JPH0660121B2 - Production method of glycerin monoallyl ether - Google Patents
Production method of glycerin monoallyl etherInfo
- Publication number
- JPH0660121B2 JPH0660121B2 JP2319368A JP31936890A JPH0660121B2 JP H0660121 B2 JPH0660121 B2 JP H0660121B2 JP 2319368 A JP2319368 A JP 2319368A JP 31936890 A JP31936890 A JP 31936890A JP H0660121 B2 JPH0660121 B2 JP H0660121B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- catalyst
- monoallyl ether
- glycerin monoallyl
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はグリセリン−α−モノアリルエーテルの製法に
関する。TECHNICAL FIELD The present invention relates to a method for producing glycerin-α-monoallyl ether.
グリセリンモノアリルエーテルは2個の水酸基と1個の
アリル基を有する化合物で、そのため種々の特徴を持っ
たポリマーの製造に使用されている。例えば、水溶性樹
脂,ウレタンゴム加硫剤,抗スケール剤,ポリエステル
樹脂空気乾燥性付与剤等の原料として広範囲に利用され
ている。Glycerin monoallyl ether is a compound having two hydroxyl groups and one allyl group, and is therefore used for producing polymers having various characteristics. For example, it is widely used as a raw material for water-soluble resins, urethane rubber vulcanizing agents, anti-scale agents, polyester resin air-drying agents, and the like.
(従来の技術と発明が解決しようとする課題) 従来エポキシ化合物に水を付加反応させて1,2−ジオー
ル化合物を合成する方法では硫酸,酢酸,ギ酸等の均一
系触媒を用いると効率よく反応が進行することが知られ
ており、アリルグリシジルエーテルと水との反応におい
ても硫酸触媒により高収率でグリセリンモノアリルエー
テルを生成することができる。(Prior art and problems to be solved by the invention) In the conventional method of synthesizing 1,2-diol compound by water addition reaction with epoxy compound, efficient reaction is achieved by using a homogeneous catalyst such as sulfuric acid, acetic acid and formic acid. Is known to proceed, and glycerin monoallyl ether can be produced in high yield by a sulfuric acid catalyst even in the reaction of allyl glycidyl ether with water.
ところが、硫酸を触媒に用いた場合、硫酸が強酸である
ため金属を腐食させ易いので、反応後硫酸を厳密に中和
する必要があり、中和により生成する硫酸塩を去する
必要がある。その結果過機の目詰まりを起こし易い等
の困難を伴う。或いは、中和を行わず蒸留等の操作を行
うと生成物の分解が起こり不都合である。更には、硫酸
触媒を用いた場合連続化反応が困難であり、触媒の回収
もできない。However, when sulfuric acid is used as a catalyst, since sulfuric acid is a strong acid and easily corrodes metals, it is necessary to strictly neutralize the sulfuric acid after the reaction, and it is necessary to remove the sulfate salt generated by the neutralization. As a result, there are difficulties such as easy clogging of the machine. Alternatively, it is inconvenient to carry out an operation such as distillation without performing neutralization because the product is decomposed. Furthermore, when a sulfuric acid catalyst is used, the continuous reaction is difficult and the catalyst cannot be recovered.
このような欠点を克服するものとして不均一系触媒を用
いることが試みられている。Attempts have been made to use heterogeneous catalysts to overcome such drawbacks.
例えば、エチレンオキサイドと水を反応させてエチレン
グリコールを作る際にイオン交換樹脂(「アンバーライ
トIR−120」ローム・アンド・ハース社製)を用い
た例が報告されている(D.F.Othmer and M.S.Thaker,In
d.Eng.Chem.,50,1235(1958))。For example, it has been reported that an ion exchange resin (“Amberlite IR-120” manufactured by Rohm and Haas Co.) is used when ethylene oxide is reacted with water to produce ethylene glycol (DFOthmer and MSThaker, In.
d. Eng. Chem., 50 , 1235 (1958)).
しかしながら、上記文献記載の「アンバーライトIR−
120」のようなゲル型強酸性陽イオン交換樹脂をアリ
ルグリシジルエーテルと水との反応に用いた場合には、
水溶性の低沸点生成物が副生したり、反応が途中で止ま
って完結しなくなったり、触媒が膨潤,粉砕等を生じて
触媒寿命が短くなる等の問題があった。However, the "Amberlite IR-
When a gel type strong acid cation exchange resin such as 120 "is used in the reaction of allyl glycidyl ether and water,
There are problems that a water-soluble low-boiling product is by-produced, the reaction stops halfway and is not completed, and that the catalyst swells and is crushed to shorten the catalyst life.
(課題を解決するための手段) 本発明者らは、上記の欠点を改善して、有機溶媒中でも
安定な触媒寿命の長い不均一系触媒を得る目的で鋭意検
討した。その結果特定の強酸性陽イオン交換樹脂が上記
目的を達成しうることを見出し本発明を完成させるに至
った。(Means for Solving the Problem) The inventors of the present invention have made intensive studies for the purpose of improving the above-mentioned drawbacks and obtaining a heterogeneous catalyst having a long catalyst life and stable even in an organic solvent. As a result, they have found that a specific strong acid cation exchange resin can achieve the above object, and have completed the present invention.
本発明は、アリルグリシジルエーテルに酸触媒存在下水
を反応させてグリセリンモノアリルエーテルを製造する
に際し、酸触媒としてMR型強酸性陽イオン交換樹脂又
はポリペルフルオロアルキルスルホン酸樹脂の存在下で
反応させることを特徴とするグリセリンモノアリルエー
テルの製法である。In the present invention, when glycerin monoallyl ether is produced by reacting allyl glycidyl ether with water in the presence of an acid catalyst, the reaction is performed in the presence of an MR type strongly acidic cation exchange resin or polyperfluoroalkyl sulfonic acid resin as an acid catalyst. Is a process for producing glycerin monoallyl ether.
本発明において用いられるMR(macroreticular,巨大
網目構造)型強酸性陽イオン交換樹脂としては、「アン
バーリスト15」(商品名,オルガノ社製)等が、ポリ
ペルフルオロアルキルスルホン酸樹脂としては「ナフィ
オン390,321,415又は324」(商品名,デ
ュポン社製)等が挙げられるが、耐熱性,耐薬品性の点
ではポリペルフルオロアルキルスルホン酸樹脂が好まし
い。該ポリペルフルオロアルキルスルホン酸樹脂は、分
子内にカルボキシル残基を含んでいるもの例えば「ナフ
ィオンN−901,又はN−902」(商品名,デュポ
ン社製)でもよい。Examples of MR (macroreticular) type strong acid cation exchange resin used in the present invention include "Amberlyst 15" (trade name, manufactured by Organo) and polyperfluoroalkyl sulfonic acid resin such as "Nafion 390". , 321, 415 or 324 "(trade name, manufactured by DuPont) and the like, but from the viewpoint of heat resistance and chemical resistance, a polyperfluoroalkylsulfonic acid resin is preferable. The polyperfluoroalkyl sulfonic acid resin may be one containing a carboxyl residue in the molecule, for example, "Nafion N-901 or N-902" (trade name, manufactured by DuPont).
触媒の形状としてはシート状,粒状等が利用できる。触
媒の使用量は樹脂のEW(Equivalent we
ight,当量)値によって変化するが、バッチ反応の
場合、例えばEW値が1100のときアリルグリシジル
エーテルに対して重量比で0.01〜1.0が適当であり、連
続反応の場合は0.001〜1.0が適当である。As the shape of the catalyst, a sheet shape, a granular shape or the like can be used. The amount of the catalyst used is the EW (Equivalent weight) of the resin.
In the case of a batch reaction, for example, when the EW value is 1100, a weight ratio of 0.01 to 1.0 is suitable for allyl glycidyl ether, and in the case of a continuous reaction, 0.001 to 1.0 is suitable. is there.
これら不均一系触媒である樹脂触媒は反応液から過等
により容易に回収することができ、再処理なしに次回の
反応に再使用できるという特徴がある。また、反応を連
続的にも行うことができる。触媒樹脂を除去後の反応液
は、中性であるから中和等の後処理は必要ない。The resin catalyst, which is a heterogeneous catalyst, can be easily recovered from the reaction solution due to excess and can be reused in the next reaction without reprocessing. The reaction can also be carried out continuously. Since the reaction liquid after removing the catalyst resin is neutral, no post-treatment such as neutralization is required.
生成物を単離するには蒸留により水を除去すればよく、
必要ならば精留により高純度のグリセリンモノアリルエ
ーテルを取出すこともできる。Water can be removed by distillation to isolate the product,
If necessary, high-purity glycerin monoallyl ether can be extracted by rectification.
本発明において水の使用量は重量比でアリルグリシジル
エーテルに対し2〜100、好ましくは3〜20であ
る。重量比が2未満の場合は目的生成物であるグリセリ
ンモノアリルエーテルより高沸点物の生成が多くなる。
重量比が100を超える場合は反応液中の生成物含量が
低下する。In the present invention, the amount of water used is 2 to 100, preferably 3 to 20, by weight ratio to allyl glycidyl ether. When the weight ratio is less than 2, a high-boiling point product is produced more than the target product glycerin monoallyl ether.
If the weight ratio exceeds 100, the product content in the reaction solution decreases.
反応は室温でも進行するが、通常は反応速度を上げ、反
応時間を短縮するため30〜100℃の範囲で加熱して
行う。Although the reaction proceeds even at room temperature, it is usually carried out by heating in the range of 30 to 100 ° C. to increase the reaction rate and shorten the reaction time.
(発明の効果) 本発明は、酸触媒としてMR型強酸性陽イオン交換樹脂
又はポリペルフルオロアルキルスルホン酸樹脂の存在に
より、品質の優れたグリセリン−α−モノアリルエーテ
ルを得ることができ、触媒の回収が容易であり、触媒の
逐次使用が可能であり、連続反応が可能であるばかりで
なく、反応装置の腐食の問題がないという特徴を有する
ので、工業的に優れた製法ということができる。(Effects of the Invention) The present invention makes it possible to obtain glycerin-α-monoallyl ether of excellent quality because of the presence of an MR type strongly acidic cation exchange resin or a polyperfluoroalkyl sulfonic acid resin as an acid catalyst. Since it is easy to collect, the catalyst can be used successively, and continuous reaction is possible, and there is no problem of corrosion of the reaction apparatus, it can be said to be an industrially excellent production method.
(実施例) 実施例1 撹拌機,温度計,滴下ロートを備えた300ml反応器
に水150ml,ペルフルオロアルキルスルホン酸樹脂
(「ナフィオン390」デュポン社製,EW=110
0)16gを入れ、45℃に加熱撹拌する。アリルグリ
シジルエーテル50mlを滴下ロートで反応温度が50
℃を超えないようにして滴下し、更に50℃で2時間撹
拌を続ける。(Example) Example 1 150 ml of water in a 300 ml reactor equipped with a stirrer, a thermometer, and a dropping funnel, perfluoroalkyl sulfonic acid resin ("Nafion 390" manufactured by DuPont, EW = 110).
0) 16 g was added and the mixture was heated with stirring at 45 ° C. 50 ml of allyl glycidyl ether was added with a dropping funnel at a reaction temperature of 50.
Dropwise so as not to exceed ℃, and continue stirring at 50 ℃ for 2 hours.
反応液から触媒を別し減圧下で水を留去した後生成物
を減圧で精製することにより純度98.8%のグリセリン−
α−モノアリルエーテルを89%の収率で得た(沸点1
50℃/10Torr)。The catalyst was separated from the reaction solution, water was distilled off under reduced pressure, and the product was purified under reduced pressure to give 98.8% pure glycerin-
α-monoallyl ether was obtained in a yield of 89% (boiling point 1
50 ° C / 10 Torr).
また、上記で回収した触媒樹脂を用いて、上記と同様に
再反応を行なったところ、反応速度の低下はなく、製品
には品質上の異常が認められなかった。When the catalyst resin recovered above was used to carry out a re-reaction in the same manner as above, the reaction rate did not decrease, and no abnormalities in quality were observed in the product.
実施例2 MR型強酸性陽イオン交換樹脂(「アンバーリスト1
5」オルガノ社製,EW=227)140mlを入れた
樹脂塔(直径3×高さ20cm)を50℃に加温し、ア
リルグリシジルエーテル水溶液(10重量%)10kg
を滴下した。流出液の水を減圧で留去した後、生成物を
減圧精留することによりグリセリンモノアリルエーテル
を91%の収率で得た。Example 2 MR type strong acid cation exchange resin (“Amberlyst 1
5 "Organo Co., EW = 227) 140 ml resin tower (diameter 3 × height 20 cm) was heated to 50 ° C., and 10 kg of allyl glycidyl ether aqueous solution (10 wt%) was added.
Was dripped. After water in the effluent was distilled off under reduced pressure, the product was rectified under reduced pressure to obtain glycerin monoallyl ether in a yield of 91%.
比較例1 撹拌機,温度計,滴下ロートを備えた100ml反応器
に水60ml,硫酸0.6gを加え45℃に加熱した。ア
リルグリシジルエーテル34gを滴下ロートで反応液温
度が50℃を超えないように滴下し、更に50℃で1時
間撹拌を続けた。Comparative Example 1 60 ml of water and 0.6 g of sulfuric acid were added to a 100 ml reactor equipped with a stirrer, a thermometer and a dropping funnel and heated to 45 ° C. 34 g of allyl glycidyl ether was added dropwise with a dropping funnel so that the reaction liquid temperature did not exceed 50 ° C., and stirring was continued at 50 ° C. for 1 hour.
反応終了後ガスクロマトグラフィーによる分析でグリセ
リンモノアリルエーテルが90%の収率で得られたこと
が分かった。After completion of the reaction, analysis by gas chromatography revealed that glycerin monoallyl ether was obtained in a yield of 90%.
反応液を中和することなく減圧濃縮し、更に減圧蒸留に
より精製を試みたが、グリセリンモノアリルエーテルは
留出せず、分解生成物の低沸点物のみが留出した(ガス
クロマトグラフィーで確認した)。The reaction solution was concentrated under reduced pressure without neutralization, and further purification was attempted by distillation under reduced pressure, but glycerin monoallyl ether was not distilled out, and only low-boiling substances of decomposition products were distilled (confirmed by gas chromatography. ).
比較例2 実施例1において触媒としてペルフルオロアルキルスル
ホン酸樹脂の代わりに「アンバーライトIR−120」
(オルガノ社製)を用いた以外は実施例1と同様に試験
した。Comparative Example 2 Instead of the perfluoroalkyl sulfonic acid resin as the catalyst in Example 1, "Amberlite IR-120" was used.
A test was conducted in the same manner as in Example 1 except that (Organo) was used.
反応終了後ガスクロマトグラフィー分析により目的生成
物のグリセリンモノアリルエーテル58モル%,原料ア
リルグリシジルエーテル30モル%の外に低沸点成分が
12モル%認められた。After completion of the reaction, by gas chromatography analysis, 12 mol% of low-boiling components was found in addition to 58 mol% of the desired product glycerin monoallyl ether and 30 mol% of the starting material allyl glycidyl ether.
更に同温度で反応を継続してもアリルグリシジルエーテ
ルの減少は認められなかった。Further, even if the reaction was continued at the same temperature, no reduction of allyl glycidyl ether was observed.
Claims (1)
水を反応させてグリセリンモノアリルエーテルを製造す
るに際し、酸触媒としてMR型強酸性陽イオン交換樹脂
又はポリペルフルオロアルキルスルホン酸樹脂の存在下
で反応させることを特徴とするグリセリンモノアリルエ
ーテルの製法。1. When producing glycerin monoallyl ether by reacting allyl glycidyl ether with water in the presence of an acid catalyst, the reaction is carried out in the presence of MR type strong acid cation exchange resin or polyperfluoroalkyl sulfonic acid resin as an acid catalyst. A method for producing glycerin monoallyl ether, which is characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2319368A JPH0660121B2 (en) | 1990-11-21 | 1990-11-21 | Production method of glycerin monoallyl ether |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2319368A JPH0660121B2 (en) | 1990-11-21 | 1990-11-21 | Production method of glycerin monoallyl ether |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04187653A JPH04187653A (en) | 1992-07-06 |
JPH0660121B2 true JPH0660121B2 (en) | 1994-08-10 |
Family
ID=18109373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2319368A Expired - Fee Related JPH0660121B2 (en) | 1990-11-21 | 1990-11-21 | Production method of glycerin monoallyl ether |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0660121B2 (en) |
-
1990
- 1990-11-21 JP JP2319368A patent/JPH0660121B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04187653A (en) | 1992-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0446133A (en) | Production of cyclohexane-1,2-diol | |
US4360406A (en) | Process for the preparation of tertiary butyl alcohol | |
JPH0660121B2 (en) | Production method of glycerin monoallyl ether | |
CN111004123A (en) | Preparation method of ethyl 3-ethoxypropionate | |
JPS59176232A (en) | Manufacture of monocarboxylic acid ester of alkyleneglycolmonoalkyl ether | |
KR20160029026A (en) | Process for the preparation of 3-heptanol from a mixture containing 2-ehthylhexanal and 3-heptyl formate | |
JP3818704B2 (en) | Method for producing oligoglycerin | |
JPH0470300B2 (en) | ||
JP2000319227A (en) | Preparation of 2-hydroxy isobutyrate | |
JPH04266884A (en) | Preparation of mixture of cyclic acrolainglycerineacetal | |
JPS5944305B2 (en) | Method for producing N-t-butylformamide | |
JP2686824B2 (en) | Process for producing dipentaerythritol hexaester compound | |
JP2000204064A (en) | Production of allyl 2-hydroxyisobutyrate | |
WO1999016762A1 (en) | Process for purifying tetrahydrofurans used as starting material for polyether polyols | |
JP2848709B2 (en) | Acetic acid 3-ethoxybutyl ester compound and method for producing the same | |
JPH03275644A (en) | Production of alpha-hydroxyisobutyric acid | |
JPH08143500A (en) | Production of hydroxyalkanal | |
JPH05980A (en) | Production of 9,9-bis(hydroxyphenyl)fluorenes | |
JPH04198151A (en) | Production of methacrylic acid | |
CN119552075A (en) | Method for preparing 1, 1-ethylene glycol diacetate | |
JP3060703B2 (en) | Purification method of glycidyl compound | |
JPS58206541A (en) | Production of hydroxyphenylacetic acids | |
JPH0449261A (en) | Production of 2-alkoxycyclohexanol | |
JP3113776B2 (en) | Method for producing D-kilo-inositol | |
JP3085593B2 (en) | Method for producing naphthol resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |