon Based Oils
CA1098467A (en) Process for the conversion of hydrocarbons
US5015404A (en) Oil composition containing hydrogenated oil
JP2724510B2 (en) Hydraulic fluid composition
EP2829586B1 (en) Method for producing a highly aromatic base oil
JPH0737623B2 (en) Lubricating oil composition
EP0447558B1 (en) Oil composition
KR900004533B1 (en) Oil composition for refrigerator
EP0338311B1 (en) Oil composition containing hydrogenated oil
US4180466A (en) Method of lubrication of a controlled-slip differential
EP1301580A1 (en) Compositions of group ii and/or group iii base oils and alkylated fused and/or polyfused aromatic compounds
US4521296A (en) Process for the production of refrigerator oil
US3904507A (en) Process comprising solvent extraction of a blended oil
JPH0660315B2 (en) Lubricating base oil composition and method for producing the same
JP2898440B2 (en) Turbine oil composition
JP2527999B2 (en) Lubricant composition
US3240696A (en) Process of obtaining lubricating oils from the hydrocracking of asphaltic hydrocarbon oils
JP2527998B2 (en) Lubricant composition
EP0310346A2 (en) Composition suitable for traction drives and process for operating the same
JPS606044B2 (en) Electrical insulation oil composition
JPH11185530A (en) Electric insulation oil
JPS63130696A (en) Hydrogenation of pitch
US3607722A (en) Asphalt manufacture
JPH01308482A (en) Heat transfer oil