[go: up one dir, main page]

JPH0657775B2 - Polypropylene resin composition - Google Patents

Polypropylene resin composition

Info

Publication number
JPH0657775B2
JPH0657775B2 JP63099181A JP9918188A JPH0657775B2 JP H0657775 B2 JPH0657775 B2 JP H0657775B2 JP 63099181 A JP63099181 A JP 63099181A JP 9918188 A JP9918188 A JP 9918188A JP H0657775 B2 JPH0657775 B2 JP H0657775B2
Authority
JP
Japan
Prior art keywords
compound
titanium
propylene
polypropylene
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63099181A
Other languages
Japanese (ja)
Other versions
JPH01279940A (en
Inventor
純 齋藤
昭彦 三瓶
武 白石
寛正 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP63099181A priority Critical patent/JPH0657775B2/en
Publication of JPH01279940A publication Critical patent/JPH01279940A/en
Publication of JPH0657775B2 publication Critical patent/JPH0657775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリプロピレン樹脂組成物に関する。更に詳
しくは、ポリプロピレンと、アルケニルシラン重合体を
含有したオレフィン重合用チタン触媒成分を固体触媒成
分として用いてプロピレンを重合させて得られるポリプ
ロピレンからなる著しく透明性に優れたポリプロピレン
樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polypropylene resin composition. More specifically, the present invention relates to a polypropylene resin composition having extremely excellent transparency, which comprises polypropylene and polypropylene obtained by polymerizing propylene using a titanium catalyst component for olefin polymerization containing an alkenylsilane polymer as a solid catalyst component.

〔従来の技術とその問題点〕[Conventional technology and its problems]

ポリプロピレンは他のプラスチックと比較して、軽量
性、成形性、機械的強度、化学的安定性等に優れ、また
経済性においても優位なことから、フィルム、シートを
はじめとする各種成形品の製造に広く用いられている。
Compared with other plastics, polypropylene is superior in lightness, moldability, mechanical strength, chemical stability, etc., and is also economically advantageous. Therefore, various molded products such as films and sheets are manufactured. Widely used in.

しかしながら、ポリプロピレンは半透明であり、用途分
野においては商品価値を損なう場合があり、透明性の向
上が望まれていた。
However, polypropylene is translucent, which may impair the commercial value in the application field, and improvement of transparency has been desired.

この為、ポリプロピレンの透明性を改良する試みがなさ
れており、たとえば、芳香剤カルボン酸のアルミウム塩
(特公昭40-1652号公報等)や、ベンジリデンソルビト
ール誘導体(特開昭51-22740号公報等)等の造核剤をポ
リプロピレンに添加する方法があるが、芳香族カルボン
酸のアルミニウム塩を使用した場合には、分散性が不良
なうえに、透明性の改良効果が不十分であり、また、ベ
ンジリデンソルビトール誘導体を使用した場合には、透
明性においては一定の改良が見られるものの、加工時に
臭気が強いことや、添加物のブリード現象(浮き出し)
が生じる等の問題点を有していた。
Therefore, attempts have been made to improve the transparency of polypropylene, for example, aluminum salts of aromatic carboxylic acids (Japanese Patent Publication No. 40-1652) and benzylidene sorbitol derivatives (Japanese Patent Publication No. 51-22740). There is a method of adding a nucleating agent such as) to polypropylene, but when an aluminum salt of an aromatic carboxylic acid is used, the dispersibility is poor and the effect of improving transparency is insufficient. , When using a benzylidene sorbitol derivative, some improvement in transparency was observed, but there was a strong odor during processing, and the bleeding phenomenon of additives (embossing)
There was a problem such as occurrence of.

上述の造核剤添加時の問題点を改良するものとして、プ
ロピレン炭素数4〜18のα−オレフィン、および3-メチ
ルブテン-1を共重合させる方法(特公昭45-32430号公
報)や、ビニルシクロヘキサンの重合とプロピレンの重
合を多段に行なう方法(特開昭60-139710号公報)が提
案されているが、本発明者等が該提案の方法に従って、
ポリプロピレンの製造を行ったところ、いずれも透明性
の改良効果が不十分であった。更に、得られたポリプロ
ピレンを用いて製造したフィルムにはボイドが多数発生
しており、商品価値を損なうものであった。
In order to improve the above problems when adding the nucleating agent, a method of copolymerizing α-olefin having 4 to 18 carbon atoms of propylene and 3-methylbutene-1 (Japanese Patent Publication No. 45-32430) and vinyl A method for carrying out multi-stage polymerization of cyclohexane and propylene has been proposed (Japanese Patent Laid-Open No. 60-139710).
When polypropylene was manufactured, the effect of improving transparency was insufficient in all cases. Furthermore, many voids were generated in the film produced using the obtained polypropylene, which impaired the commercial value.

更にまた、同様な方法を用いたものに、ビニルトリメチ
ルシラン等のトリアルキルビニルシランまたはトリアル
キルアリルシランを少量重合した後、プロピレンを重合
させることにより、高結晶性ポリプロピレンを得る方法
(特開昭63-15804号公報、特開昭63-37104号公報、特開
昭63-37105号公報)が提案されているが、該公報の明細
書には得られたポリプロピレンの透明性についてのデー
タはなんら示されていない他、フィルムのボイド発生と
いう問題を有していた。
Furthermore, a method using the same method to obtain a highly crystalline polypropylene by polymerizing a small amount of trialkylvinylsilane such as vinyltrimethylsilane or trialkylallylsilane, and then polymerizing propylene (JP-A-63- No. 15804, JP-A-63-37104, JP-A-63-37105) have been proposed, but the data of the transparency of the obtained polypropylene are not shown in the specification of the publication. Other than that, there was a problem that voids were generated in the film.

本発明者等は、透明性が改良され、かつフィルムを製造
した際に、ボイドの発生が少ないポリプロピレンについ
て鋭意研究した。
The present inventors have earnestly studied polypropylene having improved transparency and having less voids when a film is manufactured.

その結果、アルケニルシラン重合体を含有したオレフィ
ン重合用チタン触媒成分、有機アルミニウム化合物、お
よび必要に応じて電子供与体を組み合せてなる触媒を用
いてプロピレンを重合させて得られるポリプロピレンを
通常のポリプロピレンに添加して得られるポリプロピレ
ン樹脂組成物が、従来のポリプロピレンに比較して透明
性、および結晶性において著しく向上すること、またボ
イドの発生が極めて少ないことを知って本発明に至っ
た。
As a result, polypropylene obtained by polymerizing propylene using a catalyst obtained by combining an alkenylsilane polymer-containing titanium catalyst component for olefin polymerization, an organoaluminum compound, and, if necessary, an electron donor is converted into a normal polypropylene. The present invention has been accomplished by knowing that the polypropylene resin composition obtained by addition has remarkably improved transparency and crystallinity as compared with conventional polypropylene, and generation of voids is extremely small.

本発明は、透明性および結晶性が著しく高く、かつボイ
ドの発生が極めて少ない、ポリプロピレン樹脂組成物を
提供することを目的とするものである。
It is an object of the present invention to provide a polypropylene resin composition having extremely high transparency and crystallinity and extremely few voids.

〔問題点を解決する手段とその作用〕[Means for solving problems and their actions]

本発明は以下の構成を有する。 The present invention has the following configurations.

(1)(A)ポリプロピレンと、 (B)次式、 (式中、nは0から2迄の整数であり、R1、R2、R3はアル
キル基、シクロアルキル基、またはアリール基を表わ
す。)で示される繰返し単位からなるアルケニルシラン
重合体を含有したオレフィン重合用チタン触媒成分、有
機アルミニウム化合物(AL1)、および必要に応じて電子
供与体(E1)を組み合せてなる触媒を用いてプロピレン、
若しくはプロピレンとプロピレン以外のα−オレフィン
を重合させて得られるポリプロピレン、からなる組成物
であって該アルケニルシラン重合体の含量が全組成物に
対して、0.1重量ppm〜2重量%であることを特徴とする
ポリプロピレン樹脂組成物。
(1) (A) polypropylene, (B) the following formula, (In the formula, n is an integer from 0 to 2, and R 1 , R 2 , and R 3 represent an alkyl group, a cycloalkyl group, or an aryl group.) Propylene using a catalyst containing a combination of an olefin polymerization titanium catalyst component, an organoaluminum compound (AL 1 ), and an electron donor (E 1 ) if necessary,
Alternatively, a composition comprising polypropylene obtained by polymerizing propylene and an α-olefin other than propylene, wherein the content of the alkenylsilane polymer is 0.1 wt ppm to 2 wt% with respect to the total composition. A characteristic polypropylene resin composition.

(2)(A)ポリプロピレンがプロピレン単独重合体、
プロピレン−α−オレフィンランダム共重合体、プロピ
レン−α−オレフィンブロック共重合体から選択される
1種類以上の重合体である前記第1項に記載の組成物。
(2) (A) polypropylene is a propylene homopolymer,
The composition according to item 1, which is one or more polymers selected from a propylene-α-olefin random copolymer and a propylene-α-olefin block copolymer.

(3)アルケニルシラン重合体を含有するオレフィン重
合用チタン触媒成分が、有機アルミニウム化合物(A
L2)、若しくは有機アルミニウム化合物(AL2)と電子供与
体(E2)との反応生成物(I)に四塩化チタンを反応させ
て得られた固体生成物(II)に対して、一般式が、 (式中、nは0から2迄の整数であり、R1、R2、R3はアル
キル基、シクロアルキル基、またはアリール基を表わ
す。)で表わされるアルケニルシラン化合物を重合する
工程を実施し、更に該重合工程を経た固体生成物(II)に
電子供与体(E3)と電子受容体とを反応させて得られるオ
レフィン重合用チタン触媒成分である前記第1項に記載
の組成物。
(3) The titanium catalyst component for olefin polymerization containing an alkenylsilane polymer is an organoaluminum compound (A
L 2 ), or a reaction product (I) of an organoaluminum compound (AL 2 ) and an electron donor (E 2 ) is reacted with titanium tetrachloride to obtain a solid product (II), The expression is (Wherein n is an integer from 0 to 2 and R 1 , R 2 , and R 3 represent an alkyl group, a cycloalkyl group, or an aryl group). The composition according to the above item 1, which is a titanium catalyst component for olefin polymerization obtained by reacting an electron donor (E 3 ) and an electron acceptor with the solid product (II) that has undergone the polymerization step. .

(4)アルケニルシラン重合体を含有するオレフィン重
合用チタン触媒成分が、液状化したマグネシウム化合物
と析出剤、ハロゲン化合物、電子供与体(E4)およびチタ
ン化合物(T1)を接触して得られた固体生成物(III)に対
して有機アルミニウム化合物(AL3)の存在下、一般式が (式中、nは0から2迄の整数であり、R1、R2、R3はアル
キル基、シクロアルキル基、またはアリール基を表わ
す。)で表わされるアルケニルシラン化合物を重合する
工程を実施し、固体生成物(IV)を得、該固体生成物(IV)
にハロゲン化チタン化合物(T2)を反応させて得られるオ
レフィン重合用チタン触媒成分である前記第1項に記載
の組成物。
(4) An olefin polymerization titanium catalyst component containing an alkenylsilane polymer is obtained by contacting a liquefied magnesium compound with a depositing agent, a halogen compound, an electron donor (E 4 ) and a titanium compound (T 1 ). In the presence of the organoaluminum compound (AL 3 ) for the solid product (III), (Wherein n is an integer from 0 to 2 and R 1 , R 2 , and R 3 represent an alkyl group, a cycloalkyl group, or an aryl group). To obtain a solid product (IV), and the solid product (IV)
The composition according to item 1, which is a titanium catalyst component for olefin polymerization, obtained by reacting a titanium halide compound (T 2 ) with.

本発明に用いる(A)ポリプロピレンは、チタン含有固
体成分(三塩化チタンを主成分とする固体化合物若しく
は塩化マグネシウム等の担体に四塩化チタンを担持せし
めた固体化合物)と有機アルミニウム化合物を組み合
せ、また場合によっては電子供与体成分を触媒の第3成
分として組み合せた、いわゆるチーグラー・ナッタ触媒
を用いて、不活性触媒中で行なうスラリー重合、プロピ
レン自身を溶媒とするバルク重合若しくはプロピレンガ
スを主体とする気相重合等によりプロピレン、若しくは
プロピレンとプロピレン以外のα−オレフィンを重合さ
せることによって得られる、公知のプロピレン単独重合
体、プロピレン−α−オレフィンランダム共重合体、プ
ロピレン−α−オレフィンブロック共重合体の1種類以
上が用いられる。
The polypropylene (A) used in the present invention is a combination of a titanium-containing solid component (a solid compound containing titanium trichloride as a main component or a solid compound having titanium tetrachloride supported on a carrier such as magnesium chloride) and an organoaluminum compound. In some cases, using a so-called Ziegler-Natta catalyst in which an electron donor component is combined as the third component of the catalyst, slurry polymerization performed in an inert catalyst, bulk polymerization using propylene itself as a solvent, or propylene gas as a main component Known propylene homopolymers, propylene-α-olefin random copolymers, propylene-α-olefin block copolymers obtained by polymerizing propylene or propylene and α-olefins other than propylene by gas phase polymerization or the like. One or more types of are used.

本発明の組成物を構成するもう一方の成分である(B)
ポリプロピレンは、次式、 (式中、nは0から2迄の整数であり、R1、R2、R3はアル
キル基、シクロアルキル基、またはアリール基を表わ
す。)で示される繰返し単位からなるアルケニルシラン
重合体を含有するチタン触媒成分と有機アルミニウム化
合物(AL1)、および必要に応じて電子供与体(E1)を組み
合せてなる触媒を用いてプロピレン、若しくはプロピレ
ンとプロピレン以外のα−オレフィンを重合させること
によって得られる。
(B) which is the other component constituting the composition of the present invention.
Polypropylene has the following formula: (In the formula, n is an integer from 0 to 2, and R 1 , R 2 , and R 3 represent an alkyl group, a cycloalkyl group, or an aryl group.) By polymerizing propylene, or propylene and an α-olefin other than propylene, using a catalyst containing a combination of a titanium catalyst component and an organoaluminum compound (AL 1 ) contained, and optionally an electron donor (E 1 ). can get.

アルケニルシラン重合体を含有するチタン触媒成分と
は、多段階の工程からなるチタン触媒成分を製造する方
法において、任意の途中工程で重合条件下、一般式が、 (式中、nは0から2迄の整数であり、R1、R2、R3はアル
キル基、シクロアルキル基、またはアリール基を表わ
す。)で表わされるアルケニルシラン化合物を重合する
工程を実施し、更に重合工程を経た固体に対し、後続の
工程を経て得られるアルケニルシラン重合体を含有する
チタン触媒成分である。
The titanium catalyst component containing an alkenylsilane polymer, in the method for producing a titanium catalyst component comprising a multi-step process, polymerization conditions in any intermediate step, the general formula, (Wherein n is an integer from 0 to 2 and R 1 , R 2 , and R 3 represent an alkyl group, a cycloalkyl group, or an aryl group). The titanium catalyst component contains the alkenylsilane polymer obtained through the subsequent steps with respect to the solid that has undergone the polymerization step.

この様なチタン触媒成分の製造方法を具体的に詳しく説
明すると、例えば、有機アルミニウム化合物(AL2)、若
しくは有機アルミニウム化合物(AL2)と電子供与体(E2)
との反応生成物(I)に四塩化チタンを反応させて得ら
れた固体生成物(II)を、上記の一般式で表わされるアル
ケニルシラン化合物で重合する工程を実施し、更に重合
工程を経た固体生成物(II)に電子供与体(E3)と電子受容
体とを反応させて得られる。
The method for producing such a titanium catalyst component will be specifically described in detail, for example, an organoaluminum compound (AL 2 ) or an organoaluminum compound (AL 2 ) and an electron donor (E 2 )
The solid product (II) obtained by reacting the reaction product (I) with Titanium tetrachloride is polymerized with the alkenylsilane compound represented by the above general formula, and the polymerization process is performed. It is obtained by reacting the solid product (II) with an electron donor (E 3 ) and an electron acceptor.

上述の有機アルミニウム化合物(AL2)と電子供与体(E2)
との反応は、溶媒(D1)中で-20℃〜200℃、好ましくは-1
0℃〜100℃で30秒〜5時間行なう。有機アルミニウム化
合物(AL2)、(E2)、(D1)の添加順序に制限はなく、使用す
る量比は有機アルミニウム化合物(AL2)1モルに対して
電子供与体(E2)0.1モル〜8モル、好ましくは1〜4モ
ル、溶媒0.5L〜5L、好ましくは0.5L〜2Lである。か
くして反応生成物(I)が得られる。反応生成物(I)
は分離をしない反応終了したまま液状態(反応生成液
(I)と言うことがある。)で次の反応に供することが
できる。
The above organoaluminum compound (AL 2 ) and electron donor (E 2 )
The reaction with -20 ° C to 200 ° C, preferably -1 in a solvent (D 1 ).
It is carried out at 0 ° C to 100 ° C for 30 seconds to 5 hours. There is no limitation on the order of addition of the organoaluminum compound (AL 2 ), (E 2 ), and (D 1 ), and the amount ratio used is 1 mol of the organoaluminum compound (AL 2 ) and the electron donor (E 2 ) 0.1. Mol to 8 mol, preferably 1 to 4 mol, solvent 0.5 L to 5 L, preferably 0.5 L to 2 L. Thus, the reaction product (I) is obtained. Reaction product (I)
Can be used for the next reaction in a liquid state (sometimes referred to as a reaction product liquid (I)) after completion of the reaction without separation.

この反応生成物(I)と四塩化チタンとを、若しくは有
機アルミニウム化合物(AL2)と四塩化チタンとを反応さ
せて得られる固体生成物(II)に対してアルケニルシラン
化合物を重合する工程を実施する方法としては、反応
生成物(I)、若しくは有機アルミニウム化合物(AL2)
と四塩化チタンとの反応の任意の過程でアルケニルシラ
ン化合物を添加して固体生成物(II)に対して重合する工
程を実施する方法、反応生成物(I)、若しくは有機
アルミニウム化合物(AL2)と四塩化チタンとの反応終了
後、アルケニルシラン化合物を添加して固体生成物(II)
に対して重合する工程を実施する方法、および反応生
成物(I)、若しくは有機アルミニウム化合物(AL2)と
四塩化チタンとの反応終了後、濾別またはデカンテーシ
ョンにより液状部分を分離除去した後、得られた固体生
成物(II)を溶媒に懸濁させ、更に有機アルミニウム化合
物、アルケニルシラン化合物を添加し、該アルケニルシ
ラン化合物を重合する工程を実施する方法がある。
A step of polymerizing an alkenylsilane compound with a solid product (II) obtained by reacting the reaction product (I) with titanium tetrachloride or the organoaluminum compound (AL 2 ) with titanium tetrachloride; As a method of carrying out, the reaction product (I) or the organoaluminum compound (AL 2 )
Of the alkenylsilane compound in any step of the reaction of alkanol with titanium tetrachloride to polymerize the solid product (II), the reaction product (I), or the organoaluminum compound (AL 2 ) With titanium tetrachloride, the solid product (II) is obtained by adding an alkenylsilane compound.
To carry out the step of polymerizing, and after completion of the reaction between the reaction product (I) or the organoaluminum compound (AL 2 ) and titanium tetrachloride, after removing the liquid portion by filtration or decantation There is a method of suspending the obtained solid product (II) in a solvent, adding an organoaluminum compound and an alkenylsilane compound, and polymerizing the alkenylsilane compound.

反応生成物(I)、若しくは有機アルミニウム化合物(A
L2)と四塩化チタンとの反応は、反応の任意の過程での
アルケニルシラン化合物の添加の有無にかかわらず、-1
0℃〜200℃、好ましくは0℃〜100℃で5分〜10時間行
なう。溶媒は用いない方が好ましいが、脂肪族または芳
香族炭化水素を用いることができる。(I)若しくは有
機アルミニウム化合物(AL2)、四塩化チタン、および溶
媒の混合は任意の順に行えば良く、アルケニルシラン化
合物の添加も、どの段階で行っても良い。(I)若しく
は有機アルミニウム化合物(AL2)、四塩化チタン、およ
び溶媒の全量の混合は5時間以内に終了するのが好まし
く、混合中も反応が行なわれる。全量混合後、更に5時
間以内反応を継続することが好ましい。反応に用いるそ
れぞれの使用量は四塩化チタン1モルに対し、溶媒は0
〜3,000ml、反応生成物(I)若しくは有機アルミニウ
ム化合物物(AL2)中のAl原子数と四塩化チタン中のTi原
子数の比(Al/Ti)で0.05〜10、好ましくは0.06〜0.3であ
る。
Reaction product (I) or organoaluminum compound (A
The reaction of L 2 ) with titanium tetrachloride is -1 with or without the addition of an alkenylsilane compound at any stage of the reaction.
It is carried out at 0 ° C to 200 ° C, preferably 0 ° C to 100 ° C for 5 minutes to 10 hours. Although it is preferable not to use a solvent, an aliphatic or aromatic hydrocarbon can be used. The mixing of (I) or the organoaluminum compound (AL 2 ), titanium tetrachloride, and the solvent may be performed in any order, and the alkenylsilane compound may be added at any stage. The mixing of the total amount of (I) or the organoaluminum compound (AL 2 ), titanium tetrachloride, and the solvent is preferably completed within 5 hours, and the reaction is performed during the mixing. It is preferable to continue the reaction within 5 hours after mixing the whole amount. The amount of each used in the reaction is 1 mol of titanium tetrachloride, and the solvent is 0
~ 3,000 ml, the ratio of the number of Al atoms in the reaction product (I) or the organoaluminum compound (AL 2 ) to the number of Ti atoms in titanium tetrachloride (Al / Ti) is 0.05 to 10, preferably 0.06 to 0.3. Is.

アルケニルシラン化合物を重合する工程は、反応生成物
(I)若しくは有機アルミニウム化合物物(AL2)と四塩
化チタンとの反応の任意の過程でアルケニルシラン化合
物を添加する場合および反応生成物(I)若しくは有機
アルミニウム化合物(AL2)と四塩化チタンとの反応終了
後、アルケニルシラン化合物を添加する場合は、反応温
度0℃〜90℃で1分〜10時間、反応圧力は大気圧〜10kg
f/cm2Gの条件下で、固体生成物(II)100g当り、0.1g〜10
0kgのアルケニルシラン化合物を用いて、最終のチタン
触媒成分中のアルケニルシラン重合体の含量が0.1重量
%〜99重量%となる様に重合させる。該アルケニルシラ
ン重合体の含量が0.1重量%未満であると得られたポリ
プロピレン樹脂組成物の透明性および結晶性向上の効果
が不十分であり、また99重量%を超えると該向上効果が
顕著でなくなり経済的に不利となる。
The step of polymerizing the alkenylsilane compound is carried out when the alkenylsilane compound is added at any stage of the reaction between the reaction product (I) or the organoaluminum compound (AL 2 ) and titanium tetrachloride, and the reaction product (I) Or, when the alkenylsilane compound is added after the reaction between the organoaluminum compound (AL 2 ) and titanium tetrachloride, the reaction temperature is 0 ° C to 90 ° C for 1 minute to 10 hours, and the reaction pressure is atmospheric pressure to 10 kg.
0.1 g to 10 per 100 g of the solid product (II) under the condition of f / cm 2 G.
Polymerization is carried out using 0 kg of the alkenylsilane compound so that the content of the alkenylsilane polymer in the final titanium catalyst component is 0.1% by weight to 99% by weight. When the content of the alkenylsilane polymer is less than 0.1% by weight, the effect of improving the transparency and crystallinity of the obtained polypropylene resin composition is insufficient, and when it exceeds 99% by weight, the improving effect is remarkable. It becomes economically disadvantageous.

アルケニルシラン化合物を重合する工程を、反応生成物
(I)若しくは有機アルミニウム化合物(AL2)と四塩化
チタンとの反応終了後、濾別またはデカンテーションに
より液状部分を分離除去した後、得られた固体生成物(I
I)を溶媒に懸濁させてから行なう場合には固体生成物(I
I)100gに対し、溶媒100ml〜5,000ml、有機アルミニウム
化合物0.05g〜5,000gを加え、反応温度0℃〜90℃で1
分〜10時間、反応圧力は大気圧〜10kgf/cm2Gの条件下
で、固体生成物(II)100g当り、0.1g〜100kgのアルケニ
ルシラン化合物を用いて、最終のチタン触媒成分中にア
ルケニルシラン重合体の含量が0.1重量%〜99重量%と
なる様に重合させる。溶媒は脂肪族炭化水素が好まし
く、有機アルミニウム化合物は反応生成物(I)を得る
際に用いたもの、若しくは電子供与体(E2)と反応させる
ことなく直接四塩化チタンとの反応に用いたものと同じ
であっても、異なったものでも良い。反応終了後は、濾
別またはデカンテーションにより液状部分を分離除去し
た後、更に溶媒で洗浄を繰返した後、得られた重合工程
を経た固体生成物(以下固体生成物(II−A)と言うこ
とがある)を溶媒に懸濁状態のまま次の工程に使用して
も良く、更に乾燥して固形物として取り出して使用して
も良い。
The step of polymerizing the alkenylsilane compound was obtained after the reaction product (I) or the organoaluminum compound (AL 2 ) and titanium tetrachloride were reacted and then the liquid portion was separated and removed by filtration or decantation. Solid product (I
If the suspension of (I) in a solvent is carried out, the solid product (I
I) To 100 g, add 100 ml to 5,000 ml of a solvent and 0.05 g to 5,000 g of an organoaluminum compound, and add 1 at a reaction temperature of 0 ° C to 90 ° C.
Minutes to 10 hours, the reaction pressure is atmospheric pressure to 10 kgf / cm 2 G, 0.1 g to 100 kg of the alkenylsilane compound per 100 g of the solid product (II) is used in the final titanium catalyst component. Polymerization is performed so that the content of the silane polymer is 0.1% by weight to 99% by weight. The solvent is preferably an aliphatic hydrocarbon, and the organoaluminum compound is used for obtaining the reaction product (I) or used for the reaction with titanium tetrachloride directly without reacting with the electron donor (E 2 ). It may be the same as or different from the one. After completion of the reaction, the liquid portion is separated and removed by filtration or decantation, and after further washing with a solvent, the obtained solid product after the polymerization step (hereinafter referred to as solid product (II-A) (In some cases) may be used in the next step in the state of being suspended in the solvent, or may be dried and taken out as a solid to be used.

固体生成物(II−A)は、ついでこれに電子供与体(E3)
と電子受容体(F)とを反応させる。この反応は溶媒を
用いないでも行なうことができるが、脂肪族炭化水素を
用いる方が好ましい結果が得られる。使用する量は固体
生成物(II−A)100gに対して、(E3)0.1g〜1,000g、好
ましくは0.5g〜200g、(F)0.1g〜1,000g、好ましくは
0.2g〜500g、溶媒0〜3,000ml、好ましくは100〜1,000m
lである。反応方法としては、固体生成物(II−A)
に電子供与体(E3)および電子受容体(F)を同時に反応
させる方法、(II−A)に(F)を反応させた後、(E
3)を反応させる方法、(II−A)に(E3)を反応させた
後、(F)を反応させる方法、(E3)と(F)を反応さ
せた後、(II−A)を反応させる方法があるがいずれの
方法でも良い。反応条件は、上述の、の方法におい
ては、40℃〜200℃、好ましくは50℃〜100℃で30秒〜5
時間反応させることが望ましく、の方法においては
(II−A)と(E3)の反応を0℃〜50℃で1分〜3時間反
応させた後、(F)とは前記、と同様な条件下で反
応させる。またの方法においては(E3)と(F)を10℃
〜100℃で30分〜2時間反応させた後、40℃以下に冷却
し、(II−A)を添加した後、前記、と同様な条件
下で反応させる。固体生成物(II−A)、(E3)、および
(F)の反応終了後は濾別またはデカンテーションによ
り液状部分を分離除去した後、更に溶媒で洗浄を繰返
し、アルケニルシラン重合体を含むチタン触媒成分が得
られる。
The solid product (II-A) is then provided with an electron donor (E 3 ).
React with the electron acceptor (F). This reaction can be carried out without using a solvent, but using an aliphatic hydrocarbon gives preferable results. The amount used is (E 3 ) 0.1 g to 1,000 g, preferably 0.5 g to 200 g, (F) 0.1 g to 1,000 g, and preferably 100 g, based on 100 g of the solid product (II-A).
0.2g-500g, solvent 0-3,000ml, preferably 100-1,000m
is l. As a reaction method, a solid product (II-A)
A method of simultaneously reacting an electron donor (E 3 ) and an electron acceptor (F), (II-A) is reacted with (F), and then (E)
A method of reacting 3), (after reacting the (E 3) in II-A), (a method of reacting F), after reacting the (E 3) and (F), (II-A) There is a method of reacting with, but any method may be used. The reaction conditions are 40 ° C. to 200 ° C., preferably 50 ° C. to 100 ° C. for 30 seconds to 5 in the above method.
It is desirable to react for 2 hours, and in the method of (II-A) and (E 3 ) are reacted at 0 ° C to 50 ° C for 1 minute to 3 hours, and (F) is the same as the above. React under conditions. In the other method, (E 3 ) and (F) are heated at 10 ℃
After reacting at -100 ° C for 30 minutes to 2 hours, it is cooled to 40 ° C or lower, (II-A) is added, and then the reaction is conducted under the same conditions as described above. After the reaction of the solid products (II-A), (E 3 ), and (F) is completed, the liquid portion is separated and removed by filtration or decantation, and the washing with a solvent is repeated to contain an alkenylsilane polymer. A titanium catalyst component is obtained.

該アルケニルシラン重合体含有チタン触媒成分の製造に
用いられる有機アルミニウム化合物(AL2)は、一般式がA
lR4 mR5 m・X3-(m+m′)(式中、R4、R5はアルキル基、シク
ロアルキル基、アリール基等の炭化水素基またはアルコ
キシ基を、Xはハロゲンを表わし、またm,m′は0<m+
m′≦3の任意の数を表わす。)で表わされるもので、
その具体例としては、トリメチルアルミニウム、トリエ
チルアルミニウム、トリn-プロピルアルミニウム、トリ
n-ブチルアルミニウム、トリi-ブチルアルミニウム、ト
リn-ヘキシルアルミニウム、トリi-ヘキシルアルミニウ
ム、トリ2-メチルペンチルアルミニウム、トリn-オクチ
ルアルミニウム、トリn-デシルアルミニウム等のトリア
ルキルアルミニウム類、ジエチルアルミニウムモノクロ
ライド、ジn-プロピルアルミニウムモノクロライド、ジ
i-ブチルアルミニウムモノクロライド、ジエチルアルミ
ニウムモノフルオライド、ジエチルアルミニウムモノブ
ロマイド、ジエチルアルミニウムモノアイオダイド等の
ジアルキルアルミニウムモノハライド類、ジエチルアル
ミニウムハイドライド等のジアルキルアルミニウムハイ
ドライド類、メチルアルミニウムセスキクロライド、エ
チルアルミニウムセスキクロライド等のアルキルアルミ
ニウムセスキハライド類、エチルアルミニウムジクロラ
イド、i-ブチルアルミニウムジクロライド等のモノアル
キルアルミニウムジハライド類などがあげられ、他にモ
ノエトキシジエチルアルミニウム、ジエトキシモノエチ
ルアルミニウム等のアルコキシアルキルアルミニウム類
を用いることもできる。これらの有機アルミニウムは2
種類以上を混合して用いることもできる。
The organoaluminum compound (AL 2 ) used for producing the titanium catalyst component containing the alkenylsilane polymer has a general formula of A
lR 4 m R 5 m · X 3- (m + m ′) (wherein R 4 and R 5 represent a hydrocarbon group such as an alkyl group, a cycloalkyl group, an aryl group or an alkoxy group, and X represents a halogen. , And m and m ′ are 0 <m +
Represents an arbitrary number of m ′ ≦ 3. ),
Specific examples thereof include trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum, tri
Tri-alkyl aluminums such as n-butyl aluminum, tri i-butyl aluminum, tri n-hexyl aluminum, tri i-hexyl aluminum, tri 2-methylpentyl aluminum, tri n-octyl aluminum, and tri n-decyl aluminum, diethyl aluminum Monochloride, di-n-propylaluminum monochloride, di
Dialkyl aluminum monohalides such as i-butyl aluminum monochloride, diethyl aluminum monofluoride, diethyl aluminum monobromide, diethyl aluminum monoiodide, etc., dialkyl aluminum hydrides such as diethyl aluminum hydride, methyl aluminum sesquichloride, ethyl aluminum sesquichloride Alkyl aluminum sesquihalides such as, aluminum aluminum dichloride, monoalkyl aluminum dihalides such as i-butyl aluminum dichloride, and the like. In addition, alkoxyalkyl aluminums such as monoethoxydiethylaluminum and diethoxymonoethylaluminum are used. You can also 2 of these organoaluminums
It is also possible to use a mixture of more than one type.

本発明に用いるアルケニルシラン重合体含有チタン触媒
成分の製造に使用される電子供与体としては、以下に示
す種々のものが示されるが、(E2)(E3)としてはエーテル
類を主体に用い、他の電子供与体はエーテル類と共用す
るのが好ましい。電子供与体として用いられるものは、
酸素、窒素、硫黄、燐のいずれかの原子を有する有機化
合物、すなわち、エーテル類、アルコール類、エステル
類、アルデヒド類、脂肪酸類、ケトン類、ニトリル類、
アミン類、アミド類、尿素またはチオ尿素類、イソシア
ネート類、アゾ化合物、ホスフィン類、ホスファイト
類、ホスフィナイト類、硫化水素又はチオエーテル類、
チオアルコール類などである。具体例としては、ジメチ
ルエーテル、ジエチルエーテル、ジn-プロピルエーテ
ル、ジn-ブチルエーテル、ジイソアミルエーテル、ジn-
ペンチルエーテル、ジn-ヘキシルエーテル、ジi-ヘキシ
ルエーテル、ジn-オクチルエーテル、ジi-オクチルエー
テル、ジn-トデシルエーテル、ジフェニルエーテル、エ
チレングリコールモノエチルエーテル、テトラヒドロフ
ラン等のエーテル類、メタノール、エタノール、プロパ
ノール、ブタノール、ペンタノール、ヘキサノール、オ
クタノール、2-エチルヘキサノール、アリルアルコー
ル、ベンジルアルコール、エチレングリコール、グリセ
リン等のアルコール類、フェノール、クレゾール、キシ
レノール、エチルフェノール、ナフトール等のフェノー
ル類、メタクリル酸メチル、ギ酸メチル、酢酸メチル、
酪酸メチル、酢酸エチル、酢酸ビニル、酢酸n-プロピ
ル、酢酸i-プロピル、ギ酸ブチル、酢酸アミル、酢酸n-
ブチル、酢酸オクチル、酢酸フェニル、プロピオン酸エ
チル、安息香酸メチル、安息香酸エチル、安息香酸プロ
ピル、安息香酸ブチル、安息香酸オクチル、安息香酸2-
エチルヘキシル、トルイル酸メチル、トルイル酸エチ
ル、アニス酸メチル、アニス酸エチル、アニス酸プロピ
ル、アニス酸フェニル、ケイ皮酸エチル、ナフトエ酸メ
チル、ナフトエ酸エチル、ナフトエ酸プロピル、ナフト
エ酸ブチル、ナフトエ酸2-エチルヘキシル、フェニル酢
酸エチル等のモノカルボン酸エステル類、コハク酸ジエ
チル、コハク酸ジブチル、メチルマロン酸ジエチル、ブ
チルマロン酸ジエチル、マレイン酸ジブチル、ブチルマ
レイン酸ジエチル等の脂肪族多価カルボン酸エステル
類、フイタル酸モノメチル、フタル酸ジメチル、フタル
酸ジエチル、フタル酸ジ−n-プロピル、フタル酸モノ−
n-ブチル、フタル酸ジ−n-ブチル、フタル酸ジ−i-ブチ
ル、フタル酸ジ−n-ヘプチル、フタル酸ジ−2-エチルヘ
キシル、フタル酸ジ−n-オクチル、イソフタル酸ジエチ
ル、イソフタル酸ジプロピル、イソフタル酸ジブチル、
イソフタル酸ジ−2-エチルヘキシル、テレフタル酸ジエ
チル、テレフタル酸ジプロピル、テレフタル酸ジブチ
ル、ナフタレンジカルボン酸ジ−i-ブチル等の芳香族多
価カルボン酸エステル類、アセトアルデヒド、プロピオ
ンアルデヒド、ベンズアルデヒド等のアルデヒド類、ギ
酸、酢酸、プロピオン酸、酪酸、修酸、こはく酸、アク
リル酸、マレイン酸、吉草酸、安息香酸等のカルボン酸
類、無水安息香酸、無水フタル酸、無水テトラヒドロフ
タル酸等の酸無水物、アセトン、メチルエチルケトン、
メチルイソブチルケトン、ベンゾフェノンなどのケトン
類、アセトニトリル、ベンゾニトリル等のニトリル類、
メチルアミン、ジエチルアミン、トリブチルアミン、ト
リエタノールアミン、β(N,N-ジメチルアミノ)エタノ
ール、ピリジン、キノリン、α−ピコリン、2,4,6-トリ
メチルピリジン、2,2,6,6-テトラメチルピペリジン、2,
2,5,5-テトラメチルピロリジン、N,N,N′,N′-テトラメ
チルエチレンジアミン、アニリン、ジメチルアニリンな
どのアミン類、ホルムアミド、ヘキサメチルリン酸トリ
アミド、N,N,N′,N′,N″−ペンタメチル-N′-β−ジメ
チルアミノメチルリン酸トリアミド、オクタメチルピロ
ホスホルアミド等のアミド類、N,N,N′,N′-テトラメチ
ル尿素等の尿素類、フェニルイソシアネート、トルイル
イソシアネートなどのイソシアネート類、アゾベンゼン
などのアゾ化合物、エチルホスフィン、トリエチルホス
フィン、トリn-ブチルホスフィン、トリn-オクチルホス
フィン、トリフェニルホスフィン、トリフェニルホスフ
ィンオキシドなどのホスフィン類、ジメチルホスファイ
ト、ジn-オクチルホスファイト、トリエチルホスファイ
ト、トリn-ブチルホスファイト、トリフェニルホスファ
イトなどのホスファイト類、エチルジエチルホスフィナ
イト、エチルブチルホスフィナイト、フェニルジフェニ
ルホスフィナイトなどのホスフィナイト類、ジエチルチ
オエーテル、ジフェニルチオエーテル、メチルフェニル
チオエーテル、エチレンサルファイド、プロピレンサル
ファイドなどのチオエーテル類、エチルチオエーテル、
n-プロピルチオエーテル、チオフェノールなどのチオア
ルコール類などがあげられる。
As the electron donor used in the production of the alkenylsilane polymer-containing titanium catalyst component used in the present invention, various electron donors shown below are shown, but ethers are mainly used as (E 2 ) (E 3 ). It is preferable that the other electron donor is used together with the ethers. What is used as an electron donor is
Organic compounds having any atom of oxygen, nitrogen, sulfur and phosphorus, that is, ethers, alcohols, esters, aldehydes, fatty acids, ketones, nitriles,
Amines, amides, urea or thioureas, isocyanates, azo compounds, phosphines, phosphites, phosphinites, hydrogen sulfide or thioethers,
Thio alcohols and the like. Specific examples include dimethyl ether, diethyl ether, di-n-propyl ether, di-n-butyl ether, diisoamyl ether, di-n-
Pentyl ether, di-n-hexyl ether, di-hexyl ether, di-n-octyl ether, di-octyl ether, di-n-todecyl ether, diphenyl ether, ethylene glycol monoethyl ether, ethers such as tetrahydrofuran, methanol, Ethanol, propanol, butanol, pentanol, hexanol, octanol, 2-ethylhexanol, allyl alcohol, benzyl alcohol, ethylene glycol, glycerol and other alcohols, phenol, cresol, xylenol, ethylphenol, naphthol and other phenols, methacrylic acid Methyl, methyl formate, methyl acetate,
Methyl butyrate, ethyl acetate, vinyl acetate, n-propyl acetate, i-propyl acetate, butyl formate, amyl acetate, n-acetate
Butyl, octyl acetate, phenyl acetate, ethyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, octyl benzoate, 2-benzoic acid
Ethylhexyl, methyl toluate, ethyl toluate, methyl anisate, ethyl anisate, propyl anisate, phenyl anisate, ethyl cinnamate, methyl naphthoate, ethyl naphthoate, propyl naphthoate, butyl naphthoate, naphthoate 2 -Monocarboxylic acid esters such as ethylhexyl and ethyl phenylacetate, aliphatic polycarboxylic acid esters such as diethyl succinate, dibutyl succinate, diethyl methylmalonate, diethyl butylmalonate, dibutyl maleate and diethyl butylmaleate , Monomethyl fitarate, dimethyl phthalate, diethyl phthalate, di-n-propyl phthalate, mono-phthalate
n-butyl, di-n-butyl phthalate, di-i-butyl phthalate, di-n-heptyl phthalate, di-2-ethylhexyl phthalate, di-n-octyl phthalate, diethyl isophthalate, isophthalic acid Dipropyl, dibutyl isophthalate,
Aromatic polyvalent carboxylic acid esters such as di-2-ethylhexyl isophthalate, diethyl terephthalate, dipropyl terephthalate, dibutyl terephthalate and di-i-butyl naphthalene dicarboxylate, aldehydes such as acetaldehyde, propionaldehyde and benzaldehyde, Carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, acrylic acid, maleic acid, valeric acid and benzoic acid, acid anhydrides such as benzoic anhydride, phthalic anhydride and tetrahydrophthalic anhydride, acetone , Methyl ethyl ketone,
Ketones such as methyl isobutyl ketone and benzophenone, nitriles such as acetonitrile and benzonitrile,
Methylamine, diethylamine, tributylamine, triethanolamine, β (N, N-dimethylamino) ethanol, pyridine, quinoline, α-picoline, 2,4,6-trimethylpyridine, 2,2,6,6-tetramethyl Piperidine, 2,
Amine such as 2,5,5-tetramethylpyrrolidine, N, N, N ', N'-tetramethylethylenediamine, aniline, dimethylaniline, formamide, hexamethylphosphoric triamide, N, N, N', N ' , N ″ -pentamethyl-N′-β-dimethylaminomethylphosphoric triamide, amides such as octamethylpyrophosphoramide, ureas such as N, N, N ′, N′-tetramethylurea, phenyl isocyanate, Isocyanates such as toluyl isocyanate, azo compounds such as azobenzene, ethylphosphine, triethylphosphine, tri-n-butylphosphine, tri-n-octylphosphine, triphenylphosphine, phosphines such as triphenylphosphine oxide, dimethylphosphite, di-n -Octyl phosphite, triethyl phosphite, tri-n-butyl phosphite, Phosphites such as rephenylphosphite, phosphinites such as ethyldiethylphosphinite, ethylbutylphosphinite, and phenyldiphenylphosphinite, diethylthioether, diphenylthioether, methylphenylthioether, ethylene sulfide, thioethers such as propylene sulfide , Ethyl thioether,
Examples include thioalcohols such as n-propyl thioether and thiophenol.

これらの電子供与体は混合して使用することもできる。
反応生成物(I)を得るための電子供与体(E2)、固体生
成物(II−A)に反応させる(E3)のそれぞれは同じであ
っても異なっていてもよい。固体生成物(II−A)に反
応させる電子受容体(F)は、周期律表III〜VI族の元
素のハロゲン化物に代表される。具体例としては、無水
塩化アルミニウム、四塩化ケイ素、塩化第一スズ、塩化
第二スズ、四塩化チタン、四塩化ジルコニウム、三塩化
リン、五塩化リン、四塩化バナジウム、五塩化アンチモ
ンなどがあげられ、これらは混合して用いることもでき
る。最も好ましいのは四塩化チタンである。
These electron donors can also be used as a mixture.
The electron donor (E 2 ) for obtaining the reaction product (I) and (E 3 ) reacted with the solid product (II-A) may be the same or different. The electron acceptor (F) reacted with the solid product (II-A) is represented by a halide of an element of Group III to VI of the periodic table. Specific examples include anhydrous aluminum chloride, silicon tetrachloride, stannous chloride, stannic chloride, titanium tetrachloride, zirconium tetrachloride, phosphorus trichloride, phosphorus pentachloride, vanadium tetrachloride, antimony pentachloride and the like. These can also be used as a mixture. Most preferred is titanium tetrachloride.

溶媒としてはつぎのものが用いられる。脂肪族炭化水素
としては、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オ
クタン、i-オクタン等が示され、また、脂肪族炭化水素
の代りに、またはそれと共に、四塩化炭素、クロロホル
ム、ジクロルエタン、トリクロルエチレン、テトラクロ
ルエチレン等のハロゲン化炭化水素も用いることができ
る。芳香族化合物として、ナフタリン等の芳香族炭化水
素、及びその誘導体であるメシチレン、デュレン、エチ
ルベンゼン、イソプロピルベンゼン、2-エチルナフタリ
ン、1-フェニルナフタリン等のアルキル置換体、モノク
ロルベンゼン、クロルトルエン、クロルキシレン、クロ
ルエチルベンゼン、ジクロルベンゼン、ブロムベンゼン
等のハロゲン化物等が示される。
The following solvents are used. Examples of the aliphatic hydrocarbon include n-pentane, n-hexane, n-heptane, n-octane, i-octane and the like, and carbon tetrachloride, chloroform instead of or together with the aliphatic hydrocarbon. It is also possible to use halogenated hydrocarbons such as dichloroethane, trichloroethylene, and tetrachloroethylene. As aromatic compounds, aromatic hydrocarbons such as naphthalene, and their derivatives such as mesitylene, durene, ethylbenzene, isopropylbenzene, 2-ethylnaphthalene, alkyl-substituted compounds such as 1-phenylnaphthalene, monochlorobenzene, chlorotoluene, chlorxylene. , Halides such as chloroethylbenzene, dichlorobenzene, and bromobenzene are shown.

重合する工程の実施に用いられるアルケニルシラン化合
物は、一般式が (式中、nは0から2迄の整数であり、R1、R2、R3はアル
キル基、シクロアルキル基、またはアリール基を表わ
す。)で表されるもので、具体例としては、ビニルトリ
メチルシラン、ビニルトリエチルシラン、ビニルトリn-
ブチルシラン、ビニルジメチルシクロヘキシルシラン、
ビニルジメチルフェニルシラン、アリルトリメチルシラ
ン、アリルトリエチルシラン、アリルトリプロピルシラ
ン、3-ブテニルトリメチルシラン、3-ブテニルトリエチ
ルシラン等があげられる。
The alkenylsilane compound used for carrying out the step of polymerizing has the general formula (In the formula, n is an integer from 0 to 2, and R 1 , R 2 , and R 3 represent an alkyl group, a cycloalkyl group, or an aryl group.) Vinyltrimethylsilane, vinyltriethylsilane, vinyltrin-
Butylsilane, vinyldimethylcyclohexylsilane,
Examples thereof include vinyldimethylphenylsilane, allyltrimethylsilane, allyltriethylsilane, allyltripropylsilane, 3-butenyltrimethylsilane, and 3-butenyltriethylsilane.

以上の様にして得られたアルケニルシラン重合体を含む
チタン触媒成分の他にも、例えば、液状化したマグネシ
ウム化合物と析出剤、ハロゲン化合物、電子供与体(E4)
およびチタン化合物(T1)を接触して得られた固体生成物
(III)に対し、有機アルミニウム化合物(AL3)の存在下、
アルケニルシラン化合物を重合する工程を実施し、固体
生成物(IV)を得、該固体生成物(IV)にハロゲン化チタン
化合物(T2)を反応させて得られる。アルケニルシラン重
合体を含有するチタン触媒成分も用いることができる。
該チタン触媒成分の製造方法を以下に示す。
In addition to the titanium catalyst component containing the alkenylsilane polymer obtained as described above, for example, a liquefied magnesium compound and a depositing agent, a halogen compound, an electron donor (E 4 )
And solid products obtained by contacting titanium compounds (T 1 )
For (III), in the presence of an organoaluminum compound (AL 3 ),
It is obtained by carrying out a step of polymerizing an alkenylsilane compound to obtain a solid product (IV) and reacting the solid product (IV) with a titanium halide compound (T 2 ). A titanium catalyst component containing an alkenylsilane polymer can also be used.
The method for producing the titanium catalyst component will be described below.

なお、本発明でいうマグネシウム化合物の「液状化」と
はマグネシウム化合物自体が液体となる場合の他、それ
自体が溶媒に可溶であって溶液を形成する場合や、他の
化合物と反応し、若しくは錯体を形成した結果、溶媒に
可溶化して溶液を形成する場合も含む。また、溶液は完
全に溶解した場合の他、コロラド状ないし半溶解状の物
質を含む状態のものであってもさしつかえない。
The term "liquefaction" of the magnesium compound referred to in the present invention means that the magnesium compound itself becomes a liquid, the case where the magnesium compound itself is soluble in a solvent to form a solution, or reacts with another compound, Alternatively, it also includes the case where a solution is formed by being solubilized in a solvent as a result of forming a complex. Further, the solution may be in the state of containing a substance in the form of a Colorado or a semi-dissolved substance other than the case where it is completely dissolved.

液状化すべきマグネシウム化合物としては、前述の「液
状化」の状態となりうるものならばどのようなものでも
良く、例えば、マグネシウムジハライド、アルコキシマ
グネシウムハライド、アリーロキシマグネシウムハライ
ド、ジアルコキシマグネシウム、ジアリーロキシマグネ
シウム、マグネシウムオキシハライド、酸化マグネシウ
ム、水酸化マグネシウム、マグネシウムのカルボン酸
塩、ジアルキルマグネシウム、アルキルマグネシウムハ
ライド等の他、金属マグネシウムも用いることができ
る。
The magnesium compound to be liquefied may be any as long as it can be in the above-mentioned "liquefied" state, for example, magnesium dihalide, alkoxy magnesium halide, aryloxy magnesium halide, dialkoxy magnesium, diaryloxy. In addition to magnesium, magnesium oxyhalide, magnesium oxide, magnesium hydroxide, magnesium carboxylate, dialkyl magnesium, alkyl magnesium halide and the like, metal magnesium can also be used.

マグネシウム化合物を液状化する方法は公知の手段が用
いられる。例えば、マグネシウム化合物をアルコール、
アルデヒド、アミン、あるいはカルボン酸で液状化する
方法(特開昭56-811号公報等)、オルトチタン酸エステ
ルで液状化する方法(特開昭54-40293号公報等)、リン
化合物で液状化する方法(特開昭58-19307号公報等)等
の他、これらを組み合わせた方法等があげられる。また
上述の方法を適用することのできない、C-Mg結合を有す
る有機マグネシウム化合物については、エーテル、ジオ
キサン、ピリジン等に可溶であるのでこれらの溶液とし
て用いるか、有機金属化合物と反応させて、一般式がMp
MGqR6 rR7 s(Mはアルミニウム、亜鉛、ホウ素またはベ
リリウム原子、R6、R7は炭化水素残基、p、q、r、s>0、v
をMの原子価とするとr+s=vp+2qの関係にある。)で示
される錯化合物を形成させ(特開昭50-139885号公報
等)、炭化水素溶媒に溶解し、液状化することができ
る。
As a method of liquefying the magnesium compound, known means are used. For example, a magnesium compound is an alcohol,
Liquefaction with aldehydes, amines or carboxylic acids (JP-A-56-811), liquefaction with orthotitanate (JP-A-54-40293), liquefaction with phosphorus compounds In addition to the method (Japanese Patent Application Laid-Open No. 58-19307) and the like, a method in which these are combined is also included. In addition, it is not possible to apply the above method, for the organomagnesium compound having a C-Mg bond, since it is soluble in ether, dioxane, pyridine, etc., it is used as a solution of these, or by reacting with an organometallic compound, The general formula is M p
MG q R 6 r R 7 s (M is aluminum, zinc, boron or beryllium atom, R 6 and R 7 are hydrocarbon residues, p, q, r, s> 0, v
Is the valence of M, there is a relation of r + s = vp + 2q. ) Can be formed (for example, JP-A-50-139885) and dissolved in a hydrocarbon solvent to be liquefied.

更にまた、金属マグネシウムを用いる場合には、アルコ
ールとオルトチタン酸エスチルで液状化する方法(特開
昭50-51587号公報等)や、エーテル中でハロゲン化アル
キルと反応させ、いわゆるグリニャール試薬を形成する
方法で液状化することができる。
Furthermore, when metallic magnesium is used, a method of liquefying with alcohol and ethyl orthotitanate (Japanese Patent Laid-Open No. 50-51587, etc.) or reacting with an alkyl halide in ether to form a so-called Grignard reagent It can be liquefied by the method.

以上の様なマグネシウム化合物を液状化させる方法の中
で、例えば、塩化マグネシウムをチタン酸エステルおよ
びアルコールを用いて炭化水素溶媒(D2)に溶解させる場
合について述べると、塩化マグネシウム1モルに対し
て、チタン酸エステルを0.1モル〜2モル、アルコール
を0.1モル〜5モル、溶媒(D2)を0.1〜5用いて、各
成分を任意の添加順序で混合し、その懸濁液を攪拌しな
がら40℃〜200℃、好ましくは50℃〜150℃で加熱する。
該反応および溶解に要する時間は5分〜7時間、好まし
くは10分〜5時間である。チタン酸エステルとしてはTi
(OR8)4で表わされるオルトチタン酸エステル、およびR
O−Ti(OR10)(OR11OR12
表わされるポリチタン酸エステルである。ここでR8、R9
R10、R11およびR12は炭素数1〜20のアルキル基、または
炭素数3〜20のシクロアルキル基であり、tは2〜20の
数である。
Among the methods for liquefying magnesium compounds as described above, for example, the case of dissolving magnesium chloride in a hydrocarbon solvent (D 2 ) using titanic acid ester and alcohol is described as follows: , 0.1 mol to 2 mol of titanic acid ester, 0.1 mol to 5 mol of alcohol, and 0.1 to 5 of solvent (D 2 ) are used to mix the components in an arbitrary addition order, and the suspension is stirred. Heating is performed at 40 ° C to 200 ° C, preferably 50 ° C to 150 ° C.
The time required for the reaction and dissolution is 5 minutes to 7 hours, preferably 10 minutes to 5 hours. Ti as titanate
Orthotitanate represented by (OR 8 ) 4 and R
9 O—Ti (OR 10 ) (OR 11 ) t OR 12 is a polytitanate ester. Where R 8 , R 9 ,
R 10 , R 11 and R 12 are an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, and t is a number of 2 to 20.

具体的には、オルトチタン酸メチル、オルトチタン酸エ
チル、オルトチタン酸n-プロピル、オルトチタン酸i-プ
ロピル、オルトチタン酸n-ブチル、オルトチタン酸i-ブ
チル、オルトチタン酸n-アミル、オルトチタン酸2-エチ
ルヘキシル、オルトトタン酸n-オクチル、オルトチタン
酸フェニルおよびオルトチタン酸シクロヘキシルなどの
オルトチタン酸エステル、ポリチタン酸メチル、ポリチ
タン酸エチル、ポリチタン酸n-プロピル、ポリチタン酸
i-プロピル、ポリチタン酸n-ブチル、ポリチタン酸i-ブ
チル、ポリチタン酸n-アミル、ポリチタン酸2-エチルヘ
キシル、ポリチタン酸n-オクチル、ポリチタン酸フェニ
ル、およびポリチタン酸シクロヘキシルなどのポリチタ
ン酸エステルを用いることができる。ポリチタン酸エス
テルの使用量は、オルトチタン酸エステルに換算して、
オルトチタン酸エステル相当量を用いればよい。
Specifically, methyl orthotitanate, ethyl orthotitanate, n-propyl orthotitanate, i-propyl orthotitanate, n-butyl orthotitanate, i-butyl orthotitanate, n-amyl orthotitanate, Orthotitanate such as 2-ethylhexyl orthotitanate, n-octyl orthottanate, phenyl orthotitanate and cyclohexyl orthotitanate, methyl polytitanate, ethyl polytitanate, n-propyl polytitanate, polytitanate
Use polytitanate esters such as i-propyl, n-butyl polytitanate, i-butyl polytitanate, n-amyl polytitanate, 2-ethylhexyl polytitanate, n-octyl polytitanate, phenyl polytitanate, and cyclohexyl polytitanate. You can The amount of polytitanate used is converted to orthotitanate,
An equivalent amount of orthotitanate may be used.

アルコールとしては脂肪族飽和および不飽和アルコール
を使用することができる。具体的には、メチルアルコー
ル、エチルアルコール、n-プロピルアルコール、i-プロ
ピルアルコール、n-ブチルアルコール、n-アミルアルコ
ール、i-アミルアルコール、n-ヘキシルアルコール、n-
オクチルアルコール、2-エチルヘキシルアルコールおよ
びアリルアルコールなどの1価アルコールのほかに、エ
チレングリコール、トリメチレングリコールおよびグリ
セリンなどの多価アルコールも用いることができる。そ
の中でも炭素数4〜10の脂肪族飽和アルコールが好まし
い。
Aliphatic saturated and unsaturated alcohols can be used as alcohols. Specifically, methyl alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, n-amyl alcohol, i-amyl alcohol, n-hexyl alcohol, n-
In addition to monohydric alcohols such as octyl alcohol, 2-ethylhexyl alcohol and allyl alcohol, polyhydric alcohols such as ethylene glycol, trimethylene glycol and glycerin can also be used. Of these, aliphatic saturated alcohols having 4 to 10 carbon atoms are preferable.

不活性炭化水素溶媒(D2)としては、ペンタン、ヘキサ
ン、ヘプタン、ノナン、デカンおよびケロシンなどの脂
肪族炭化水素、ベンゼン、トルエンおよびキシレンなど
の芳香族炭化水素、四塩化炭化水素、1,2-ジクロルエタ
ン、1,1,2-トリクロルエタン、クロルベンゼンおよび0-
ジクロルベンゼンなどのハロゲン化炭素水素を挙げるこ
とができる。その中でも脂肪族炭化水素が好ましい。
As the inert hydrocarbon solvent (D 2), pentane, hexane, heptane, nonane, aliphatic hydrocarbons such as decane and kerosene, benzene, aromatic hydrocarbons such as toluene and xylene, tetrachloride hydrocarbon, 1,2 -Dichloroethane, 1,1,2-trichloroethane, chlorobenzene and 0-
Mention may be made of halogenated carbon hydrogen such as dichlorobenzene. Of these, aliphatic hydrocarbons are preferable.

固体生成物(III)は上記の液状化したマグネシウム化合
物と析出剤(X1)、ハロゲン化合物(X2)、電子供与体(E4)
およびチタン化合物(T1)を接触して得られる。析出剤(X
1)としては、ハロゲン、ハロゲン化炭化水素、ハロゲン
含有ケイ素化合物、ハロゲン含有アルミニウム化合物、
ハロゲン含有チタン化合物、ハロゲン含有ジルコニウム
化合物、ハロゲン含有バナジウム化合物の様なハロゲン
化剤があげられる。また、液状化したマグネシウム化合
物が前述した有機マグネシウム化合物の場合には、活性
水素を有する化合物、例えば、アルコール、Si-H結合を
有するポリシロキサン等を用いることもできる。これら
の析出剤(X1)の使用量はマグネシウム化合物1モルに対
して0.1モル〜50モル用いる。また、ハロゲン化合物
(X2)としては、ハロゲンおよびハロゲンを含有する化合
物があげられ、析出剤の例としてあげられたハロゲン化
剤と同様なものが使用可能であり、析出剤としてハロゲ
ン化剤を用いた場合には、ハロゲン化合物(X2)の新たな
使用を必ずしも必要としない。ハロゲン化合物(X2)の使
用量はマグネシウム化合物1モルに対して0.1モル〜50
モル用いる。
The solid product (III) is a liquefied magnesium compound and a precipitant (X 1 ), a halogen compound (X 2 ), an electron donor (E 4 ).
And a titanium compound (T 1 ) in contact with each other. Precipitating agent (X
As 1 ), halogen, halogenated hydrocarbon, halogen-containing silicon compound, halogen-containing aluminum compound,
Examples of the halogenating agent include a halogen-containing titanium compound, a halogen-containing zirconium compound, and a halogen-containing vanadium compound. When the liquefied magnesium compound is the above-mentioned organomagnesium compound, a compound having active hydrogen, such as alcohol or polysiloxane having a Si—H bond, can be used. The amount of these depositing agents (X 1 ) used is 0.1 to 50 mol per 1 mol of the magnesium compound. Also, halogen compounds
Examples of (X 2 ) include halogen and compounds containing halogen, the same halogenating agents as examples of the precipitating agent can be used, and when a halogenating agent is used as the precipitating agent, Does not necessarily require a new use of the halogen compound (X 2 ). The amount of the halogen compound (X 2 ) used is 0.1 mol to 50 mol per 1 mol of the magnesium compound.
Use mol.

電子供与体(E4)としては、既述の(E2)および(E3)として
使用されたものと同様なものが例示できる他、トリメチ
ルメトキシシラン、トリメチルエトキシシラン、ジメチ
ルジメトキシシラン、ジメチルジエトキシシラン、ジフ
ェニルジメトキシシラン、メチルフェニルジメトキシシ
ラン、ジフェニルジエトキシシラン、エチルトリエトキ
シシラン、メチルトリメトキシシラン、ビニルトリメト
キシシラン、フェニルトリメトキシシラン、メチルトリ
エトキシシラン、エチルトリエトキシシラン、ビニルト
リエトキシシラン、ブチルトリエトキシシラン、フェニ
ルトリエトキシシラン、エチルトリi-プロポキシシラ
ン、ビニルトリアセトキシシラン等のSi-O-C結合を有す
る有機ケイ素化合物があげられ、好ましくは、芳香族モ
ノカルボン酸エステル類、芳香族多価カルボン酸エステ
ル類、アルコキシシラン類、特に好ましくは、芳香族多
価カルボン酸エステル類が用いられる。
Examples of the electron donor (E 4 ) include those similar to those used as (E 2 ) and (E 3 ) described above, trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyldi Ethoxysilane, diphenyldimethoxysilane, methylphenyldimethoxysilane, diphenyldiethoxysilane, ethyltriethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, vinyltriethoxy Examples of the organic silicon compound having a Si-OC bond such as silane, butyltriethoxysilane, phenyltriethoxysilane, ethyltrii-propoxysilane, and vinyltriacetoxysilane are preferable, and aromatic monocarboxylic acid esters are preferable. , Aromatic polyvalent carboxylic acid esters, alkoxysilanes, and particularly preferably aromatic polyvalent carboxylic acid esters are used.

これら電子供与体(E4)は1種類以上が用いられ、その使
用量はマグネシウム化合物1モルに対し、0.01モル〜5
モルである。
One or more kinds of these electron donors (E 4 ) are used, and the amount used is 0.01 mol to 5 mol per 1 mol of the magnesium compound.
It is a mole.

固体生成物(III)の調製に必要なチタン化合物(T1)は、
一般式 Ti(OR13)4-uXu(式中、R13はアルキル基、シクロアルキ
ル基、またはアリール基を、Xはハロゲンを表わし、u
は0<u≦4の任意の数である。)で表わされるハロゲ
ン化チタン化合物や、前述のマグネシウム化合物の液状
化の際にあげられたオルトチタン酸エステルやポリチタ
ン酸エステルが用いられる。ハロゲン化チタン化合物の
具体例としては、四塩化チタン、四臭化チタン、三塩化
メトキシチタン、三塩化エトキシチタン、三塩化プロポ
キシチタン、三塩化ブトキシチタン、三塩化フェノキシ
チタン、三臭化エトキシチタン、三臭化ブトキシチタ
ン、二塩化ジメトキシチタン、二塩化ジエトキシチタ
ン、二塩化ジプロポキシチタン、二塩化ジブトキシチタ
ン、二塩化ジフェノキシチタン、二臭化ジエトキシチタ
ン、二臭化ジブトキシチタン、塩化トリメトキシチタ
ン、塩化トリエトキシチタン、塩化トリブトキシチタ
ン、塩化トリフェノキシチタン等があげられる。オルト
チタン酸エステルおよびポリチタン酸エステルとしては
既述のものと同様なものがあげられる。これらチタン化
合物(T1)は1種以上が用いられるが、チタン化合物(T1)
としてハロゲン化チタン化合物を用いた場合は、ハロゲ
ンを有しているので析出剤(X1)およびハロゲン化合物(X
2)の使用については任意である。また、マグネシウム化
合物の液状化の際にチタン酸エステルを使用した場合に
も、チタン化合物(T1)の新たな使用は任意である。チタ
ン化合物(T1)の使用量はマグネシウム化合物1モルに対
し、0.1モル〜100モルである。
The titanium compound (T 1 ) necessary for the preparation of the solid product (III) is
General formula Ti (OR 13 ) 4-u X u (wherein R 13 represents an alkyl group, a cycloalkyl group or an aryl group, X represents a halogen, and u
Is an arbitrary number of 0 <u ≦ 4. The titanium halide compound represented by the formula (1) or the orthotitanate ester or polytitanate ester mentioned in the liquefaction of the magnesium compound is used. Specific examples of the titanium halide compound, titanium tetrachloride, titanium tetrabromide, methoxy titanium trichloride, ethoxy titanium trichloride, propoxy titanium trichloride, butoxy titanium trichloride, phenoxy titanium trichloride, ethoxy titanium tribromide, Butoxy titanium tribromide, dimethoxy titanium dichloride, diethoxy titanium dichloride, dipropoxy titanium dichloride, dibutoxy titanium dichloride, diphenoxy titanium dichloride, diethoxy titanium dibromide, dibutoxy titanium dibromide, chloride Examples thereof include trimethoxy titanium, triethoxy titanium chloride, tributoxy titanium chloride, and triphenoxy titanium chloride. Examples of the orthotitanate and polytitanate include the same ones as described above. One or more of these titanium compounds (T 1 ) are used, but the titanium compound (T 1 )
When a titanium halide compound is used as the compound, since it has halogen, the depositing agent (X 1 ) and the halogen compound (X 1
Use of 2 ) is optional. Further, even when a titanate ester is used in the liquefaction of the magnesium compound, the new use of the titanium compound (T 1 ) is optional. The amount of the titanium compound (T 1 ) used is 0.1 mol to 100 mol per 1 mol of the magnesium compound.

以上の液状化したマグネシウム化合物、析出剤(X1)、ハ
ロゲン化合物(X2)、電子供与体(E4)およびチタン化合物
(T1)を攪拌下に接触して固体生成物(III)を得る。接触
の際には不活性炭化水素溶媒(D3)を用いても良く、また
各成分をあらかじめ希釈して用いても良い。用いる不活
性炭化水素溶媒(D3)としては既述の(D2)と同様なものが
例示できる。使用量はマグネシウム化合物1モルに対
し、0〜5,000mlである。接触の方法については種々の
方法があるが、例えば、液状化したマグネシウム化合
物に(X1)を添加し、固体を析出させ、該固体に(X2)、
(E4)、(T1)を任意の順に接触させる方法。液状化した
マグネシウム化合物と(E4)を接触させた溶液に(X1)を添
加し、固体を析出させ、該固体に(X2)、(T1)を任意の順
に接触させる方法。液状化したマグネシウム化合物と
(T1)を接触させた後、(X1)を添加し、更に(E4)、(X2)を
任意の順に接触させる方法等がある。各成分の使用量に
ついては前述の範囲であるが、これらの成分は一時に使
用してもよいし、数段階に分けて使用しても良い。ま
た、既述したように、一つの成分が他の成分をも特徴づ
ける原子若しくは基を有する場合は、他の成分の新たな
使用は必ずしも必要でない。例えば、マグネシウム化合
物を液状化する際にチタン酸エステルを使用した場合は
(T1)が、析出剤(X1)としてハロゲン含有チタン化合物を
使用した場合は(X2)および(T1)が、析出剤(X1)としてハ
ロゲン化剤を使用した場合は(X2)がそれぞれ任意の使用
成分となる。
Liquefied magnesium compound, precipitation agent (X 1 ), halogen compound (X 2 ), electron donor (E 4 ) and titanium compound
(T 1 ) is contacted with stirring to obtain a solid product (III). At the time of contact, an inert hydrocarbon solvent (D 3 ) may be used, or each component may be diluted in advance and used. Examples of the inert hydrocarbon solvent (D 3 ) used include the same ones as the above-mentioned (D 2 ). The amount used is 0 to 5,000 ml per mol of the magnesium compound. There are various methods of contact, for example, (X 1 ) is added to a liquefied magnesium compound to precipitate a solid, and (X 2 ) is added to the solid.
A method of contacting (E 4 ) and (T 1 ) in any order. A method in which (X 1 ) is added to a solution in which a liquefied magnesium compound and (E 4 ) are brought into contact with each other to precipitate a solid, and (X 2 ) and (T 1 ) are brought into contact with the solid in any order. Liquefied magnesium compound and
After contacting (T 1 ), (X 1 ) is added, and then (E 4 ) and (X 2 ) are contacted in any order. The amount of each component used is within the above range, but these components may be used at one time or may be used in several stages. Also, as already mentioned, if one component has an atom or group that also characterizes the other component, a new use of the other component is not necessary. For example, if a titanate ester is used to liquefy a magnesium compound,
(T 1) is, in the case of using a halogen-containing titanium compound as a precipitating agent (X 1) (X 2) and the case (T 1) is, by using a halogenating agent as a precipitation agent (X 1) (X 2 ) are optional components.

各成分の接触温度は、−40℃〜+180℃、好ましくは、
−20℃〜+150℃であり、接触時間は反応圧力が大気圧
〜10kg/cm2Gで1段階ごとに5分〜8時間、好ましくは1
0分〜6時間である。
The contact temperature of each component is −40 ° C. to + 180 ° C., preferably
The contact time is -20 ° C to + 150 ° C, and the contact time is 5 minutes to 8 hours, preferably 1 at each reaction pressure of atmospheric pressure to 10 kg / cm 2 G.
It is from 0 minutes to 6 hours.

以上の接触反応において固体生成物(III)が得られる。
該固体生成物(III)は引続いて次段階の反応をさせても
よいが、既述の不活性水素溶媒により洗浄することが好
ましい。
A solid product (III) is obtained in the above catalytic reaction.
The solid product (III) may be subsequently reacted in the next step, but it is preferably washed with the above-mentioned inert hydrogen solvent.

次に、前述の方法で得られた固体生成物(III)を、有機
アルミニウム化合物(AL3)の存在下、アルケニルシラン
化合物を重合する工程を実施し、固体生成物(IV)を得
る。
Next, the solid product (III) obtained by the above method is subjected to a step of polymerizing an alkenylsilane compound in the presence of the organoaluminum compound (AL 3 ) to obtain a solid product (IV).

アルケニルシラン化合物を重合する工程は、固体生成物
(III)100gに対し、不活性炭化水素溶媒(D4)100ml〜5,00
0ml、有機アルミニウム化合物(AL3)5g〜5,000gを加
え、反応温度0℃〜90℃で1分〜10時間、反応圧力は大
気圧〜10kg/cm2Gの条件下で、アルケニルシラン化合物
を0.1〜100kg添加し、最終チタン触媒成分中のアルケニ
ルシラン重合体の含量が0.1重量%〜99重量%となる様
に重合させる。該アルケニルシラン重合体の含量が0.1
重量%未満であると得られたポリプロピレン樹脂組成物
の透明性おび結晶性向上の効果が不十分であり、また99
重量%を超えると該向上効果が顕著でなくなり経済的に
不利となる。
The step of polymerizing the alkenylsilane compound is a solid product.
(III) relative to 100 g, an inert hydrocarbon solvent (D 4) 100ml~5,00
0 ml of organoaluminum compound (AL 3 ) 5 g to 5,000 g was added, the reaction temperature was 0 ° C. to 90 ° C. for 1 minute to 10 hours, and the reaction pressure was atmospheric pressure to 10 kg / cm 2 G under the conditions of alkenylsilane compound. Add 0.1 to 100 kg, and polymerize so that the content of the alkenylsilane polymer in the final titanium catalyst component will be 0.1 to 99% by weight. The alkenylsilane polymer content is 0.1
If the amount is less than 10% by weight, the effect of improving the transparency and crystallinity of the obtained polypropylene resin composition is insufficient, and 99
When the content is more than weight%, the improvement effect is not remarkable and it is economically disadvantageous.

また、、該重合する工程を実施する段階において、安息
香酸エチル、トルイル酸メチルおよびアニス酸エチルな
どのカルボン酸エステルや、フェニルトリエトキシシラ
ン、ジフェニルジメトキシシランおよびメチルトリエト
キシシランなどのシラン化合物等に代表される電子供与
体を共存させることも可能である。それらの使用量は、
固体生成物(III)100g当り0〜5,000gである。
In the step of carrying out the step of polymerizing, carboxylic acid esters such as ethyl benzoate, methyl toluate and ethyl anisate, silane compounds such as phenyltriethoxysilane, diphenyldimethoxysilane and methyltriethoxysilane, etc. It is also possible to coexist with a representative electron donor. Their usage is
0 to 5,000 g per 100 g of solid product (III).

重合工程実施の際に用いられる有機アルミニウム化合物
(AL3)、溶媒(D4)およびアルケニルシラン化合物は、そ
れぞれ既述の(AL2)、(D2)およびアルケニルシラン化合物
と同様なものが用いられる。
Organoaluminum compound used when carrying out the polymerization step
As (AL 3 ), the solvent (D 4 ) and the alkenylsilane compound, the same ones as the above-mentioned (AL 2 ), (D 2 ) and the alkenylsilane compound are used.

以上の様にアルケニルシラン化合物による重合する工程
を行ない、既述の不活性炭化水素溶媒で洗浄されて、固
体生成物(IV)が得られる。
As described above, the step of polymerizing with the alkenylsilane compound is performed, and the solid product (IV) is obtained by washing with the above-mentioned inert hydrocarbon solvent.

続いて、固体生成物(IV)にハロゲン化チタン化合物(T2)
を反応させてアルケニルシラン重合体を含有したチタン
触媒成分が得られる。ハロゲン化チタン化合物(T2)とし
ては、既述の固体生成物(III)の調製に必要なチタン化
合物(T1)の例としてあげられた一般式Ti(OR13)4-uX
u(式中R13はアルキル基、シクロアルキル基、またはア
リール基を、Xはハロゲンを表わし、uは0<u≦4の
任意の数である。)で表わされるハロゲン化チタン化合
物が用いられ、具体例としても同様なものが例示できる
が、四塩化チタンが最も好ましい。
Subsequently, the solid product (IV) was added to the titanium halide compound (T 2 ).
To obtain a titanium catalyst component containing an alkenylsilane polymer. As the titanium halide compound (T 2 ), the general formula Ti (OR 13 ) 4-u X given as an example of the titanium compound (T 1 ) necessary for the preparation of the solid product (III) described above is used.
A titanium halide compound represented by u (wherein R 13 represents an alkyl group, a cycloalkyl group, or an aryl group, X represents a halogen, and u is an arbitrary number of 0 <u ≦ 4) is used. Although similar examples can be given as specific examples, titanium tetrachloride is most preferable.

固体生成物(IV)とハロゲン化チタン化合物(T2)との反応
は、固体生成物(IV)中のマグネシウム化合物1モルに対
して、ハロゲン化チタン化合物(T2)を1モル以上使用し
て、反応温度20℃〜200℃、反応圧力は大気圧〜10kg/cm
2Gの条件下で5分〜6時間、好ましくは10分〜5時間反
応させる。また、該反応時には不活性炭化水素溶媒(D5)
や電子供与体(E5)の存在下において行なうことも可能で
あり、具体的には既述の(D1)〜(D4)や(E4)と同様な不活
性溶媒や電子供与体が用いられる。これらの使用量は、
固体生成物(IV)100gに対して(D5)0〜5,000ml、固体生
成物(IV)中のマグネシウム化合物1モルに対して(E5)は
0〜2モルの範囲が望ましい。固体生成物(IV)とハロゲ
ン化チタン化合物(T2)および必要に応じて更に電子供与
体との反応後は濾別またはデカンテーション法により固
体を分離不活性炭化水素溶媒で洗浄し、未反応物あるい
は副生物などを除去し、チタン触媒生物が得られる。
The reaction of the solid product (IV) and the titanium halide compound (T 2), relative to the magnesium compound 1 mol in the solid product (IV), using a titanium halide compound (T 2) 1 mole or more The reaction temperature is 20 ℃ to 200 ℃, the reaction pressure is atmospheric pressure to 10kg / cm.
The reaction is carried out under 2 G for 5 minutes to 6 hours, preferably 10 minutes to 5 hours. Further, during the reaction, an inert hydrocarbon solvent (D 5 )
It is also possible to carry out the reaction in the presence of an electron donor (E 5 ) or an electron donor, and specifically, the same inert solvent and electron donor as those described above for (D 1 ) to (D 4 ) and (E 4 ). Is used. The usage of these is
It is desirable that (D 5 ) be 0 to 5,000 ml per 100 g of the solid product (IV) and that (E 5 ) be 0 to 2 mol per 1 mol of the magnesium compound in the solid product (IV). After reaction of the solid product (IV) with the titanium halide compound (T 2 ) and, if necessary, an electron donor, the solid is separated by filtration or decantation and washed with an inert hydrocarbon solvent, and unreacted. By removing substances or by-products, a titanium catalyst product is obtained.

以上の様にして各種の方法で得られたアルケニルシラン
重合体を含有したチタン触媒成分は、公知のプロピレン
等のオレフィン重合用チタン触媒成分と同様に用いるこ
とができる。
The titanium catalyst component containing the alkenylsilane polymer obtained by various methods as described above can be used in the same manner as the known titanium catalyst component for olefin polymerization such as propylene.

該アルケニルシラン重合体含有チタン触媒成分を有機ア
ルミニウム化合物(AL1)、および必要に応じて電子供与
体(E1)と組み合せて触媒とするか、更にα−オレフィン
を少量重合させて予備活性化した触媒とし、既述した公
知のプロピレンの重合方法と同様な重合方法によって、
プロピレン、若しくはプロピレンとプロピレン以外のα
−オレフィンを重合することによって(B)ポリプロピ
レンが得られる。
The alkenylsilane polymer-containing titanium catalyst component is combined with an organoaluminum compound (AL 1 ) and optionally an electron donor (E 1 ) to form a catalyst, or a small amount of α-olefin is further preliminarily activated. As a catalyst, by the same polymerization method as the known propylene polymerization method described above,
Propylene, or α other than propylene and propylene
-(B) polypropylene is obtained by polymerizing olefins.

有機アルミニウム化合物(AL1)としては前述したチタン
触媒成分を得る際に用いた(AL2)や(AL3)と同様な有機ア
ルミニウム化合物を使用することができる。また必要に
応じて用いる電子供与体(E1)は、有機酸エステル、アル
コキシシラン化合物やアリーロキシシラン化合物等の様
なSi-O-C結合を有する有機ケイ素化合物、エーテル、ケ
トン、酸無水物、アミン等が好ましく用いられる。具体
的には前述したチタン触媒成分を製造する際に用いる電
子供与体(E2)〜(E5)として例示したものと同様なものが
あげられる。
As the organoaluminum compound (AL 1 ), the same organoaluminum compounds as (AL 2 ) and (AL 3 ) used for obtaining the titanium catalyst component described above can be used. Further, the electron donor (E 1 ) used as necessary is an organic acid ester, an organosilicon compound having a Si-OC bond such as an alkoxysilane compound or an aryloxysilane compound, an ether, a ketone, an acid anhydride, or an amine. Etc. are preferably used. Specific examples thereof include the same as those exemplified as the electron donors (E 2 ) to (E 5 ) used when producing the titanium catalyst component described above.

アルケニルシラン重合体を含有したチタン触媒成分、有
機アルミニウム化合物(AL1)、および電子供与体(E1)の
使用量は、チタン触媒成分1gに対して有機アルミニウ
ム化合物(AL1)0.005g〜500g、電子供与体(E1)0〜500g
である。
The amount of the titanium catalyst component containing the alkenylsilane polymer, the organoaluminum compound (AL 1 ) and the electron donor (E 1 ) used is 0.005 g to 500 g of the organoaluminum compound (AL 1 ) per 1 g of the titanium catalyst component. , Electron donor (E 1 ) 0-500 g
Is.

また、予備活性化およびプロピレンと共重合する際に用
いられるα−オレフィンはプロピレン以外に、エチレ
ン、ブテン-1、ペンテン-1、ヘキセン-1、ヘプテン-1、
オクテン-1、等の直鎖モノオレフィン類、4-メチル−ペ
ンテン-1、2-メチル−ペンテン-1等の枝鎖モノオレフィ
ン類等があげられる。かくして得られた(B)アルケニ
ルシラン含有チタン触媒成分を用いて製造されたポリプ
ロピレンは前述した(A)公知のポリプロピレンに添加
されて本発明のポリプロピレン樹脂組成物が得られる。
添加量についてはアルケニルシラン重合体の含量が全組
成物に対して、0.1重量ppm〜2重量%となる様に添加す
る。該アルケニルシラン重合体の含量が0.1重量ppm未満
であると、得られた組成物の透明性および結晶性向上の
効果が不十分であり、2重量%を超えると該効果の向上
が顕著でなくなり経済的でない。
Further, α-olefin used in the pre-activation and copolymerization with propylene, in addition to propylene, ethylene, butene-1, pentene-1, hexene-1, heptene-1,
Examples include straight chain monoolefins such as octene-1, and branched chain monoolefins such as 4-methyl-pentene-1 and 2-methyl-pentene-1. The polypropylene produced using the thus obtained (B) alkenylsilane-containing titanium catalyst component is added to the above-mentioned (A) known polypropylene to obtain the polypropylene resin composition of the present invention.
Regarding the addition amount, it is added so that the content of the alkenylsilane polymer becomes 0.1 wtppm to 2 wt% with respect to the entire composition. When the content of the alkenylsilane polymer is less than 0.1 ppm by weight, the effect of improving the transparency and crystallinity of the obtained composition is insufficient, and when it exceeds 2% by weight, the effect is not remarkable. Not economical.

本発明の組成物の製造にあたっては、上記(A)および
(B)成分の所定量を混合し、引き続き充分混練すれば
良い。混合装置としてはヘンセルミキサー(商品名)、
スーパーミキサーなどの高速攪拌装置を用いればよく、
また混練装置としては、バンバリミキサー、ロール、コ
ニーダー、単軸若しくは2軸の押出機などを用いれば良
い。混合条件は限定されないが、室温〜100℃、好まし
くは室温〜60℃で1分ないし1時間、好ましくは3分な
いし30分である。また、混練条件も限定されないが、押
出機内の滞留時間として10秒〜5分、好ましくは20秒〜
2分である。混練温度としては180〜300℃、好ましくは
200〜280℃である。
In producing the composition of the present invention, it is sufficient to mix predetermined amounts of the above-mentioned components (A) and (B), and then sufficiently knead. As a mixing device, Henschel mixer (trade name),
A high speed stirring device such as a super mixer may be used,
As a kneading device, a Banbury mixer, a roll, a co-kneader, a single-screw or twin-screw extruder, etc. may be used. The mixing conditions are not limited, but are room temperature to 100 ° C., preferably room temperature to 60 ° C., for 1 minute to 1 hour, preferably 3 minutes to 30 minutes. The kneading conditions are also not limited, but the residence time in the extruder is 10 seconds to 5 minutes, preferably 20 seconds to
2 minutes. The kneading temperature is 180 to 300 ° C, preferably
200 to 280 ° C.

本発明の組成物には必要に応じて通常ポリプロピレンに
添加される各種の添加剤、例えば酸化防止剤、帯電防止
剤、紫外線吸収剤、銅害防止剤、難燃剤、顔料等を適宜
併用することができる。更に本発明の組成物には、本発
明の目的を著しく損なわない範囲において、ポリエチレ
ン、ポリブデン、エチレン−プロピレンラバー等の重合
体および、任意の充填剤を含むことができる。充填剤と
しては、例えばガラス繊維、タルク、マイカ、木粉、合
成繊維等の無機質若しくは有機質のものがあげられる。
In the composition of the present invention, various additives which are usually added to polypropylene as required, for example, an antioxidant, an antistatic agent, an ultraviolet absorber, a copper damage inhibitor, a flame retardant, a pigment, etc. may be used in combination. You can Further, the composition of the present invention may contain a polymer such as polyethylene, polybutene, ethylene-propylene rubber and the like, and an optional filler, within the range not significantly impairing the object of the present invention. Examples of the filler include inorganic or organic fillers such as glass fiber, talc, mica, wood powder and synthetic fiber.

かくして得られた本発明のポリプロピレン樹脂組成物
は、射出成形、真空成形、押し出し成形、ブロー成形、
延伸等の公知技術によってフィルム、シート、容器等の
製造に供される。
The polypropylene resin composition of the present invention thus obtained, injection molding, vacuum molding, extrusion molding, blow molding,
It is provided for manufacturing films, sheets, containers, etc. by known techniques such as stretching.

〔発明の効果〕〔The invention's effect〕

本発明のポリプロピレン樹脂組成物は、透明性および結
晶性において極めて優れている。更に本発明の組成物を
用いて製造したフィルムには、ボイドの発生が極めて少
ない。
The polypropylene resin composition of the present invention is extremely excellent in transparency and crystallinity. Furthermore, the film produced using the composition of the present invention has very few voids.

以下に示す実施例で明らかな様に、本発明の組成物を用
いて得られたプレスフィルムの内部ヘーズは、アルケニ
ルシラン重合体を含有しないチタン触媒成分を用いて得
られた公知のポリプロピレンに比べて約1/7〜2/7となっ
ており、著しく高い透明性を有する。また、透明性と同
様に結晶性も著しく向上しており、結晶化温度の上昇お
よび曲げ弾性率の向上が見られる。(実施例1〜7、比
較例1,5〜6参照) 更に又、アルケニルシラン重合体を含有しても、既に形
成された触媒系の下にアルケニルシラン化合物とプロピ
レンを多段に重合して得られたポリプロピレンを用いた
組成物(比較例2,4参照)は、アルケニルシラン重合
体の分散不良により、フィルムのボイド発生が多い他、
透明性および結晶性の向上も本発明の組成物に比較して
不十分である。
As is apparent from the examples shown below, the internal haze of the press film obtained by using the composition of the present invention is higher than that of the known polypropylene obtained by using the titanium catalyst component containing no alkenylsilane polymer. It is about 1/7 to 2/7, and has extremely high transparency. Further, the crystallinity as well as the transparency is remarkably improved, and the crystallization temperature is increased and the flexural modulus is improved. (See Examples 1 to 7 and Comparative Examples 1 and 5 to 6) Further, even if the alkenylsilane polymer is contained, it is obtained by multi-stage polymerization of the alkenylsilane compound and propylene under the catalyst system already formed. The composition using the obtained polypropylene (see Comparative Examples 2 and 4) has many voids in the film due to poor dispersion of the alkenylsilane polymer,
The improvement in transparency and crystallinity is also insufficient as compared with the composition of the present invention.

〔実施例〕〔Example〕

以下、実施例によって本発明を説明する。実施例、比較
例において用いられている用語の定義、および測定方法
は次の通りである。
Hereinafter, the present invention will be described with reference to examples. The definitions of terms used in Examples and Comparative Examples and the measuring methods are as follows.

MFR:メルトフローインデックス ASTM D−1238(L)による。 (単位:g
/10分) 内部ヘーズ:表面の影響を除いたフィルム内部ヘーズで
あり、プレス機を用いて温度200℃、圧力200kg/cm2Gの
条件下で組成物を厚さ150μのフィルムとし、フィルム
の両面に流動パラフィンを塗った後、JISK7105
に準拠してヘーズを測定した。(端子:%) 結晶化温度:示差走査熱量計を用いて、10℃/分の降温
速度で測定した。 (単位:℃) 曲げ弾性率:組成物を射出成形機で溶融樹脂温度230
℃、金型温度50℃でJIS形のテストピースを作成し、
該テストピースについて湿度50%、室温23℃の室内で72
時間放置した後、JIS K7203に準拠して曲げ弾
性率を測定した。 (単位:kgf/cm2) ボイド:組成物をT−ダイ式製膜機を用い、溶融樹脂温
度250℃で押出し、20℃の冷却ロールで厚さ1mmのシー
トを作成した。該シートを150℃の熱風で70秒間加熱
し、二軸延伸機を用いて、縦横両方向に7倍ずつ延伸
し、厚み20μの二軸延伸フィルムを得た。該フィルムを
光学顕微鏡にて観察し、直径が10μ以上のボイドの数を
測定し、1cm2当り20個未満を○、20個以上50個未満を
△、50個以上を×で示した。
MFR: Melt flow index According to ASTM D-1238 (L). (Unit: g
Internal haze: It is the internal haze of the film excluding the influence of the surface, and the composition is made into a film having a thickness of 150μ under the conditions of a temperature of 200 ° C and a pressure of 200 kg / cm 2 G using a press machine. After coating liquid paraffin on both sides, JISK7105
The haze was measured according to. (Terminal:%) Crystallization temperature: measured with a differential scanning calorimeter at a temperature decreasing rate of 10 ° C./min. (Unit: ° C) Flexural modulus: The composition was melted on an injection molding machine at a temperature of 230
℃, mold temperature 50 ℃, make a JIS type test piece,
The test piece is 72% in a room with a humidity of 50% and a room temperature of 23 ° C.
After standing for a time, the flexural modulus was measured according to JIS K7203. (Unit: kgf / cm 2 ) Void: The composition was extruded at a molten resin temperature of 250 ° C. using a T-die type film forming machine, and a sheet having a thickness of 1 mm was prepared with a cooling roll of 20 ° C. The sheet was heated with hot air at 150 ° C. for 70 seconds and stretched 7 times in both longitudinal and transverse directions using a biaxial stretching machine to obtain a 20 μ thick biaxially stretched film. The film was observed with an optical microscope, and the number of voids having a diameter of 10 μm or more was measured, and less than 20 per 1 cm 2 was indicated by ◯, 20 or more and less than 50 by Δ, and 50 or more by x.

実施例1 (1)アルケニルシラン重合体含有チタン触媒成分を用い
たポリプロピレン(B)の製造 アルケニルシラン重合体含有チタン触媒成分の製造 n-ヘキサン6ジエチルアルミニウムモノクロライド(D
EAC)5.0モル、ジイソアミルエーテル12.0モルを25℃で
1分間で混合し、5分間同温度で反応させて反応生成液
(I)(ジイソアミルエーテル/DEACモル比2.4)を得
た。窒素置換された反応器に四塩化チタン40モルを入
れ、35℃に加熱し、これに上記反応生成液(I)の全量
を180分間で滴下した後、同温度に60分間保ち、80℃に
昇温して更に1時間反応させ、室温まで冷却し、上澄液
を除き、n-ヘキサン20を加えてデカンテーションで上
澄液を除く操作を4回繰り返して固体生成物(II)を得
た。この(II)全量をn-ヘキサン60中に懸濁させ、ジエ
チルアルミニウムモノクロライド600gを加え、40℃でア
リルトリメチルシラン35kgを添加し、40℃で2時間重合
する工程を行った。該工程実施後50℃まで昇温し、上澄
液を除くn-ヘキサン30を加えてデカンテーションで上
澄液を除く操作を4回繰り返して、重合する工程の実施
を施した固体生成物(II−A)を得た。この固体生成物
の全量をn-ヘキサン25中に懸濁させた状態で四塩化チ
タン3.5kgを室温にて約10分間で加え、80℃にて30分間
反応させた後、更にジイソアミルエーテル1.6kgを加え8
0℃で1時間反応させた。反応終了後、上澄液をデカン
テーションで除いた後40のn-ヘキサンを加え、10分間
攪拌し、静置して上澄液を除く操作を5回繰り返した
後、減圧で乾燥させチタン触媒成分を得た。得られたチ
タン触媒成分中のポリアリルトリメチルシラン含量は8
5.7重量%、チタン含量は3.6重量%であった。
Example 1 (1) Production of polypropylene (B) using titanium catalyst component containing alkenylsilane polymer Production of titanium catalyst component containing alkenylsilane polymer n-Hexane 6 Diethylaluminum Monochloride (D
EAC) 5.0 mol and diisoamyl ether 12.0 mol were mixed at 25 ° C. for 1 minute and reacted at the same temperature for 5 minutes to obtain a reaction product liquid (I) (diisoamyl ether / DEAC molar ratio 2.4). 40 mol of titanium tetrachloride was placed in a reactor purged with nitrogen, heated to 35 ° C., the whole amount of the above reaction product liquid (I) was added dropwise to this in 180 minutes, and then kept at the same temperature for 60 minutes and then to 80 ° C. The temperature was raised and the reaction was continued for another hour, then cooled to room temperature, the supernatant was removed, n-hexane 20 was added and the supernatant was removed by decantation was repeated 4 times to obtain a solid product (II). It was The whole amount of this (II) was suspended in n-hexane 60, 600 g of diethylaluminum monochloride was added, 35 kg of allyltrimethylsilane was added at 40 ° C., and polymerization was carried out at 40 ° C. for 2 hours. After carrying out this step, the temperature was raised to 50 ° C., n-hexane 30 excluding the supernatant was added, and the operation of removing the supernatant by decantation was repeated 4 times to carry out the step of polymerizing a solid product ( II-A) was obtained. 3.5 kg of titanium tetrachloride was added in a state where the whole amount of the solid product was suspended in n-hexane 25 at room temperature for about 10 minutes and reacted at 80 ° C. for 30 minutes, and then diisoamyl ether 1.6 was added. 8 kg added
The reaction was carried out at 0 ° C for 1 hour. After the reaction was completed, the supernatant was removed by decantation, 40 n-hexane was added, the mixture was stirred for 10 minutes, allowed to stand and the supernatant was removed 5 times. The ingredients are obtained. The content of polyallyltrimethylsilane in the obtained titanium catalyst component was 8
The content was 5.7% by weight and the titanium content was 3.6% by weight.

予備活性化触媒の調製 内容積100の傾斜羽根付きステンレス製反応器を窒素
ガスで置換した後、n-ヘキサン70、ジエチルアルミニ
ウムモノクロリド11.4g、で得たチタン触媒成分1.26k
gを室温で加えた後、30℃で2時間かけてエチレンを1.2
5Nm3供給し、反応させた(チタン触媒成分1g当り、エ
チレン1.0g反応)後、未反応エチレンを除去し、予備活
性化触媒を得た。
Preparation of pre-activated catalyst After replacing the stainless steel reactor with an inclined blade with an internal volume of 100 with nitrogen gas, n-hexane 70, diethyl aluminum monochloride 11.4 g, obtained titanium catalyst component 1.26 k
After adding g at room temperature, add ethylene to 1.2 at 30 ° C for 2 hours.
After supplying 5 Nm 3 and reacting (1.0 g of ethylene per 1 g of titanium catalyst component reaction), unreacted ethylene was removed to obtain a preactivated catalyst.

プロピレンの重合 窒素置換をした内容積80の攪拌機のついたL/D=3
の横型重合器のMFR2.0のポリプロピレンパウダー20k
g投入後、上記予備活性化触媒をチタン原子換算で6.5ミ
リグラム原子/hr、ジエチルアルミニウムモノクロライ
ドの30重量%n-ヘキサン溶液をジエチルアルミニウムモ
ノクロライドとして3.8g/hrで連続的に供給した。
Polymerization of Propylene L / D = 3 equipped with a stirrer with an internal volume of 80 and nitrogen substitution
Horizontal Polymerizer MFR2.0 Polypropylene Powder 20k
After the addition of g, the above pre-activated catalyst was continuously supplied at 6.5 mg atom / hr in terms of titanium atom, and a 30 wt% n-hexane solution of diethylaluminum monochloride at 3.8 g / hr as diethylaluminum monochloride.

また気相中の濃度が1.0容積%を保つ様に水素を、全圧
が23kg/cm2Gを保つ様にプロピレンをそれぞれ供給し
て、プロピレンの気相重合を70℃において120時間、連
続して行った。重合期間中は、重合器内のポリマーの保
有レベルが50容積%となる様にポリマーを重合器から連
続的に10kg/hrで抜き出された。抜き出されたポリマー
は続いてプロピレンオキサイドを0.2容積%含む窒素ガ
スによって、95℃にて30分間接触処理された後、ポリア
リルトリメチルシランを741重量ppm含んだMFR1.8の
ポリプロピレン(B)として得られた。
Hydrogen was supplied so that the concentration in the gas phase was maintained at 1.0% by volume, and propylene was supplied so that the total pressure was maintained at 23 kg / cm 2 G, and gas phase polymerization of propylene was continuously performed at 70 ° C for 120 hours. I went. During the polymerization period, the polymer was continuously withdrawn from the polymerization vessel at 10 kg / hr so that the retention level of the polymer in the polymerization vessel was 50% by volume. The polymer extracted was subsequently subjected to contact treatment with nitrogen gas containing 0.2% by volume of propylene oxide for 30 minutes at 95 ° C., and then as polypropylene (B) of MFR1.8 containing 741 ppm by weight of polyallyltrimethylsilane. Was obtained.

(2)ポリプロピレン樹脂組成物の製造 内容積50のヘンセルミキサー(商品名)に(1)で得た
ポリアリルトリメチルシランを含有したポリプロピレン
(B)3.0kg、MFR1.8の通常のプロピレン単独重合体粉末
を7.0kg、テトラキス[メチレン−3-(3′,5′-ジ−t-ブ
チル-4′-ヒドロキシフェニル)プロピオネート]メタ
ン5g、およびカルシウムステアレート5gを投入し、
5分間攪拌混合した。引き続いて、内径40mmの単軸押出
機を用いて溶融混練温度230℃にして押し出し、ペレッ
ト状のポリプロピレン樹脂組成物を得た。得られた組成
物についての評価結果を表に示した。
(2) Production of polypropylene resin composition A polypropylene (B) containing the polyallyltrimethylsilane obtained in (1) (3.0 kg) in a Henschel mixer (trade name) with an internal volume of 50, and a normal propylene single weight of MFR1.8 7.0 kg of the combined powder, 5 g of tetrakis [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, and 5 g of calcium stearate were added,
Stir-mix for 5 minutes. Subsequently, using a single-screw extruder having an inner diameter of 40 mm, the mixture was extruded at a melt-kneading temperature of 230 ° C. to obtain a pellet-shaped polypropylene resin composition. The evaluation results of the obtained composition are shown in the table.

比較例1 実施例1の(2)において、ポリアリルトリメチルシラン
を含有するポリプロピレンを用いずに、通常のプロピレ
ン単独重合体10kgを用いる以外は同様にして組成物を得
た。得られた組成物についての評価結果を表に示した。
Comparative Example 1 A composition was obtained in the same manner as in Example 1 (2) except that polypropylene containing polyallyltrimethylsilane was not used and 10 kg of a normal propylene homopolymer was used. The evaluation results of the obtained composition are shown in the table.

比較例2 (1)アルケニルシラン重合体を含有したポリプロピレン
の製造 実施例1の(1)のにおいて固体生成物(II)をアリル
トリメチルシランを重合する工程を実施することなしに
固体生成物(II−A)相当物とすること以外は同様にし
てチタン触媒成分を得た。
Comparative Example 2 (1) Production of Polypropylene Containing Alkenylsilane Polymer The solid product (II) in Example 1 (1) was used without carrying out the step of polymerizing allyltrimethylsilane. -A) A titanium catalyst component was obtained in the same manner except that it was an equivalent product.

実施例1の(1)ので使用した反応器にn-ヘキサン60
、ジエチルアルミニウムモノクロライド60g、および
上記で得たチタン触媒成分360gを室温で加えた後、ア
リルトリメチルシラン3.8kgを加え、40℃にて2時間反
応させた。(チタン触媒成分1g当り4.0g反応) 実施例1の(1)のにおいて、予備活性化触媒の代り
に、上記で得た、アリルトリメチルシランを反応させ
た触媒スラリーを用いる以外は同様にしてプロピレンの
重合を行ったところ、生成した塊状ポリマーが、抜き出
し配管を閉塞してしまった為、重合を開始後14時間で製
造を停止しなければならなかった。重合停止後、室温ま
で冷却してから反応器を開放し、塊状ポリマーを取り出
し、粉砕機にかけてポリアリルトリメチルシランを769
重量ppm含んだMFR1.5のポリプロピレンを得た。
N-Hexane 60 was added to the reactor used in (1) of Example 1.
Then, 60 g of diethylaluminum monochloride and 360 g of the titanium catalyst component obtained above were added at room temperature, 3.8 kg of allyltrimethylsilane was added, and the mixture was reacted at 40 ° C. for 2 hours. (Reaction of 4.0 g per 1 g of titanium catalyst component) Propylene was obtained in the same manner as in (1) of Example 1 except that the catalyst slurry obtained by reacting allyltrimethylsilane obtained above was used in place of the preactivated catalyst. When the polymerization was carried out, the generated bulk polymer clogged the extraction pipe, and therefore the production had to be stopped 14 hours after the start of the polymerization. After the polymerization was stopped, the reactor was opened after cooling to room temperature, the lump polymer was taken out, and pulverized with a pulverizer to give 769 polyallyltrimethylsilane.
A polypropylene with MFR 1.5 containing ppm by weight was obtained.

(2)実施例1の(2)においてアルケニルシラン重合体含有
チタン触媒成分を用いて得られたポリプロピレン(B)
の代わりに上記(1)で得たポリプロピレン3.0kgを用いる
以外は同様にしてポリプロピレン樹脂組成物を得た。
(2) Polypropylene (B) obtained by using the titanium catalyst component containing the alkenylsilane polymer in (2) of Example 1
A polypropylene resin composition was obtained in the same manner except that 3.0 kg of the polypropylene obtained in (1) above was used instead of.

比較例3および実施例2,3 実施例1の(2)においてポリアリルトリメチルシランを
含有するポリプロピレン(B)と通常のプロピレン単独
重合体の配合比率を変えて、ポリアリルトリメチルシラ
ン含量が、それぞれ0.01重量ppm、12重量ppm、371重量ppm
であるポリプロピレン樹脂組成物を得た。
Comparative Example 3 and Examples 2 and 3 The polypropylene (B) containing polyallyltrimethylsilane and the ordinary propylene homopolymer in (2) of Example 1 were changed to have different polyallyltrimethylsilane contents. 0.01 wtppm, 12 wtppm, 371 wtppm
To obtain a polypropylene resin composition.

実施例4 (1)アルケニルシラン重合体含有チタン触媒成分を用い
たポリプロピレン(B)の製造 チタン触媒成分の製造 撹拌機付きステンレス製反応器中において、デカン3
、無水塩化マグネシウム480g、オルトチタン酸n-ブチ
ル1.7kgおよび2-エチル-1-ヘキサノール1.95kgを混合
し、撹拌しながら、130℃に1時間加熱して溶解させ均
一な溶液とした。該均一溶液を70℃とし、撹拌しながら
フタル酸ジイソブチル180gを加え1時間経過後四塩化ケ
イ素5.2kgを2.5期間かけて滴下し固体を析出させ、更に
70℃に1時間加熱した。固体を溶液から分離し、ヘキサ
ンで洗浄して固体生成物(III)を得た。
Example 4 (1) Production of polypropylene (B) using titanium catalyst component containing alkenylsilane polymer Production of titanium catalyst component Decane 3 was added in a stainless reactor equipped with a stirrer.
, 480 g of anhydrous magnesium chloride, 1.7 kg of n-butyl orthotitanate and 1.95 kg of 2-ethyl-1-hexanol were mixed and heated to 130 ° C. for 1 hour with stirring to dissolve to obtain a uniform solution. The homogeneous solution was heated to 70 ° C., 180 g of diisobutyl phthalate was added with stirring, and after 1 hour, 5.2 kg of silicon tetrachloride was added dropwise over 2.5 hours to precipitate a solid.
Heated to 70 ° C. for 1 hour. The solid was separated from the solution and washed with hexane to give a solid product (III).

該固体生成物(III)全量を30℃に保持したトリエチルア
ルミニウム450gおよびジフェニルジメトキシシラン145g
を含むヘキサン30に懸濁させた後、アリルトリメチル
シラン11.5kgを添加し、撹拌しながら同温度において2
時間重合する工程を実施した。処理後、上澄液を除きn-
ヘキサン20を加えてデカンテーションで上澄液を除く
操作を4回繰り返して、重合する工程を実施した固体生
成物(IV)を得た。
450 g of triethylaluminum and 145 g of diphenyldimethoxysilane in which the total amount of the solid product (III) was kept at 30 ° C.
After suspending it in hexane 30 containing hexane, 11.5 kg of allyltrimethylsilane was added, and the mixture was stirred at the same temperature for 2 minutes.
The step of polymerizing for a time was carried out. After processing, remove the supernatant and n-
Hexane 20 was added and the operation of removing the supernatant liquid by decantation was repeated 4 times to obtain a solid product (IV) subjected to the step of polymerizing.

該固体生成物(IV)全量を1,2-ジクロルエタン15に溶か
した四塩化チタン15と混合し、続いて、フタル酸ジイ
ソブチル360g加え、撹拌しながら100℃に2時間反応さ
せた後、同温度においてデカンテーションにより液相部
を除き、再び、1,2-ジクロルエタン15および四塩化チ
タン15を加え、100℃に2時間撹拌し、ヘキサンで洗
浄し乾燥してチタン触媒成分を得た。
The total amount of the solid product (IV) was mixed with titanium tetrachloride 15 dissolved in 1,2-dichloroethane 15, then 360 g of diisobutyl phthalate was added, and the mixture was reacted at 100 ° C. for 2 hours while stirring, and then at the same temperature. In 1, the liquid phase part was removed by decantation, 1,2-dichloroethane 15 and titanium tetrachloride 15 were again added, and the mixture was stirred at 100 ° C. for 2 hours, washed with hexane and dried to obtain a titanium catalyst component.

該チタン触媒成分は、その粒子形状が球形に近く、チタ
ン0.33重量%およびポリアリルシラン88.9重量%を含有
していた。
The titanium catalyst component had a particle shape close to a sphere and contained 0.33% by weight of titanium and 88.9% by weight of polyallylsilane.

予備活性化触媒の調製 内容積80の傾斜羽根付きステンレス製反応器を窒素ガ
スで置換した後、n-ヘキサン50、トリエチルアルミニ
ウム1.5kg、ジフェニルジメトキシシラン480g、および
で得たチタン触媒成分900gを室温で加えた。反応器を
30℃に保持、同温度において2時間かけてエチレンを81
0Nl供給し、反応させた(チタン触媒成分1g当り、エ
チレン1.0g反応)後、未反応エチレンを除去し、予備活
性化触媒を得た。
Preparation of pre-activated catalyst After replacing the stainless reactor with an inclined blade with an internal volume of 80 with nitrogen gas, n-hexane 50, triethylaluminum 1.5 kg, diphenyldimethoxysilane 480 g, and titanium catalyst component 900 g obtained in room temperature were added. Added in. Reactor
Maintain ethylene at 30 ° C and 81
After supplying 0 Nl and reacting (1.0 g of ethylene per 1 g of titanium catalyst component reaction), unreacted ethylene was removed to obtain a preactivated catalyst.

プロピレンの重合 実施例1の(1)ので使用した重合器にMFR2.0のポリプ
ロピレンパウダー20kgを投入後、上記で得た予備活性
化触媒スラリー(チタン触媒成分の他に、トリエチルア
ルミニウムおよびジフェニルジメトキシシランを含む)
をチタン原子換算で0.298ミリグラム原子/hrで連続的に
供給した。
Polymerization of Propylene After 20 kg of polypropylene powder of MFR2.0 was charged into the polymerization vessel used in (1) of Example 1, the preactivated catalyst slurry obtained above (in addition to the titanium catalyst component, triethylaluminum and diphenyldimethoxysilane) was used. including)
Was continuously supplied at 0.298 mg atom / hr in terms of titanium atom.

また気相中の濃度が0.15容積%を保つ様に水素を、全圧
が23kg/cm2Gを保つ様にプロピレンをそれぞれ供給し
て、プロピレンの気相重合を70℃において120時間連続
して行った。重合期間中は、重合器内のポリマーの保有
レベルが60容積%となる様にポリマーを重合器から連続
的に10kg/hrで抜き出した。抜き出されたポリマーは続
いてプロピレンオキサイドを0.2容積%を含む窒素ガス
によって、95℃にて30分間接触処理された後、ポリアリ
ルトリメチルシランを381重量ppm含んだMFR2.0のポリプ
ロピレン(B)として得られた。
Further, hydrogen was supplied so that the concentration in the gas phase was maintained at 0.15% by volume, and propylene was supplied so that the total pressure was maintained at 23 kg / cm 2 G, and gas phase polymerization of propylene was continuously performed at 70 ° C for 120 hours. went. During the polymerization period, the polymer was continuously withdrawn from the polymerization vessel at 10 kg / hr so that the retained level of the polymer in the polymerization vessel was 60% by volume. The extracted polymer was subsequently subjected to a contact treatment with nitrogen gas containing 0.2% by volume of propylene oxide at 95 ° C. for 30 minutes, and then MFR2.0 polypropylene (B) containing 381 ppm by weight of polyallyltrimethylsilane. Was obtained as.

(2)ポリプロピレン樹脂組成物の製造 実施例1の(2)において、ポリアリルトリメチルシラン
を含有したポリプロピレン(B)として上記(1)で得た
ポリプロピレン(B)を3.5kg、また通常のプロピレン
単独重合体としてMFR2.0のものを6.5kg使用すること以
外は同様にしてポリプロピレン樹脂組成物を得た。
(2) Production of polypropylene resin composition In (2) of Example 1, 3.5 kg of polypropylene (B) obtained in (1) above as polypropylene (B) containing polyallyltrimethylsilane, and ordinary propylene alone A polypropylene resin composition was obtained in the same manner except that 6.5 kg of a polymer having MFR 2.0 was used.

比較例4 (1)実施例4の(1)のにおいて固体生成物(III)をア
リルトリメチルシランで重合処理することなしに固体生
成物(IV)相当物とすること以外は同様にしてチタン触媒
成分を得た。
Comparative Example 4 (1) A titanium catalyst was prepared in the same manner as in Example 1 (1) except that the solid product (III) was converted to the solid product (IV) equivalent without being polymerized with allyltrimethylsilane. The ingredients are obtained.

実施例4の(1)ので使用した反応器にn-ヘプタン30
、上記で得たチタン触媒成分100g、ジエチルアルミ
ニウムモノクロライド400g、ジフェニルジメトキシシラ
ン120gおよびアリルトリメチルシラン1.6kgを加えて40
℃で2時間反応させた。(チタン触媒成分1g当り、ア
リルトリメチルシラン6.5g反応)次いで、n-ヘプタンで
洗浄後、濾過し固体を得た。更にn-ヘプタン30、ジエ
チルアルミニウムモノクロライド400g、ジフェニルジメ
トキシシラン55gを加えた後、プロピレン280gを供給
し、30℃で1時間反応させた。(チタン触媒成分1g当
り、プロピレン1.8g反応) 実施例4の(1)のにおいて、予備活性化触媒スラリ
ーの代わりに、上記で得た触媒スラリーを、更にトリ
エチルアルミニウム1.7g/hrおよびジフェニルジメトキ
シシラン0.30g/hrで、それぞれ別の供給口から供給する
こと以外は同様にしてプロピレンの重合を行ったとこ
ろ、生成した塊状ポリマーが、パウダー抜き出し配管を
閉塞してしまった為、重合を開始後12時間で製造を停止
しなければならなかった。停止後は比較例2の(1)の
と同様な処理をしてポリアリルトリメチルシランを401
重量ppm含んだMFR1.5のポリプロピレンを得た。
N-heptane 30 was added to the reactor used in (4) of Example 4.
, 100 g of the titanium catalyst component obtained above, 400 g of diethylaluminum monochloride, 120 g of diphenyldimethoxysilane and 1.6 kg of allyltrimethylsilane were added to 40
The reaction was carried out at 0 ° C for 2 hours. (Reaction of allyltrimethylsilane 6.5 g per 1 g of titanium catalyst component) Then, the solid was washed with n-heptane and filtered to obtain a solid. Furthermore, after adding n-heptane 30, diethylaluminum monochloride 400g, and diphenyldimethoxysilane 55g, propylene 280g was supplied and it was made to react at 30 degreeC for 1 hour. (Propylene 1.8g Reaction per 1g of Titanium Catalyst Component) In place of the preactivated catalyst slurry in (1) of Example 4, the catalyst slurry obtained above was further added with triethylaluminum 1.7g / hr and diphenyldimethoxysilane. At 0.30 g / hr, propylene was polymerized in the same manner except that it was supplied from different supply ports, and the produced bulk polymer blocked the powder extraction pipe, so that 12 I had to stop manufacturing in time. After stopping, the same treatment as in (1) of Comparative Example 2 was carried out to give polyallyltrimethylsilane 401
A polypropylene with MFR 1.5 containing ppm by weight was obtained.

(2)実施例4の(2)においてアルケニルシラン重合体含有
チタン触媒成分を用いて得られたポリプロピレン(B)
の代わりに上記(1)で得たポリプロピレン3.5kgを用いる
以外は同様にしてポリプロピレン樹脂組成物を得た。
(2) Polypropylene (B) obtained by using the alkenylsilane polymer-containing titanium catalyst component in (2) of Example 4
A polypropylene resin composition was obtained in the same manner except that 3.5 kg of the polypropylene obtained in (1) above was used instead of.

実施例5 (1)実施例1の(1)のにおいて四塩化チタンの代わりに
四塩化ケイ素1.8kgおよび四塩化チタン2.0kgの混合液
を、又、ジイソアミルエーテルの量を2.2kgとして固体
生成物(II−A)に反応させたこと以外は同様にしてチ
タン触媒成分を得、後は実施例1の(1)の,と同様
にしてポリプロピレン(B)を得た。
Example 5 (1) A solid solution was prepared by using a mixed solution of 1.8 kg of silicon tetrachloride and 2.0 kg of titanium tetrachloride instead of titanium tetrachloride in (1) of Example 1 and using 2.2 kg of diisoamyl ether. A titanium catalyst component was obtained in the same manner except that the product (II-A) was reacted, and then polypropylene (B) was obtained in the same manner as in (1) of Example 1.

(2)アルケニルシラン重合体含有チタン触媒成分によっ
て得られたポリプロピレン(B)として上記(1)で得た
ポリプロピレン(B)を2.5kg、および通常のポリプロ
ピレンとしてMFR1.8、エチレン単位の含量が0.2重量%
のプロピレン−エチレンランダム共重合体7.5kgを用い
る以外は実施例1の(2)と同様にして組成物を得た。
(2) 2.5 kg of the polypropylene (B) obtained in the above (1) as the polypropylene (B) obtained by the titanium catalyst component containing the alkenylsilane polymer, and MFR1.8 as a normal polypropylene, and the content of ethylene unit is 0.2. weight%
A composition was obtained in the same manner as in (2) of Example 1 except that 7.5 kg of the propylene-ethylene random copolymer of was used.

比較例5 実施例5の(2)においてアルケニルシラン重合体含有チ
タン触媒成分によって得られたポリプロピレン(B)の
代わりにMFR1.8の通常のポリプロピレン単独重合体2.5k
gを用いた以外は同様にして組成物を得た。
Comparative Example 5 Instead of the polypropylene (B) obtained by the alkenylsilane polymer-containing titanium catalyst component in (5) of Example 5, a conventional polypropylene homopolymer of MFR1.8, 2.5k, was used.
A composition was obtained in the same manner except that g was used.

実施例6 (1)実施例4の(1)のにおいてプロピレン重合時に、気
相中の濃度が0.2容積%を保つ様にエチレンを更に供給
すること以外は同様にしてポリアリルトリメチルシラン
を376重量%含むMFR1.7のプロピレン−エチエンランダ
ム共重合体を得た。
Example 6 (1) In the same manner as in (1) of Example 4, 376 weight parts of polyallyltrimethylsilane was similarly added except that ethylene was further supplied so that the concentration in the gas phase was kept at 0.2% by volume during the propylene polymerization. % MFR 1.7 propylene-ethene random copolymer was obtained.

(2)実施例4の(2)においてアルケニルシラン重合体含有
チタン触媒成分を用いて得られたポリプロピレン(B)
として上記(1)で得たプロピレン−エチレンランダム共
重合体3.5kgを用いる以外は同様にしてポリプロピレン
樹脂組成物を得た。
(2) Polypropylene (B) obtained by using the alkenylsilane polymer-containing titanium catalyst component in (2) of Example 4
A polypropylene resin composition was obtained in the same manner as above except that 3.5 kg of the propylene-ethylene random copolymer obtained in (1) above was used.

比較例6 実施例6の(2)においてアルケニルシラン重合体含有チ
タン触媒成分を用いて得られたプロピレン−エチレンラ
ンダム共重合体を使用せずに、通常のプロピレン−エチ
レン共重合体を10kgとする以外は同様にして組成物を得
た。
Comparative Example 6 Without using the propylene-ethylene random copolymer obtained by using the alkenylsilane polymer-containing titanium catalyst component in (6) of Example 6, the usual propylene-ethylene copolymer was adjusted to 10 kg. A composition was obtained in the same manner except for the above.

実施例7 実施例1の(1)のにおいて、アリルトリメチルシラン
の代わりに3-ブテニルトリメチルシラン30kgを用いるこ
と以外は同様にしてチタン触媒成分を得て、後は実施例
1と同様にしてポリプロピレン(B)の製造およびポリ
プロピレン樹脂組成物の製造を行った。
Example 7 A titanium catalyst component was obtained in the same manner as in (1) of Example 1 except that 30 kg of 3-butenyltrimethylsilane was used instead of allyltrimethylsilane. Polypropylene (B) was manufactured and a polypropylene resin composition was manufactured.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(A)ポリプロピレンと、 (B)次式、 (式中、nは0から2迄の整数であり、R1、R2、R3はアル
キル基、シクロアルキル基、またはアリール基を表わ
す。)で示される繰返し単位からなるアルケニルシラン
重合体を含有したオレフィン重合用チタン触媒成分、有
機アルミニウム化合物(AL1)、および必要に応じて電子
供与体(E1)を組み合せてなる触媒を用いてプロピレン、
若しくはプロピレンとプロピレン以外のα−オレフィン
を重合させて得られるポリプロピレン、からなる組成物
であって該アルケニルシラン重合体の含量が全組成物に
対して、0.1重量ppm〜2重量%であることを特徴とする
ポリプロピレン樹脂組成物。
1. (A) polypropylene; (B) the following formula: (In the formula, n is an integer from 0 to 2, and R 1 , R 2 , and R 3 represent an alkyl group, a cycloalkyl group, or an aryl group.) Propylene using a catalyst containing a combination of an olefin polymerization titanium catalyst component, an organoaluminum compound (AL 1 ), and an electron donor (E 1 ) if necessary,
Alternatively, a composition comprising polypropylene obtained by polymerizing propylene and an α-olefin other than propylene, wherein the content of the alkenylsilane polymer is 0.1 wt ppm to 2 wt% with respect to the total composition. A characteristic polypropylene resin composition.
【請求項2】(A)ポリプロピレンがプロピレン単独重
合体、プロピレン−α−オレフィンランダム共重合体、
プロピレン−α−オレフィンブロック共重合体から選択
される1種類以上の重合体である特許請求の範囲第1項
に記載の組成物。
2. (A) Polypropylene is a propylene homopolymer, propylene-α-olefin random copolymer,
The composition according to claim 1, which is one or more kinds of polymers selected from propylene-α-olefin block copolymers.
【請求項3】アルケニルシラン重合体を含有するオレフ
ィン重合用チタン触媒成分が、有機アルミニウム化合物
(AL2)、若しくは有機アルミニウム化合物(AL2)と電子供
与体(E2)との反応生成物(I)に四塩化チタンを反応さ
せて得られた固体生成物(II)に対して、一般式が、 (式中、nは0から2迄の整数であり、R1、R2、R3はアル
キル基、シクロアルキル基、またはアリール基を表わ
す。)で表わされるアルケニルシラン化合物を重合する
工程を実施し、更に該重合工程を経た固体生成物(II)に
電子供与体(E3)と電子受容体とを反応させて得られるオ
レフィン重合用チタン触媒成分である特許請求の範囲第
1項に記載の組成物。
3. A titanium catalyst component for olefin polymerization containing an alkenylsilane polymer is an organoaluminum compound.
(AL 2 ) or a reaction product (I) of an organoaluminum compound (AL 2 ) and an electron donor (E 2 ) is reacted with titanium tetrachloride to obtain a solid product (II), The general formula is (Wherein n is an integer from 0 to 2 and R 1 , R 2 , and R 3 represent an alkyl group, a cycloalkyl group, or an aryl group). The solid catalyst (II) which has undergone the polymerization step and is further reacted with an electron donor (E 3 ) and an electron acceptor to obtain a titanium catalyst component for olefin polymerization. Composition.
【請求項4】アルケニルシラン重合体を含有するオレフ
ィン重合用チタン触媒成分が、液状化したマグネシウム
化合物と析出剤、ハロゲン化合物、電子供与体(E4)およ
びチタン化合物(T1)を接触して得られた固体生成物(II
I)に対して有機アルミニウム化合物(AL3)の存在下、一
般式が (式中、nは0から2迄の整数であり、R1、R2、R3はアル
キル基、シクロアルキル基、またはアリール基を表わ
す。)で表わされるアルケニルシラン化合物を重合する
工程を実施し、固体生成物(IV)を得、該固体生成物(IV)
にハロゲン化チタン化合物(T2)を反応させて得られるオ
レフィン重合用チタン触媒成分である特許請求の範囲第
1項に記載の組成物。
4. An olefin polymerization titanium catalyst component containing an alkenylsilane polymer is contacted with a liquefied magnesium compound and a depositing agent, a halogen compound, an electron donor (E 4 ) and a titanium compound (T 1 ). The solid product obtained (II
In the presence of the organoaluminum compound (AL 3 ) for I), the general formula (Wherein n is an integer from 0 to 2 and R 1 , R 2 , and R 3 represent an alkyl group, a cycloalkyl group, or an aryl group). To obtain a solid product (IV), and the solid product (IV)
The composition according to claim 1, which is a titanium catalyst component for olefin polymerization, obtained by reacting a titanium halide compound (T 2 ) with.
JP63099181A 1988-04-21 1988-04-21 Polypropylene resin composition Expired - Fee Related JPH0657775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63099181A JPH0657775B2 (en) 1988-04-21 1988-04-21 Polypropylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63099181A JPH0657775B2 (en) 1988-04-21 1988-04-21 Polypropylene resin composition

Publications (2)

Publication Number Publication Date
JPH01279940A JPH01279940A (en) 1989-11-10
JPH0657775B2 true JPH0657775B2 (en) 1994-08-03

Family

ID=14240485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63099181A Expired - Fee Related JPH0657775B2 (en) 1988-04-21 1988-04-21 Polypropylene resin composition

Country Status (1)

Country Link
JP (1) JPH0657775B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676266B2 (en) * 1990-05-08 1997-11-12 チッソ株式会社 Method for producing polypropylene composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368648A (en) * 1986-09-09 1988-03-28 Mitsui Toatsu Chem Inc Crystalline polypropylene resin composition and production thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781048B2 (en) * 1987-08-12 1995-08-30 三井東圧化学株式会社 Polypropylene resin molding
JPH075761B2 (en) * 1987-08-12 1995-01-25 三井東圧化学株式会社 Polypropylene stretched film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368648A (en) * 1986-09-09 1988-03-28 Mitsui Toatsu Chem Inc Crystalline polypropylene resin composition and production thereof

Also Published As

Publication number Publication date
JPH01279940A (en) 1989-11-10

Similar Documents

Publication Publication Date Title
EP0604401B1 (en) Production of a catalyst component for producing crystalline polymers
JPH0791332B2 (en) Method for producing titanium catalyst component for olefin polymerization
JP2554538B2 (en) Method for producing polypropylene
JPH0657775B2 (en) Polypropylene resin composition
JP2562947B2 (en) Polypropylene resin composition, its production method and use
JPH0713108B2 (en) High stereoregular polypropylene
JP2676266B2 (en) Method for producing polypropylene composition
JPH075803B2 (en) Method for producing highly stereoregular polypropylene composition
JPH07110886B2 (en) Polypropylene manufacturing method
JP2549915B2 (en) Supported titanium catalyst component for producing olefin polymer and method for producing the same
JP2657666B2 (en) Method for producing titanium catalyst component for α-olefin polymerization
JPH0627228B2 (en) Polypropylene composition, method for producing the same, and molded article
JP2671018B2 (en) Titanium catalyst component for α-olefin polymerization and method for producing the same
JPH0655869B2 (en) Polypropylene composition, method for producing the same, and molded article
JPH0696654B2 (en) Polypropylene composition, method for producing the same, and molded article
JP2950426B2 (en) Polypropylene, its production method and molded article
JPH0780950B2 (en) Method for producing titanium catalyst component for olefin polymerization
JP2589582B2 (en) Mg-containing titanium trichloride composition for olefin polymerization and method for producing the same
JPH0780952B2 (en) Titanium catalyst component for producing polyolefin and method for producing the same
JPH01262120A (en) Oriented polypropylene film
JP2733793B2 (en) Method for producing polypropylene
JPH0784499B2 (en) Titanium catalyst component for olefin polymerization and method for producing the same
JPH0780954B2 (en) Titanium catalyst component for producing olefin polymer and method for producing the same
JPH0780955B2 (en) Titanium trichloride composition for producing α-olefin polymer
JPH0780956B2 (en) Titanium catalyst component for α-olefin polymer production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees