JPH0658839B2 - Induction plasma device - Google Patents
Induction plasma deviceInfo
- Publication number
- JPH0658839B2 JPH0658839B2 JP63095214A JP9521488A JPH0658839B2 JP H0658839 B2 JPH0658839 B2 JP H0658839B2 JP 63095214 A JP63095214 A JP 63095214A JP 9521488 A JP9521488 A JP 9521488A JP H0658839 B2 JPH0658839 B2 JP H0658839B2
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- carrier gas
- tube
- induction coil
- torch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Plasma Technology (AREA)
- Nozzles (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 誘導結合型プラズマ内でセラミックや金属等の粉末を効
率よく加熱して溶解させて噴射でき、主に溶射に使用さ
れるインダクションプラズマ装置に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to an induction plasma apparatus which is capable of efficiently heating and melting powders of ceramics, metals, etc. in an inductively coupled plasma for injection, and is mainly used for thermal spraying.
<従来の技術> 従来この種の技術としては、株式会社学会出版センター
1983年10月10日発行の書籍、日本分光学会測定法シリー
ズ5の「液体試料の発光分光分析」に誘導結合型プラズ
マ発光分光分析における光源部として誘導結合型プラズ
マ装置が開示されている。その概略の構成は、第2図に
示すように、透明石英で形成された、外側管1、中間管
2、キャリアガス導入管3からなる3重構造のトーチに
水冷誘導コイル4を設けたものとなっている。外側管1
は上端が開口し、下端が中間管2の下部外周に接合する
ことで閉じられ、その下端部内に外側ガス供給部5が接
線方向に開口している。中間管2は上端が外側管1の上
端よりも下方に位置しその上端部外径が拡大形成されて
いて外側管1の内周面との間に環状の小間隙6を形成し
ており、下端がキャリアガス導入管3の下部外周に結合
することで閉じられ、その下端部内に中間ガス供給路7
が前記外側ガス供給路5と同じ周方向に沿うように接線
方向に開口している。キャリアガス導入管3は上端部が
小径に形成されて中間管2内の上端近くに開口してお
り、下端部がキャリアガス供給路8とされている。図中
9はプラズマ炎、10は分光器で光軸である。<Conventional technology> Conventional technology of this kind is the Society Publication Center
An inductively coupled plasma apparatus is disclosed as a light source unit in inductively coupled plasma optical emission spectrometry in a book “Atomic emission spectrometry of liquid samples” of the Spectroscopical Society of Japan method 5 published on October 10, 1983. As shown in FIG. 2, its schematic configuration is such that a water-cooling induction coil 4 is provided on a torch having a triple structure composed of an outer tube 1, an intermediate tube 2 and a carrier gas introducing tube 3, which is made of transparent quartz. Has become. Outer tube 1
Has an upper end opened and a lower end joined by being joined to the outer periphery of the lower portion of the intermediate tube 2, and an outer gas supply unit 5 is opened tangentially in the lower end thereof. The upper end of the intermediate pipe 2 is located below the upper end of the outer pipe 1, the outer diameter of the upper end is enlarged, and an annular small gap 6 is formed between the inner pipe and the inner peripheral surface of the outer pipe 1. The lower end is closed by being joined to the outer periphery of the lower part of the carrier gas introducing pipe 3, and the intermediate gas supply passage 7 is provided in the lower end.
Are tangentially opened along the same circumferential direction as the outer gas supply passage 5. The carrier gas introducing pipe 3 has an upper end formed to have a small diameter and opens near the upper end in the intermediate pipe 2, and the lower end serves as a carrier gas supply passage 8. In the figure, 9 is a plasma flame, and 10 is a spectroscope, which is the optical axis.
このプラズマ装置は、外側ガス供給路5から外側ガスと
してアルゴン又は窒素を供給し、中間ガス供給路7から
中間ガスとしてアルゴンを供給し、キャリアガス供給路
8からキャリアガス(アルゴン)と試料霧を供給し、誘
導コイル4を作動させて使用する。外側ガスは主として
外側管1を冷却するために供給され、外側管1の外径が
約20mmのもので外側ガスを毎分10〜15流す。この外側
ガスは外側管1内に接線方向に導入されるから、螺旋状
に回転しながら流出する。小間隙6は1mm程度であり、
これによってガスの線速度が増して冷却効率を高くして
いる。中間ガスは毎分1〜2流すのが普通であり、プ
ラズマをわずかに上方に浮かせるという補助的な作用が
ある。キャリアガスは試料をエアロゾルにしてプラズマ
に導入するためのものであり、キャリアガス導入管3の
先端内径は 1.5〜2mmで、毎分 0.5〜1.5 を流す。This plasma device supplies argon or nitrogen as an outer gas from the outer gas supply passage 5, supplies argon as an intermediate gas from an intermediate gas supply passage 7, and supplies a carrier gas (argon) and a sample mist from a carrier gas supply passage 8. It is supplied and the induction coil 4 is operated and used. The outer gas is supplied mainly for cooling the outer pipe 1, and the outer pipe 1 has an outer diameter of about 20 mm, and the outer gas flows at 10 to 15 min / min. This outer gas is introduced into the outer tube 1 in the tangential direction, and therefore flows out while rotating spirally. The small gap 6 is about 1 mm,
As a result, the linear velocity of the gas is increased and the cooling efficiency is increased. The intermediate gas usually flows at 1 to 2 minutes per minute, and has an auxiliary effect of floating the plasma slightly upward. The carrier gas is for making the sample into an aerosol and introducing it into the plasma, and the inner diameter of the tip of the carrier gas introducing pipe 3 is 1.5 to 2 mm, and 0.5 to 1.5 per minute is passed.
キャリアガスを流さない状態でプラズマを点火すると、
プラズマは内部が均一で底がやや平らなフレーム状をし
ている。ここにキャリアガスを流してその流量を徐々に
増していくと、毎分約0.5 程度になったときプラズマ
の中心に輝度の低い部分が現われ、上部から見るとドー
ナツ状の穴11があいていることが肉眼で確認できる。こ
の中心の穴はキャリアガスの供給によるもので、プラズ
マ発光分光分析においてはこの穴を利用しており、プラ
ズマ内に試料粒子が効率よく導入され、高温のトンネル
を通る間に完全な原子化と励起発光が起こる。なお、プ
ラズマに穴のない状態で試料が供給されると、試料はプ
ラズマの中心に入ることができず、周辺部の比較的低温
の部分を通り、難解離性化合物を完全に原子化発光させ
ることは困難である。When plasma is ignited without carrier gas flowing,
The plasma has a frame shape with a uniform inside and a slightly flat bottom. When the carrier gas is flown here and the flow rate is gradually increased, a low brightness part appears in the center of the plasma when it reaches about 0.5 per minute, and there is a donut-shaped hole 11 when viewed from above. Can be confirmed with the naked eye. This hole at the center is due to the supply of carrier gas, and this hole is used in plasma emission spectroscopy, so that sample particles are efficiently introduced into the plasma, and complete atomization occurs while passing through the tunnel at high temperature. Excitation light emission occurs. If the sample is supplied in a state where there are no holes in the plasma, the sample cannot enter the center of the plasma and passes through the relatively low temperature part in the peripheral part, causing the hardly dissociable compound to completely atomize and emit light. Is difficult.
<発明が解決しようとする課題> 前記発光分光分析におけるプラズマ装置は、きわめて少
量の試料がプラズマの高温のトンネル内に導入されるよ
うになっているから、試料を高温に加熱して原子化発光
させる点で目的を達成している。しかし、この発明はイ
ンダクションプラズマ装置により、発光分光分析におけ
る試料よりも格段と多量のセラミックあるいは金属など
の材料を供給し、溶融状態として噴射することにより、
素材表面に被膜を形成する溶射を行うことを目的とする
ものである。従って、従来の発光分光分析におけるプラ
ズマ装置を溶射に適用しようとすると、溶射材料が前述
したプラズマの穴を通ることになり、この穴はプラズマ
炎全体からすれば比較的低温の部分であるから、溶射材
料の加熱効率が必ずしも良くない。また、この穴のない
プラズマに対して溶射材料を供給すると、前述したよう
に穴よりもさらに低温のプラズマ周辺部を通過すること
になり、なおさら加熱効率は悪くなる。<Problems to be Solved by the Invention> Since the plasma device in the emission spectroscopic analysis is designed so that a very small amount of sample is introduced into a high-temperature tunnel of plasma, the sample is heated to a high temperature to generate atomic emission. The purpose is achieved by making it. However, this invention uses an induction plasma device to supply a significantly larger amount of material such as ceramic or metal than the sample in the emission spectroscopic analysis, and inject it in a molten state,
The purpose is to perform thermal spraying to form a coating on the surface of the material. Therefore, when trying to apply the plasma device in the conventional optical emission spectroscopy to thermal spraying, the thermal spraying material will pass through the hole of the plasma described above, and this hole is a relatively low temperature portion from the whole plasma flame, The heating efficiency of the thermal spray material is not always good. When the thermal spray material is supplied to the plasma having no holes, the plasma passes through the peripheral portion of the plasma having a temperature lower than that of the holes as described above, and the heating efficiency further deteriorates.
この発明は、溶射材料が効率良く加熱されるようにプラ
ズマ内の高温部を通るようにしたインダクションプラズ
マ装置を提供することを課題とする。An object of the present invention is to provide an induction plasma device in which a thermal spray material is passed through a high temperature portion in plasma so as to be efficiently heated.
<課題を解決するための手段> この発明の手段は、前述した従来のインダクションプラ
ズマ装置において、前記誘導コイルとトーチとの少なく
とも一方を軸線の方向に移動させて双方の相対的位置関
係を変更できるようにしたことを特徴とするものであ
る。<Means for Solving the Problem> According to the means of the present invention, in the above-mentioned conventional induction plasma apparatus, at least one of the induction coil and the torch can be moved in the axial direction to change the relative positional relationship between them. It is characterized by doing so.
<作 用> 従来の発光分光分析におけるプラズマ装置と略同様にし
てプラズマを点火し、次にキャリアガスを流してプラズ
マ中心に比較的低温の前記穴を形成した後に、トーチに
対して誘導コイルをキャリアガス流出方向前方へ相対変
位させると、前記穴はそのキャリアガス流出方向前方部
分が消滅し、手前部分で少し残存した状態となる。つま
り、比較的低温の貫通穴として存在していた部分が凹所
に変化し、プラズマは中心部が高温となり、その高温度
部を通るようにキャリアガスが供給されている状態であ
る。従って、この状態でキャリアガス中に粉状の溶射材
料を供給すると、溶射材料はキャリアガスと共にプラズ
マの中心の高温部を通り、効率よく加熱され、溶融状態
となって前方へ噴射される。<Operation> Plasma is ignited in the same manner as in a conventional plasma device for emission spectroscopy, and then a carrier gas is flown to form the hole at a relatively low temperature in the center of the plasma, and then an induction coil is attached to the torch. When the carrier gas is relatively displaced forward in the outflow direction, the hole disappears from the front portion in the outflow direction of the carrier gas, and remains slightly in the front portion. That is, the portion that was present as a through hole having a relatively low temperature is changed to a recess, the center portion of the plasma has a high temperature, and the carrier gas is supplied so as to pass through the high temperature portion. Therefore, when powdery thermal spray material is supplied into the carrier gas in this state, the thermal spray material passes through the high temperature portion at the center of the plasma together with the carrier gas, is efficiently heated, is melted, and is jetted forward.
<実施例> この発明の1実施例の概略の構成を第1図(a) 乃至(d)
に示す。図において、20は石英製のトーチであり、外側
管21、中間管22、キャリアガス導入管23からなり、24は
誘導コイルである。誘導コイル24は水冷式であり、断面
の端面の片側を図示してある。これらは第2図に示した
従来の発光分光分析用の装置と略同じ構成であるが、ト
ーチ20に対して誘導コイル24が軸線方向に移動調節でき
るようになっている点が主として異なる点である。その
移動調節はコイル支持体とトーチ支持体とを別に形成し
てねじで移動させるようにしてある。図における25は外
側ガス供給路、26は環状の小間隙、27は中間ガス供給
路、28はキャリアガス供給路である。<Embodiment> A schematic structure of an embodiment of the present invention is shown in FIGS.
Shown in. In the figure, 20 is a quartz torch, which is composed of an outer tube 21, an intermediate tube 22, and a carrier gas introduction tube 23, and 24 is an induction coil. The induction coil 24 is water-cooled, and one side of the end face of the cross section is shown. These have almost the same structure as the conventional apparatus for emission spectroscopy analysis shown in FIG. 2, except that the induction coil 24 can be axially moved and adjusted with respect to the torch 20. is there. The movement is adjusted by separately forming a coil support and a torch support and moving them with a screw. In the figure, 25 is an outer gas supply passage, 26 is a small annular gap, 27 is an intermediate gas supply passage, and 28 is a carrier gas supply passage.
各部の寸法構成をmm単位で例示すると、外側管21の内径
が24、環状小間隙26が0.5 、キャリアガス導入管23の内
径が2、外側管21と中間管22の軸方向先端間寸法aが3
0、中間管22とキャリアガス導入管23の先端間軸方向寸
法bが5、外側管21の全長cが106 、誘導コイル24(巻
線3)の内径が32、同コイルの軸方向長さdが20、プラ
ズマ点火時の誘導コイル24の先端から外側管21の先端ま
での距離eが15である。To give an example of the dimensional configuration of each part in mm, the inner diameter of the outer pipe 21 is 24, the annular small gap 26 is 0.5, the inner diameter of the carrier gas introduction pipe 23 is 2, and the dimension a between the outer pipe 21 and the intermediate pipe 22 in the axial direction is a. Is 3
0, the axial dimension b between the tips of the intermediate tube 22 and the carrier gas introduction tube 23 is 5, the total length c of the outer tube 21 is 106, the inner diameter of the induction coil 24 (winding 3) is 32, and the axial length of the coil is d is 20, and the distance e from the tip of the induction coil 24 to the tip of the outer tube 21 during plasma ignition is 15.
このインダクションプラズマ装置は次のようにして使用
する。外側ガス(アルゴン又は窒素)を5/min、中間
ガス(アルゴン)を3/minくらい供給しながら、誘導
コイル24には1KW程度の電力を供給し、テスラーコイル
の放電を使うか接地したカーボン棒を使って従来と同様
にプラズマを点火する。点火後、電源部のマッチング操
作によりプラズマの安定状態を維持しながら、外側ガス
及び中間ガスの供給量を徐々に増大させ、外側ガスを15
〜20/min、中間ガスを5/min程度とすると共に誘導
コイル24へ供給する高周波電力を3KW程度に徐々に上げ
る。This induction plasma device is used as follows. Supplying an outside gas (argon or nitrogen) of about 5 / min and an intermediate gas (argon) of about 3 / min while supplying about 1KW of power to the induction coil 24 and using a Tesler coil discharge or grounded carbon rod. Is used to ignite the plasma as in the conventional case. After ignition, the supply amount of the outer gas and the intermediate gas is gradually increased while maintaining the stable state of the plasma by the matching operation of the power supply unit, and the outer gas is reduced to 15
Approximately 20 / min, the intermediate gas is set to about 5 / min, and the high frequency power supplied to the induction coil 24 is gradually increased to about 3 KW.
次に、キャリアガスの供給を少量から始めて1〜3/m
inまで上げてプラズマに前記穴を形成する。この間もプ
ラズマの安定のためにマッチング操作を行う。Next, start the carrier gas supply from a small amount and
Raise to in to form the holes in the plasma. During this time, a matching operation is performed to stabilize the plasma.
そして、マッチング操作と共に誘導コイル24を軸線の方
向に沿って外側管21の先端側へ、第1図(a) に元の位置
の反対側を仮想線で示すように、約10mm移動させると、
プラズマは第1図(e) に示す状態から第1図(f) に示す
状態に変化する。すなわち、第1図(e) でプラズマ30a
はキャリアガスによってできた穴31a がプラズマ30a の
全長を貫いていた状態であったのに対し、誘導コイル24
を移動させた後の第1図(f) では、プラズマ30b は前記
穴の大部分が塞がり、キャリアガスの入口側に穴の一部
31b が残った状態となる。従ってキャリアガスの通る径
路の穴の塞った分だけより高温の加熱領域が拡がったこ
とになる。このようにキャリアガスがプラズマの中心部
を確実に通る状態では、トーチ内のガス流速分布の一定
した安定な状態が確保されているのであるから、この状
態で加熱領域が拡がったことはその分キャリアガスによ
って供給される溶射材料粉の加熱効率が上昇する。同図
において、矢印32は外側ガス、矢印33は中間ガス、矢印
34はキャリアガスの夫々の移動方向を示す。Then, along with the matching operation, the induction coil 24 is moved along the axial direction toward the distal end side of the outer tube 21 by about 10 mm as shown by the phantom line on the opposite side to the original position in FIG. 1 (a).
The plasma changes from the state shown in FIG. 1 (e) to the state shown in FIG. 1 (f). That is, in FIG. 1 (e), plasma 30a
While the hole 31a formed by the carrier gas penetrated the entire length of the plasma 30a, the induction coil 24
In Fig. 1 (f) after moving the plasma, most of the holes are closed in the plasma 30b and a part of the holes is formed on the carrier gas inlet side.
31b remains. Therefore, the higher temperature heating region is expanded by the amount that the hole in the path through which the carrier gas passes is blocked. In this way, in the state where the carrier gas surely passes through the central part of the plasma, a stable state in which the gas flow velocity distribution in the torch is constant is secured, so that the heating region has expanded in that state. The heating efficiency of the thermal spray material powder supplied by the carrier gas is increased. In the figure, the arrow 32 is the outer gas, the arrow 33 is the intermediate gas, and the arrow is
34 shows the moving direction of each carrier gas.
実験によれば、このプラズマ中に、キャリアガスを介し
て溶射材料、例えば、ニッケルクロム、ジルコニア、ア
ルミナ等を粉末の状態で毎分数グラム供給すると、溶射
材料が溶融状態となって噴射され、外側管21の先端から
30〜50mmの位置に置いた鉄板に溶射材料による皮膜の形
成されることが確認された。According to experiments, when a spraying material such as nickel chrome, zirconia, alumina, etc. is supplied into the plasma in a powder state through a carrier gas at a rate of several grams per minute, the spraying material is injected in a molten state and the outside From the tip of tube 21
It was confirmed that a film of thermal spray material was formed on the iron plate placed at a position of 30 to 50 mm.
また、別の実験によれば、前記実施例の穴を消滅させた
プラズマを使用して平坦な素材表面に対して位置を変え
ないで一定時間溶射した場合に、中心部に厚く周辺部で
薄くなった凸形の被膜が形成されるのに対して、誘導コ
イル24を前方へ移動させない、点火時のままの位置で、
低温の穴のあるプラズマを使用して同じ素材表面に同様
に溶射した場合に、中心部で薄く周辺部がわずかに盛上
った凹形の被膜が形成されたことが認められた。これ
は、低温の穴があるプラズマを使用した場合は供給する
溶射材料の大部分が中心部に集中しているにもかかわら
ず被膜が薄くなるのは中心部でかなりの分量が溶融状態
に至らず、従って粉末のまま飛散していることを示すも
のであり、低温の穴がないプラズマを使用した場合は供
給する溶射材料の殆どが効率よく加熱されてより多くが
溶融状態となって素材表面に付着したことを示すもので
ある。Further, according to another experiment, when plasma was sprayed for a certain period of time without changing the position on the flat material surface using the plasma in which the holes were extinguished in the above-mentioned example, the thickness was thick in the center part and thin in the peripheral part. In contrast to the formation of a convex coating, the induction coil 24 is not moved forward, at the position at the time of ignition,
It was found that when a plasma with a low temperature hole was used to spray the same material surface in the same manner, a concave coating with a thin central portion and a slightly raised peripheral portion was formed. This is because when a plasma with low temperature holes is used, a large amount of the sprayed material to be supplied is concentrated in the central part, but the thinning of the coating results in a considerable amount of melted state in the central part. Therefore, it means that the powder is scattered as it is, and when plasma with no low temperature holes is used, most of the thermal spray material to be supplied is efficiently heated and more is melted and the surface of the material is melted. It is shown that it has adhered to.
なお、前述した実験はトーチ20を図示のように下向きに
使用したが、必ずしもこの方向に限る必要はない。Although the torch 20 was used in the downward direction as shown in the above-mentioned experiment, it is not necessarily limited to this direction.
<発明の効果> この発明によれば、従来中心部を低温の穴が貫通したプ
ラズマであった点を、その貫通した穴の先端側の大部分
を塞いだプラズマを中心部にキャリアガスを流した状態
で得ることができるから、そのキャリアガスを介して溶
射材料を供給するときは溶射材料を効率よく加熱できる
効果が得られる。従って、インダクションプラズマ装置
を使用した、効率のよい溶射装置の製作が可能となる。<Effects of the Invention> According to the present invention, the point that the plasma was formed by the low temperature hole penetrating the central portion in the related art is that the carrier gas is caused to flow in the central portion of the plasma which has blocked most of the tip side of the penetrating hole. Since it can be obtained in the state described above, the effect of efficiently heating the thermal spray material can be obtained when the thermal spray material is supplied via the carrier gas. Therefore, it is possible to manufacture an efficient thermal spraying apparatus using the induction plasma apparatus.
第1図はこの発明の1実施例を示し(a) はそのトーチ及
び誘導コイルの概略縦断側面図、(b) は(a) のB−B断
面図、(c) は (a)のC−C断面図、(d) は(a) のD−D
断面図、(e) は誘導コイル移動前のプラズマの状態を示
す縦断側面図、(f) は誘導コイル移動後のプラズマの状
態を示す縦断側面図、第2図は従来のインダクションプ
ラズマ装置の1例を示し(a) はそのトーチ及び誘導コイ
ルの概略縦断側面図、(b) は(a) のA−A断面図であ
る。 20……トーチ、21……外側管、22……中間管、23……キ
ャリアガス導入管、24……誘導コイル、25……外側ガス
供給路、26……環状小間隙、27……中間ガス供給路、28
……キャリアガス供給路。FIG. 1 shows an embodiment of the present invention. (A) is a schematic longitudinal side view of the torch and induction coil, (b) is a sectional view taken along line BB of (a), and (c) is C of (a). -C sectional view, (d) is DD of (a)
Sectional view, (e) is a vertical side view showing the state of plasma before the induction coil is moved, (f) is a vertical side view showing the state of plasma after the induction coil is moved, and FIG. 2 is a conventional induction plasma device 1 An example is shown in (a), which is a schematic vertical sectional side view of the torch and the induction coil, and (b) is a sectional view taken along line AA of (a). 20 ... Torch, 21 ... Outer tube, 22 ... Intermediate tube, 23 ... Carrier gas introduction tube, 24 ... Induction coil, 25 ... Outer gas supply passage, 26 ... Small annular gap, 27 ... Intermediate Gas supply channel, 28
...... Carrier gas supply channel.
Claims (1)
端の開口から放出する外側管、その外側管内に同軸的に
設けられ一端から中間ガスを外側管と同じ接線方向に導
入され他端の開口から放出する中間管、及びその中間管
内に同軸的に設けられ一端から供給されるキャリアガス
を他端の開口から放出するキャリアガス導入管からなる
三重構造のトーチと、そのトーチの開口側外周に設けら
れた誘導コイルと、その誘導コイルの高周波電源部とか
らなるインダクションプラズマ装置において、前記誘導
コイルとトーチとの少なくとも一方を軸線の方向に移動
させて双方の相対的位置関係を変更できるようにしたこ
とを特徴とするインダクションプラズマ装置。1. An outer tube which is introduced tangentially from one end and is discharged from an opening at the other end, and an outer tube which is coaxially provided in the outer tube and introduces intermediate gas from one end in the same tangential direction as the outer tube and the other end. And a torch having a triple structure including an intermediate tube for discharging from the opening of the intermediate tube and a carrier gas introducing tube coaxially provided in the intermediate tube for discharging the carrier gas supplied from one end from the opening at the other end, and the opening side of the torch. In an induction plasma device including an induction coil provided on the outer periphery and a high frequency power supply section of the induction coil, at least one of the induction coil and the torch can be moved in the axial direction to change the relative positional relationship between the two. An induction plasma device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63095214A JPH0658839B2 (en) | 1988-04-18 | 1988-04-18 | Induction plasma device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63095214A JPH0658839B2 (en) | 1988-04-18 | 1988-04-18 | Induction plasma device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01265500A JPH01265500A (en) | 1989-10-23 |
JPH0658839B2 true JPH0658839B2 (en) | 1994-08-03 |
Family
ID=14131499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63095214A Expired - Lifetime JPH0658839B2 (en) | 1988-04-18 | 1988-04-18 | Induction plasma device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0658839B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05311387A (en) * | 1992-05-07 | 1993-11-22 | Sansha Electric Mfg Co Ltd | Multilayer material |
JPH06116704A (en) * | 1992-10-01 | 1994-04-26 | Sansha Electric Mfg Co Ltd | Formation of silicon film |
WO2006099190A2 (en) * | 2005-03-11 | 2006-09-21 | Perkinelmer, Inc. | Plasmas and methods of using them |
GB2418293B (en) * | 2005-08-10 | 2007-01-31 | Thermo Electron Corp | Inductively coupled plasma alignment apparatus and method |
JP4935368B2 (en) * | 2007-01-19 | 2012-05-23 | パナソニック株式会社 | Atmospheric pressure plasma generation method and apparatus |
JP2010197080A (en) * | 2009-02-23 | 2010-09-09 | Sii Nanotechnology Inc | Induction coupling plasma analyzer |
-
1988
- 1988-04-18 JP JP63095214A patent/JPH0658839B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01265500A (en) | 1989-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210205885A1 (en) | Process And Apparatus For Producing Powder Particles By Atomization Of A Feed Material In The Form Of An Elongated Member | |
JP2959842B2 (en) | High speed arc spraying apparatus and spraying method | |
US9932673B2 (en) | Microwave plasma apparatus and method for materials processing | |
FI90738C (en) | Supersonic heat spray gun and coating procedure | |
JP5689456B2 (en) | Plasma transfer type wire arc spray system, method for starting plasma transfer type wire arc spray system apparatus, and method for coating cylinder bore surface of combustion engine using plasma transfer type wire arc spray system apparatus | |
US4390772A (en) | Plasma torch and a method of producing a plasma | |
US4370538A (en) | Method and apparatus for ultra high velocity dual stream metal flame spraying | |
US4741286A (en) | Single torch-type plasma spray coating method and apparatus therefor | |
RU2071644C1 (en) | Plasma torch | |
US4897282A (en) | Thin film coating process using an inductively coupled plasma | |
US3055591A (en) | Heat-fusible material spray equipment | |
US5109150A (en) | Open-arc plasma wire spray method and apparatus | |
EP0342388A2 (en) | High-velocity controlled-temperature plasma spray method and apparatus | |
JPH0450070B2 (en) | ||
JPH02258186A (en) | Leaser welding method and device | |
JPH08339894A (en) | Plasma arc torch with fountain nozzle assembly | |
JP2004534241A (en) | Plasma torch | |
CA3172808A1 (en) | Apparatus for melting metals | |
JPH0658839B2 (en) | Induction plasma device | |
US6096992A (en) | Low current water injection nozzle and associated method | |
JPH0658838B2 (en) | Induction plasma device | |
Cao et al. | A torch nozzle design to improve plasma spraying techniques | |
JPH031110B2 (en) | ||
JPH01319297A (en) | Method and apparatus for high speed and temperature-controlled plasma display | |
Boulos | Visualization and diagnostics of thermal plasma flows |