JPH0656560A - Sog composition and production of semiconductor device by using this composition - Google Patents
Sog composition and production of semiconductor device by using this compositionInfo
- Publication number
- JPH0656560A JPH0656560A JP21189892A JP21189892A JPH0656560A JP H0656560 A JPH0656560 A JP H0656560A JP 21189892 A JP21189892 A JP 21189892A JP 21189892 A JP21189892 A JP 21189892A JP H0656560 A JPH0656560 A JP H0656560A
- Authority
- JP
- Japan
- Prior art keywords
- sog
- film
- resist
- composition
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、SOG組成物及びそ
れを用いた半導体装置の製造方法に関し、特に、フォト
リソグラフィーの精度を高める平坦化技術に係わる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an SOG composition and a method for manufacturing a semiconductor device using the same, and more particularly to a planarization technique for improving the accuracy of photolithography.
【0002】[0002]
【従来の技術】LSIの高集積化に伴い、配線の微細化
と多層化が進んでいる。配線はすべて異方性の強いエッ
チングで形成されているため配線段差は急峻な形状であ
り、しかも配線の多層化による配線交差やホール数が増
加しているためLSIチップ表面の段差はますます激し
くなっている。このような凹凸の激しい表面に配線を形
成する際には、配線パターンエッチング時に段差側壁部
にエッチング残りが生じて短絡が起こったり、配線層の
絶縁膜や配線材の段差被覆性の欠如から配線の断線や抵
抗の増大などが起こったりする不良が発生する。これら
の問題を解決するために配線層の層間絶縁膜を平坦に形
成する技術が必須となっている。このような、層間絶縁
膜の平坦化には、従来より、SOG(Spin On
Glass)が用いられている。SOGとは、ケイ素化
合物を有機溶剤に溶解した溶液、及びこれを塗布・焼成
することによって形成されるSiO2を主成分とする膜
の総称である。このSOG膜の構造は、下記に示すよう
に−Si−O−Si−の主鎖にアルキル基の側鎖が結合
した構造となっている。2. Description of the Related Art As LSIs are highly integrated, wirings are becoming finer and multilayered. Since all wiring is formed by etching with strong anisotropy, the wiring step has a steep shape, and the number of holes and the number of holes crossing are increasing due to the multilayer wiring. Has become. When a wiring is formed on such a highly uneven surface, a short circuit may occur due to etching residue on the side wall of the step when the wiring pattern is etched, or the step coverage of the insulating film of the wiring layer or the wiring material may be lacking. Defects such as disconnection of wires and increase of resistance occur. In order to solve these problems, a technique for forming a flat interlayer insulating film of a wiring layer is essential. Such flattening of the interlayer insulating film is conventionally performed by SOG (Spin On).
Glass) is used. SOG is a general term for a solution in which a silicon compound is dissolved in an organic solvent, and a film containing SiO 2 as a main component, which is formed by applying and baking the solution. The SOG film has a structure in which a side chain of an alkyl group is bonded to the main chain of -Si-O-Si- as shown below.
【0003】[0003]
【化1】 [Chemical 1]
【0004】また、従来、斯かるSOGを用いて平坦化
を行なった後、コンタクトホール等を形成する場合、図
2(A)及び(B)に示すような方法が行なわれてい
る。先ず、図2(A)に示すように、半導体基板1上に
絶縁膜2を介して配線3〜3がパターニングされたウエ
ハ全面に、プラズマCVD法にてSiO2膜4を堆積さ
せる。次に、SOG膜5を回転塗布した後、熱処理を施
してSOG膜5を硬化させる。そして、SiO2膜4が
露出するまでSOG膜5の全面エッチバックを行なった
後、図2(B)に示すように、プラズマCVD法でSi
O2膜6を再度堆積させて層間絶縁膜を平坦に形成す
る。Further, conventionally, when a contact hole or the like is formed after flattening using such SOG, a method as shown in FIGS. 2A and 2B is performed. First, as shown in FIG. 2A, a SiO 2 film 4 is deposited by plasma CVD on the entire surface of a wafer on which wirings 3 to 3 are patterned on a semiconductor substrate 1 with an insulating film 2 interposed therebetween. Next, after spin coating the SOG film 5, heat treatment is performed to cure the SOG film 5. Then, after the entire surface of the SOG film 5 is etched back until the SiO 2 film 4 is exposed, as shown in FIG.
The O 2 film 6 is deposited again to form a flat interlayer insulating film.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、このよ
うな従来のSOGは、上記構造式からも判るように、露
光光に対して透明であり、図2(B)に示したように、
層間絶縁膜中にSOG膜5が残っている場合、SiO2
膜6も透明であるため、SiO2膜6上に塗布したフォ
トレジスト7の露光光がハレーションを起こしパターン
が歪む問題や、定在波効果に起因するパターンサイズの
バラツキが生じる問題を有していた。However, such a conventional SOG is transparent to exposure light as can be seen from the above structural formula, and as shown in FIG.
If the SOG film 5 remains in the interlayer insulating film, SiO 2
Since the film 6 is also transparent, there are problems that the exposure light of the photoresist 7 applied on the SiO 2 film 6 causes halation and the pattern is distorted, and that the pattern size varies due to the standing wave effect. It was
【0006】本発明は、このような従来の問題点に着目
して創案されたものであって、露光光のハレーションを
防止すると共に、定存在波効果を低減して、パターン精
度を高めるSOG組成物及び線幅のバラツキの少ない半
導体装置の製造方法を得んとするものである。The present invention was devised in view of such conventional problems, and prevents the halation of the exposure light and reduces the standing wave effect to enhance the pattern accuracy. An object of the present invention is to obtain a method for manufacturing a semiconductor device in which variations in the product and line width are small.
【0007】[0007]
【課題を解決するための手段】そこで、請求項1記載の
発明は、波長が240〜450nmの光を吸収する色素
を含有することを、その解決手段としている。Therefore, the invention according to claim 1 is to solve the problem by containing a dye that absorbs light having a wavelength of 240 to 450 nm.
【0008】請求項2記載の発明は、上色素は、クルク
ミン,クマリン,ベンゾ(a)アントラセン,ベンゾ
(c)フェナントレン,9−メチルアントラセン,9−
メチルフェナントレン,1−ニトロナフタレン,2−ニ
トロナフタレン,3−ニトロナフタレン,9−ニトロフ
ェナントレン,オルト−ニトロフェノール,フェナジン
のうち少なくとも1種類から成ることを特徴としてい
る。According to the second aspect of the invention, the upper dye is curcumin, coumarin, benzo (a) anthracene, benzo (c) phenanthrene, 9-methylanthracene, 9-
It is characterized by comprising at least one of methylphenanthrene, 1-nitronaphthalene, 2-nitronaphthalene, 3-nitronaphthalene, 9-nitrophenanthrene, ortho-nitrophenol and phenazine.
【0009】請求項3記載の発明は、段差部を有する半
導体基板上に露光波長が240〜450nmの露光光を
吸収する色素を含有するSOGを塗布する工程と、前記
SOGの上方にフォトレジストを塗布して露光・現像を
行なってレジストパターンを形成する工程と、前記レジ
ストパターンをマスクとしてドライエッチングを行なう
工程を、備えたことを、その解決方法としている。According to a third aspect of the present invention, a step of applying SOG containing a dye absorbing an exposure light having an exposure wavelength of 240 to 450 nm onto a semiconductor substrate having a step portion, and a photoresist above the SOG. The solution is to have a step of applying and exposing / developing to form a resist pattern, and a step of dry etching using the resist pattern as a mask.
【0010】[0010]
【作用】波長が240〜450nmの光を吸収する色素
を含有することにより、SOG組成物を、例えば層間絶
縁膜として用いても、フォトリソグラフィー工程で露光
光はSOG膜中の色素で吸収されるため、ハレーション
及び定在波効果を抑制する作用がある。そのため、レジ
ストパターンのパターン精度を高めることが可能とな
る。By containing a dye that absorbs light having a wavelength of 240 to 450 nm, the exposure light is absorbed by the dye in the SOG film in the photolithography process even when the SOG composition is used as, for example, an interlayer insulating film. Therefore, it has an effect of suppressing the halation and the standing wave effect. Therefore, the pattern accuracy of the resist pattern can be improved.
【0011】波長が240〜450nmの光としては、
短波長の遠紫外(deep UV)光やi線,h線,g
線等が含まれ、上記SOG組成物によりフォトリソグラ
フィー工程で用いられる露光光の吸収が可能となる。As the light having a wavelength of 240 to 450 nm,
Far-ultraviolet (deep UV) light of short wavelength, i-line, h-line, g
Lines and the like are included, and the SOG composition enables absorption of exposure light used in the photolithography process.
【0012】また、斯かるSOGを、段差部を有する半
導体基板上に塗布することにより、このSOGの上方
に、即ち直上に又は他の絶縁膜を介してフォトレジスト
を塗布して露光を行なった場合に、上記のようにハレー
ションや定在波効果を抑制できるため、露光パターンの
精度が高まり、現像後のレジストパターン精度も高ま
る。このため、このレジストパターンをマスクとしてド
ライエッチングを行なうことにより、段差部上下位置で
の線幅の差や論理回路部での線幅のバラツキを抑えた精
度の高い半導体装置が得られる。Further, by coating such a SOG on a semiconductor substrate having a step portion, a photoresist is coated above the SOG, that is, immediately above or through another insulating film to perform exposure. In this case, since the halation and the standing wave effect can be suppressed as described above, the accuracy of the exposure pattern is improved and the accuracy of the resist pattern after development is also improved. Therefore, by performing dry etching using this resist pattern as a mask, it is possible to obtain a highly accurate semiconductor device in which the difference in the line width between the vertical positions of the step portion and the variation in the line width in the logic circuit portion are suppressed.
【0013】[0013]
【実施例】以下、本発明に係るSOG組成物の詳細を実
施例に基づいて説明する。EXAMPLES Hereinafter, details of the SOG composition according to the present invention will be described based on examples.
【0014】本発明のSOG組成物は、ケイ素化合物を
有機溶剤(アルコールを主成としてエステル,ケトン等
を添加)に溶解し、それに添加物としてガラス質形成
剤,有機バインダー等を溶解して成るSOG基剤に、波
長が240〜450nmの光を吸収する色素を配合して
成る。The SOG composition of the present invention is obtained by dissolving a silicon compound in an organic solvent (alcohol as a main component and adding ester, ketone, etc.), and then dissolving a glass forming agent, an organic binder, etc. as additives. A dye that absorbs light having a wavelength of 240 to 450 nm is mixed with an SOG base.
【0015】(配合例1)ケイ素化合物,ガラス質形成
剤,有機バインダー等を有機溶剤に溶解して成るSOG
基剤10g当たり、ベンゾ(a)アントラセンを0.3
3g配合する。(Formulation Example 1) SOG prepared by dissolving a silicon compound, a glass-forming agent, an organic binder and the like in an organic solvent.
0.3% benzo (a) anthracene per 10 g base
Add 3 g.
【0016】ベンゾ(a)アントラセンの構造式は、以
下に示す通りである。The structural formula of benzo (a) anthracene is as shown below.
【0017】[0017]
【化2】 [Chemical 2]
【0018】また、ベンゾ(a)アントラセンのi線に
おける吸収係数(ε)の対数logε(/mol-1 d
m3 cm-1)は3.46である。The logarithm of the absorption coefficient (ε) of benzo (a) anthracene at the i-line log ε (/ mol −1 d)
m 3 cm -1 ) is 3.46.
【0019】(配合例2)上記配合例1のSOG基剤1
0gに対して、9−メチルアントラセンを0.12g配
合する。(Formulation Example 2) SOG base 1 of the above-mentioned formulation example 1
0.12 g of 9-methylanthracene is added to 0 g.
【0020】9−メチルアントラセンの構造式は、以下
に示す通りである。The structural formula of 9-methylanthracene is as shown below.
【0021】[0021]
【化3】 [Chemical 3]
【0022】また、9−メチルアントラセンのi線にお
ける吸収係数(ε)の対数logε(/mol-1 dm
3 cm-1)は3.96である。The logarithm of the absorption coefficient (ε) of 9-methylanthracene at the i-line log ε (/ mol -1 dm)
3 cm -1 ) is 3.96.
【0023】上記した配合例1,2のSOG組成物はi
線による露光に対して、ハレーション及び定在波効果を
有効に抑制する。また、上記配合例1,2において添加
した色素以外に例えば、The SOG compositions of the above-mentioned formulation examples 1 and 2 are i
Effectively suppresses halation and standing wave effects for line exposure. In addition to the dyes added in the above formulation examples 1 and 2, for example,
【0024】[0024]
【化4】 [Chemical 4]
【0025】の構造式で示されるクルクミン、Curcumin represented by the structural formula:
【0026】[0026]
【化5】 [Chemical 5]
【0027】の構造式で示されるクマリン、Coumarin represented by the structural formula:
【0028】[0028]
【化6】 [Chemical 6]
【0029】の構造式で示されるベンゾ(c)フェナン
トレン、Benzo (c) phenanthrene represented by the structural formula:
【0030】[0030]
【化7】 [Chemical 7]
【0031】の構造式で示される9−メチルフェナント
レン、9-methylphenanthrene represented by the structural formula:
【0032】[0032]
【化8】 [Chemical 8]
【0033】の構造式で示される1−ニトロナフタレ
ン,2−ニトロナフタレン,3−ニトロナフタレン、1-nitronaphthalene, 2-nitronaphthalene, 3-nitronaphthalene represented by the structural formula:
【0034】[0034]
【化9】 [Chemical 9]
【0035】の構造式で示される9−ニトロフェナント
レン、9-nitrophenanthrene represented by the structural formula:
【0036】[0036]
【化10】 [Chemical 10]
【0037】の構造式で示されるオルト−ニトロフェノ
ール、Ortho-nitrophenol represented by the structural formula:
【0038】[0038]
【化11】 [Chemical 11]
【0039】の構造式で示されるフェナジンなどの色素
を1種類以上配合してもよい。You may mix | blend 1 or more types of dyes, such as phenazine shown by the structural formula of.
【0040】次に、本発明に係るSOG組成物を用いた
半導体装置の製造方法の実施例を図1(A)〜(C)に
基づいて説明する。Next, an example of a method for manufacturing a semiconductor device using the SOG composition according to the present invention will be described with reference to FIGS. 1 (A) to 1 (C).
【0041】先ず、図1(A)に示すように、シリコン
基板11上に絶縁膜12を形成し、絶縁膜12上に配線
13〜13をパターニングする。次に、全面にプラズマ
CVD法を用いてSiO2(p−SiO2)膜12を堆積
させる。そして、従来方法よりも厚くSOG組成物を塗
布した後、熱処理を施して硬化させたSOG膜15を形
成する。このSOG組成物は、上記配合例1のものを用
いた。その後、図1(B)に示すSOG膜15の膜厚と
なるように、エッチバック量の少ない全面エッチバック
を行なう。First, as shown in FIG. 1A, an insulating film 12 is formed on a silicon substrate 11, and wirings 13 to 13 are patterned on the insulating film 12. Next, a SiO 2 (p-SiO 2 ) film 12 is deposited on the entire surface by using the plasma CVD method. Then, after applying the SOG composition thicker than the conventional method, heat treatment is performed to form a cured SOG film 15. As this SOG composition, the one of the above formulation example 1 was used. After that, the entire surface is etched back with a small etch back amount so as to have the film thickness of the SOG film 15 shown in FIG.
【0042】次いで、同図(B)に示すように、再度、
プラズマCVD法にてSiO2膜16を堆積させた後、
レジスト膜を塗布する。Then, as shown in FIG.
After depositing the SiO 2 film 16 by the plasma CVD method,
Apply a resist film.
【0043】その後、i線ステッパを用いてレジスト膜
17を露光し、図1(C)に示すような、コンタクトホ
ールを開口するためのレジストパターン17Aを現像す
る。その後は、レジストパターン17Aをマスクとして
ドライエッチングを行なってコンタクトホールを開口す
る。上記露光に際して、SOG膜15はi線を吸収する
ため、ハレーション及び下地の凹凸等に起因する定在波
効果を抑制する。また、SiO2膜16は、平坦なSO
G膜15上に膜厚が均一に堆積されている。このため、
レジストパターン17Aはハレーションによるパターン
形状の悪化が起こらず、良好なパターン形状となる。Then, the resist film 17 is exposed using an i-line stepper, and a resist pattern 17A for opening a contact hole as shown in FIG. 1C is developed. After that, dry etching is performed using the resist pattern 17A as a mask to open a contact hole. At the time of the exposure, the SOG film 15 absorbs the i-line, so that the standing wave effect caused by halation and unevenness of the base is suppressed. Further, the SiO 2 film 16 is a flat SO.
The film thickness is uniformly deposited on the G film 15. For this reason,
The resist pattern 17A has a good pattern shape without deterioration of the pattern shape due to halation.
【0044】また、定在波効果を低減できるため、SO
G膜15の下地の段差上下位置での線幅の差や、論理回
路部での線幅のバラツキを抑えることができる。Since the standing wave effect can be reduced, SO
It is possible to suppress the difference in line width between the upper and lower positions of the step of the base of the G film 15 and the variation in line width in the logic circuit section.
【0045】以上、実施例について説明したが、本発明
は、上記実施例及び配合例に限定されるものではなく、
構成の要旨に付随する各種の設計変更が可能である。Although the examples have been described above, the present invention is not limited to the above examples and formulation examples.
Various design changes that accompany the gist of the configuration are possible.
【0046】例えば、上記実施例においては、レジスト
パターン17Aをコンタクトホールの開口用マスクとし
て形成したが、これに限定されるものではない。For example, in the above embodiment, the resist pattern 17A was formed as a mask for opening a contact hole, but it is not limited to this.
【0047】また、上記実施例においては、SiO2膜
14,SOG膜15,SiO2膜16で層間絶縁膜を構
成したが、SOGを用いるものであれば、これに限定さ
れるものではない。Further, in the above-mentioned embodiment, the SiO 2 film 14, the SOG film 15 and the SiO 2 film 16 constitute the interlayer insulating film, but the invention is not limited to this as long as SOG is used.
【0048】[0048]
【発明の効果】以上の説明から明らかなように、本発明
によれば、SOGで露光光を吸収するため、SOGの下
地の段差に起因する定在波効果及び下地からの反射を低
減できるため、レジストパターン形状の悪化を防止でき
る効果がある。また、SOGが露光光を吸収することに
より、パターニング時のフォーカス余裕度が拡大できる
効果がある。As is apparent from the above description, according to the present invention, the exposure light is absorbed by the SOG, so that the standing wave effect and the reflection from the base due to the step difference of the SOG base can be reduced. Further, there is an effect that the deterioration of the resist pattern shape can be prevented. Further, since the SOG absorbs the exposure light, there is an effect that the focus margin during patterning can be expanded.
【0049】さらに、線幅のバラツキのより小さい半導
体装置が製造できる効果がある。Further, there is an effect that a semiconductor device having a smaller line width variation can be manufactured.
【図面の簡単な説明】[Brief description of drawings]
【図1】(A)〜(C)は本発明の実施例の工程を示す
要部断面図。FIG. 1A to FIG. 1C are cross-sectional views of essential parts showing steps of an embodiment of the present invention.
【図2】(A)及び(B)は従来例の工程を示す要部断
面図。FIG. 2A and FIG. 2B are cross-sectional views of main parts showing the steps of a conventional example.
11…シリコン基板、 13…配線、 14…SiO2膜、 15…SOG膜 16…SiO2膜、 17…レジスト膜、 17A…レジストパターン。11 ... Silicon substrate, 13 ... Wiring, 14 ... SiO 2 film, 15 ... SOG film 16 ... SiO 2 film, 17 ... Resist film, 17A ... Resist pattern.
Claims (3)
る色素を含有することを特徴とするSOG組成物。1. An SOG composition comprising a dye that absorbs light having a wavelength of 240 to 450 nm.
ンゾ(a)アントラセン,ベンゾ(c)フェナントレ
ン,9−メチルアントラセン,9−メチルフェナントレ
ン,1−ニトロナフタレン,2−ニトロナフタレン,3
−ニトロナフタレン,9−ニトロフェナントレン,オル
ト−ニトロフェノール,フェナジンのうち少なくとも1
種類からなる請求項1記載に係るSOG組成物。2. The dye is curcumin, coumarin, benzo (a) anthracene, benzo (c) phenanthrene, 9-methylanthracene, 9-methylphenanthrene, 1-nitronaphthalene, 2-nitronaphthalene, 3
At least one of -nitronaphthalene, 9-nitrophenanthrene, ortho-nitrophenol and phenazine
The SOG composition according to claim 1, which is of a type.
が240〜450nmの露光光を吸収する色素を含有す
るSOGを塗布する工程と、 前記SOGの上方にフォトレジストを塗布して露光・現
像を行なってレジストパターンを形成する工程と、 前記レジストパターンをマスクとしてドライエッチング
を行なう工程を、備えたことを特徴とする半導体装置の
製造方法。3. A step of applying SOG containing a dye absorbing an exposure light having an exposure wavelength of 240 to 450 nm onto a semiconductor substrate having a step portion, and a photoresist is applied above the SOG to perform exposure and development. And a step of performing a dry etching using the resist pattern as a mask, and a method of manufacturing a semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21189892A JPH0656560A (en) | 1992-08-10 | 1992-08-10 | Sog composition and production of semiconductor device by using this composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21189892A JPH0656560A (en) | 1992-08-10 | 1992-08-10 | Sog composition and production of semiconductor device by using this composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0656560A true JPH0656560A (en) | 1994-03-01 |
Family
ID=16613473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21189892A Pending JPH0656560A (en) | 1992-08-10 | 1992-08-10 | Sog composition and production of semiconductor device by using this composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0656560A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6268457B1 (en) | 1999-06-10 | 2001-07-31 | Allied Signal, Inc. | Spin-on glass anti-reflective coatings for photolithography |
US6368400B1 (en) | 2000-07-17 | 2002-04-09 | Honeywell International | Absorbing compounds for spin-on-glass anti-reflective coatings for photolithography |
JP2003502449A (en) * | 1999-06-10 | 2003-01-21 | ハネウエル・インターナシヨナル・インコーポレーテツド | Spin-on glass anti-reflective coating for photolithography |
WO2003044079A1 (en) * | 2001-11-15 | 2003-05-30 | Honeywell International Inc. | Spin-on-glass anti-reflective coatings for photolithography |
US7833696B2 (en) | 2004-12-17 | 2010-11-16 | Dow Corning Corporation | Method for forming anti-reflective coating |
US8053159B2 (en) | 2003-11-18 | 2011-11-08 | Honeywell International Inc. | Antireflective coatings for via fill and photolithography applications and methods of preparation thereof |
US8241707B2 (en) | 2008-03-05 | 2012-08-14 | Dow Corning Corporation | Silsesquioxane resins |
US8263312B2 (en) | 2006-02-13 | 2012-09-11 | Dow Corning Corporation | Antireflective coating material |
US8304161B2 (en) | 2008-03-04 | 2012-11-06 | Dow Corning Corporation | Silsesquioxane resins |
US8318258B2 (en) | 2008-01-08 | 2012-11-27 | Dow Corning Toray Co., Ltd. | Silsesquioxane resins |
US8344088B2 (en) | 2001-11-15 | 2013-01-01 | Honeywell International Inc. | Spin-on anti-reflective coatings for photolithography |
US9023433B2 (en) | 2008-01-15 | 2015-05-05 | Dow Corning Corporation | Silsesquioxane resins and method of using them to form an antireflective coating |
-
1992
- 1992-08-10 JP JP21189892A patent/JPH0656560A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7012125B2 (en) * | 1999-06-10 | 2006-03-14 | Honeywell International Inc. | Spin-on-glass anti-reflective coatings for photolithography |
US6506497B1 (en) | 1999-06-10 | 2003-01-14 | Honeywell International Inc. | Spin-on-glass anti-reflective coatings for photolithography |
JP2003502449A (en) * | 1999-06-10 | 2003-01-21 | ハネウエル・インターナシヨナル・インコーポレーテツド | Spin-on glass anti-reflective coating for photolithography |
US7678462B2 (en) * | 1999-06-10 | 2010-03-16 | Honeywell International, Inc. | Spin-on-glass anti-reflective coatings for photolithography |
US6824879B2 (en) | 1999-06-10 | 2004-11-30 | Honeywell International Inc. | Spin-on-glass anti-reflective coatings for photolithography |
US6268457B1 (en) | 1999-06-10 | 2001-07-31 | Allied Signal, Inc. | Spin-on glass anti-reflective coatings for photolithography |
US6956097B2 (en) | 1999-06-10 | 2005-10-18 | Honeywell International Inc. | Spin-on-glass anti-reflective coatings for photolithography |
US6969753B2 (en) | 1999-06-10 | 2005-11-29 | Honeywell International Inc. | Spin-on-glass anti-reflective coatings for photolithography |
US6368400B1 (en) | 2000-07-17 | 2002-04-09 | Honeywell International | Absorbing compounds for spin-on-glass anti-reflective coatings for photolithography |
KR100897575B1 (en) * | 2001-11-15 | 2009-05-15 | 허니웰 인터내셔날 인코포레이티드 | Spin-on-glass anti-reflective coatings for photolithography |
JP2005509914A (en) * | 2001-11-15 | 2005-04-14 | ハネウェル・インターナショナル・インコーポレーテッド | Spin-on-glass antireflection coating for photolithography |
WO2003044079A1 (en) * | 2001-11-15 | 2003-05-30 | Honeywell International Inc. | Spin-on-glass anti-reflective coatings for photolithography |
US8344088B2 (en) | 2001-11-15 | 2013-01-01 | Honeywell International Inc. | Spin-on anti-reflective coatings for photolithography |
US8053159B2 (en) | 2003-11-18 | 2011-11-08 | Honeywell International Inc. | Antireflective coatings for via fill and photolithography applications and methods of preparation thereof |
US8992806B2 (en) | 2003-11-18 | 2015-03-31 | Honeywell International Inc. | Antireflective coatings for via fill and photolithography applications and methods of preparation thereof |
US7833696B2 (en) | 2004-12-17 | 2010-11-16 | Dow Corning Corporation | Method for forming anti-reflective coating |
US8263312B2 (en) | 2006-02-13 | 2012-09-11 | Dow Corning Corporation | Antireflective coating material |
US8318258B2 (en) | 2008-01-08 | 2012-11-27 | Dow Corning Toray Co., Ltd. | Silsesquioxane resins |
US9023433B2 (en) | 2008-01-15 | 2015-05-05 | Dow Corning Corporation | Silsesquioxane resins and method of using them to form an antireflective coating |
US8304161B2 (en) | 2008-03-04 | 2012-11-06 | Dow Corning Corporation | Silsesquioxane resins |
US8241707B2 (en) | 2008-03-05 | 2012-08-14 | Dow Corning Corporation | Silsesquioxane resins |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101342024B1 (en) | Coating type underlayer film forming composition for lithography containing a naphthalene resin derivative | |
KR100628824B1 (en) | Lithographic antireflective hardmask compositions and uses thereof | |
US7109119B2 (en) | Scum solution for chemically amplified resist patterning in cu/low k dual damascene | |
JP7520137B2 (en) | Aqueous solution for manufacturing electronic equipment, method for manufacturing resist pattern, and method for manufacturing device | |
US8318607B2 (en) | Immersion lithography wafer edge bead removal for wafer and scanner defect prevention | |
JPH06267810A (en) | Preparation of method of resisting and evening it silylation and integrated circuit device | |
JPH0656560A (en) | Sog composition and production of semiconductor device by using this composition | |
JP2007017976A (en) | Underlayer composition containing heterocyclic aromatic structure to be used in multilayer lithography process, lithography structure, method for forming material layer or material element on substrate | |
US5756256A (en) | Silylated photo-resist layer and planarizing method | |
KR100472031B1 (en) | Method for fabrication of semiconductor device | |
TW201237568A (en) | Resist pattern improving material, method for forming resist pattern, method for producing semiconductor device, and semiconductor device | |
JP2001215694A (en) | Composition for forming antireflection film and method of producing semiconductor device | |
US6998351B2 (en) | Method for forming a micro pattern | |
KR20010005154A (en) | Fine pattern forming method using resist flow process | |
JPH0564338B2 (en) | ||
KR102787050B1 (en) | Method of forming patterns | |
TW202342709A (en) | Electronic device manufacturing solution, method for manufacturing resist pattern, and method for manufacturing device | |
JPH034899B2 (en) | ||
KR20010011000A (en) | Forming method of capacitor pattern using double exposure | |
KR100713238B1 (en) | Hard mask composition for resist underlayer film and manufacturing method of semiconductor integrated circuit device using same | |
KR20240166289A (en) | Method of forming patterns | |
TW202319530A (en) | Electronic device manufacturing aqueous solution, method for manufacturing resist pattern and method for manufacturing device | |
TW201642052A (en) | Patterned photoresist removal | |
KR20240166288A (en) | Method of forming patterns | |
KR100905598B1 (en) | Photoresist Pattern Formation Method |