JPH0653493A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH0653493A JPH0653493A JP20559792A JP20559792A JPH0653493A JP H0653493 A JPH0653493 A JP H0653493A JP 20559792 A JP20559792 A JP 20559792A JP 20559792 A JP20559792 A JP 20559792A JP H0653493 A JPH0653493 A JP H0653493A
- Authority
- JP
- Japan
- Prior art keywords
- gate electrode
- active region
- semiconductor device
- region
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000002955 isolation Methods 0.000 abstract description 15
- 230000015556 catabolic process Effects 0.000 abstract description 10
- 238000006731 degradation reaction Methods 0.000 abstract 2
- 230000005684 electric field Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 230000002542 deteriorative effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体装置に係り、特
に、MOS(Metal Oxide Semiconductor )型トランジ
スタ構造におけるゲート電極と活性領域との交差部分で
の電界を緩和し、耐圧の劣化を抑制すると共に、ゲート
の形状不良を防止した半導体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly, to alleviate an electric field at a crossing portion of a gate electrode and an active region in a MOS (Metal Oxide Semiconductor) type transistor structure and suppress deterioration of breakdown voltage. At the same time, it relates to a semiconductor device in which a defective shape of a gate is prevented.
【0002】[0002]
【従来の技術】従来から、LSI(Large Scale Integr
ated Circuit)の微細化に伴い、サブミクロンサイズの
素子が開発され、使用されている。このような微細なL
SIのMOS型トランジスタにおいては、その形状が当
該MOS型トランジスタの特性に大きな影響を与える。2. Description of the Related Art Conventionally, LSI (Large Scale Integration)
Submicron size devices have been developed and are being used with the miniaturization of ated circuits. Such a fine L
In the SI MOS type transistor, its shape has a great influence on the characteristics of the MOS type transistor.
【0003】一般的に、前記MOS型トランジスタのゲ
ート電極は、素子分離領域(LOCOS領域)へ連続し
て乗り上げた状態で形成され、活性領域とほぼ直角に交
差した構造を有している。そして、ソース領域及びドレ
イン領域は、前記素子分離領域の端部と、前記ゲート電
極の端部により決定される。即ち、前記ソース及びドレ
インは、前記ゲート電極とほぼ直角に交差した状態で形
成されている。In general, the gate electrode of the MOS transistor is formed in a state of continuously riding on the element isolation region (LOCOS region) and has a structure intersecting the active region at a right angle. The source region and the drain region are determined by the end of the element isolation region and the end of the gate electrode. That is, the source and the drain are formed so as to intersect the gate electrode at a right angle.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、前記M
OS型トランジスタ構造では、ゲート電極と活性領域と
が、ほぼ直角に交差するため、活性領域と、その下基板
領域とから形成されるPN接合において、この交差部分
に電界が集中し、耐圧の劣化を引き起こすという問題が
あった。また、前記ゲート電極は、前記交差部分で、活
性領域から素子分離領域へ連続して乗り上げているた
め、当該ゲート電極のフォトレジスト工程(パターニン
グ工程)において、下地段差の影響を受けやすく、ゲー
ト電極の形状に細りが生じる等、不良発生の原因となる
という問題があった。However, the above-mentioned M
In the OS type transistor structure, since the gate electrode and the active region intersect at a substantially right angle, an electric field concentrates at this intersection at the PN junction formed by the active region and the lower substrate region, and the breakdown voltage deteriorates. There was a problem of causing. In addition, since the gate electrode continuously runs from the active region to the element isolation region at the intersection, the gate electrode is easily affected by the step difference in the photoresist process (patterning process) of the gate electrode. However, there is a problem that it causes a defect such as a thin shape.
【0005】本発明は、このような問題を解決すること
を課題とするものであり、ゲート電極と活性領域との交
差部分での電界を緩和し、耐圧の劣化を抑制すると共
に、ゲートの形状不良が防止された半導体装置を提供す
ることを目的とする。An object of the present invention is to solve such a problem and to alleviate the electric field at the intersection of the gate electrode and the active region to suppress the deterioration of breakdown voltage and the shape of the gate. An object is to provide a semiconductor device in which defects are prevented.
【0006】[0006]
【課題を解決するための手段】この目的を達成するため
に、本発明は、半導体基板上に、ゲート酸化膜を介して
ゲート電極を形成した構造を有する半導体装置におい
て、前記ゲート電極は、活性領域と斜めに交差する構造
を有することを特徴とする半導体装置を提供するもので
ある。To achieve this object, the present invention provides a semiconductor device having a structure in which a gate electrode is formed on a semiconductor substrate via a gate oxide film, wherein the gate electrode is active. It is intended to provide a semiconductor device having a structure that diagonally intersects a region.
【0007】そして、前記交差角度が45度であること
を特徴とする半導体装置を提供するものである。The present invention provides a semiconductor device characterized in that the intersection angle is 45 degrees.
【0008】[0008]
【作用】本発明によれば、前記ゲート電極と活性領域と
を斜めに交差したため、活性領域と、その下基板領域と
から形成されるPN接合において、この交差部分に電界
が集中することを抑制することができ、耐圧の劣化を防
ぐことができる。さらに、前記ゲート電極は、活性領域
に対応する部分のサイズより、素子分離領域付近でのサ
イズが太くなった形状となる。従って、ゲート電極をパ
ターニングする際に行うフォトレジスト工程において発
生していた、素子分離領域と活性領域との間に生じた段
差に起因するゲート電極の細りを緩和することができ
る。According to the present invention, since the gate electrode and the active region are diagonally intersected with each other, it is possible to prevent the electric field from being concentrated at the intersection at the PN junction formed by the active region and the lower substrate region. Therefore, it is possible to prevent the breakdown voltage from deteriorating. Further, the gate electrode has a shape in which the size in the vicinity of the element isolation region is larger than the size of the portion corresponding to the active region. Therefore, it is possible to reduce the thinning of the gate electrode caused by the step difference between the element isolation region and the active region, which has occurred in the photoresist process performed when patterning the gate electrode.
【0009】またさらに、前記ゲート電極と活性領域と
の交差角度を45度とすることで、前記交差部分に電界
が集中することを、さらに効率良く抑制することがで
き、より耐圧の劣化を防ぐことができる。Further, by setting the intersection angle between the gate electrode and the active region to be 45 degrees, it is possible to more efficiently suppress the concentration of the electric field at the intersection portion, and to prevent the breakdown voltage from further deteriorating. be able to.
【0010】[0010]
【実施例】次に、本発明に係る一実施例について、図面
を参照して説明する。図1は、本発明に係る半導体装置
のMOS型トランジスタ構造を示す平面図、図2及び図
3は、図1に示す半導体装置のMOS型トランジスタ構
造を製造する工程を示す一部断面図であり、図1のA−
A断面を示している。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment according to the present invention will be described with reference to the drawings. 1 is a plan view showing a MOS type transistor structure of a semiconductor device according to the present invention, and FIGS. 2 and 3 are partial cross-sectional views showing steps of manufacturing the MOS type transistor structure of the semiconductor device shown in FIG. , A- in FIG.
The A section is shown.
【0011】図1に示す半導体装置のMOS型トランジ
スタ構造のゲート電極2は、素子分離領域3へ連続して
乗り上げた状態で形成されており、活性領域1と45度
の角度で交差した構造を有している。即ち、前記ゲート
電極2は、活性領域1に対応する部分のサイズより、素
子分離領域3付近のサイズが、素子分離領域3に向けて
徐々に太くなった形状となっている。そして、前記活性
領域1には、ゲート電極2を挟んで左右に、ソース4及
びドレイン5が形成されている。The gate electrode 2 of the MOS type transistor structure of the semiconductor device shown in FIG. 1 is formed in a state of continuously riding on the element isolation region 3, and has a structure intersecting the active region 1 at an angle of 45 degrees. Have That is, the gate electrode 2 has a shape in which the size in the vicinity of the element isolation region 3 gradually becomes thicker toward the element isolation region 3 than the size of the portion corresponding to the active region 1. A source 4 and a drain 5 are formed on the left and right sides of the active region 1 with the gate electrode 2 interposed therebetween.
【0012】次に、この構造を有した半導体装置のMO
S型トランジスタ構造の製造工程について説明する。図
2に示す工程では、半導体基板11に、公知の選択酸化
技術を行い、当該半導体基板11の素子分離領域3に、
フィールド酸化膜12を形成し、活性領域1と素子分離
領域3の分離を行う。その後、前記活性領域1の半導体
基板11を露出させる。Next, the MO of the semiconductor device having this structure
The manufacturing process of the S-type transistor structure will be described. In the step shown in FIG. 2, the semiconductor substrate 11 is subjected to a known selective oxidation technique, and the element isolation region 3 of the semiconductor substrate 11 is
The field oxide film 12 is formed, and the active region 1 and the element isolation region 3 are separated. Then, the semiconductor substrate 11 of the active region 1 is exposed.
【0013】次に、図3に示す工程では、図2に示す工
程で得た半導体基板11に熱酸化を行い、当該半導体基
板11上及びフィールド酸化膜12上に、膜厚が20〜
200Å程度の酸化膜を形成する。次いで、前記酸化膜
上に、CVD(Chemical Vapor Deposition)法によ
り、膜厚が1000〜5000Å程度の多結晶シリコン
膜を堆積する。次に、前記多結晶シリコン膜内に、不純
物をイオン注入し、当該多結晶シリコン膜の低抵抗化を
行う。次いで、前記多結晶シリコン膜上に、フォトレジ
スト膜を塗布し、これをパターニングして、ゲート電極
形成用のレジストパターンを形成する。この時、前記レ
ジストパターンは、後に形成するゲート電極2の形状
が、図1に示す形状となるように形成する。次に、前記
レジストパターンをマスクとして、前記多結晶シリコン
膜及び酸化膜に異方性エッチングを行い、ゲート酸化膜
13及びゲート電極2を形成する。その後、前記ゲート
電極2をマスクとして、不純物をイオン注入した後、熱
処理を行い、ソース4及びドレイン5を形成する。Next, in the step shown in FIG. 3, the semiconductor substrate 11 obtained in the step shown in FIG. 2 is thermally oxidized to form a film having a thickness of 20 to 20 on the semiconductor substrate 11 and the field oxide film 12.
An oxide film of about 200Å is formed. Then, a polycrystalline silicon film having a film thickness of about 1000 to 5000 Å is deposited on the oxide film by a CVD (Chemical Vapor Deposition) method. Next, impurities are ion-implanted into the polycrystalline silicon film to reduce the resistance of the polycrystalline silicon film. Next, a photoresist film is applied on the polycrystalline silicon film and patterned to form a resist pattern for forming a gate electrode. At this time, the resist pattern is formed such that the gate electrode 2 to be formed later has the shape shown in FIG. Next, using the resist pattern as a mask, the polycrystalline silicon film and the oxide film are anisotropically etched to form the gate oxide film 13 and the gate electrode 2. Then, using the gate electrode 2 as a mask, impurities are ion-implanted, and then heat treatment is performed to form the source 4 and the drain 5.
【0014】このようにして、図1に示すMOS型トラ
ンジスタを形成した。その後、所望の工程を行い、半導
体装置を完成する。なお、本実施例では、図1に示すよ
うに、ゲート電極2と活性領域1との交差角度を45度
に設定したが、これに限らず、ゲート電極2と活性領域
1は、斜めに交差させればよい。In this way, the MOS type transistor shown in FIG. 1 was formed. Then, desired steps are performed to complete the semiconductor device. In this embodiment, as shown in FIG. 1, the intersection angle between the gate electrode 2 and the active region 1 is set to 45 degrees, but the present invention is not limited to this, and the gate electrode 2 and the active region 1 intersect obliquely. You can do it.
【0015】また、本実施例では、多結晶シリコン膜を
用いてゲート電極2を形成したが、これに限らず、ゲー
ト電極の性能に支障を来すことなくゲート電極を形成す
ることが可能な材料であれば、他の材料を使用してもよ
いことは勿論である。Further, in the present embodiment, the gate electrode 2 is formed by using the polycrystalline silicon film, but the present invention is not limited to this, and the gate electrode can be formed without affecting the performance of the gate electrode. Of course, other materials may be used as long as they are materials.
【0016】[0016]
【発明の効果】以上説明したように、本発明に係る半導
体装置は、ゲート電極と活性領域とを斜めに交差した構
造を有するため、活性領域と、その下基板領域とから形
成されるPN接合において、この交差部分に電界が集中
することを抑制することができ、耐圧の劣化を防ぐこと
ができる。さらに、前記ゲート電極は、活性領域に対応
する部分のサイズより、素子分離領域付近でのサイズが
太くなった形状となるため、素子分離領域と活性領域と
の間に生じた段差に起因するゲート電極の細りを緩和す
ることができる。この結果、ゲート電極と活性領域との
交差部分での電界を緩和し、耐圧の劣化を抑制すると共
に、ゲートの形状不良が防止された半導体装置を提供す
ることができる。As described above, since the semiconductor device according to the present invention has a structure in which the gate electrode and the active region are obliquely intersected with each other, the PN junction formed from the active region and the underlying substrate region is formed. In the above, it is possible to prevent the electric field from concentrating at this crossing portion and prevent the breakdown voltage from deteriorating. Further, since the gate electrode has a shape in which the size in the vicinity of the element isolation region is thicker than the size of the portion corresponding to the active region, the gate caused by the step difference between the element isolation region and the active region is formed. It is possible to reduce the thinness of the electrodes. As a result, it is possible to provide the semiconductor device in which the electric field at the intersection of the gate electrode and the active region is relaxed, the breakdown voltage is suppressed from being deteriorated, and the defective shape of the gate is prevented.
【0017】また、前記ゲート電極と活性領域との交差
角度を45度とすることで、前記交差部分に電界が集中
することを、さらに効率良く抑制することができ、より
耐圧の劣化を防ぐことができる。Further, by setting the intersection angle between the gate electrode and the active region to be 45 degrees, it is possible to more efficiently suppress the concentration of the electric field at the intersection portion, and prevent the breakdown voltage from further deteriorating. You can
【図1】本発明に係る半導体装置のMOS型トランジス
タ構造を示す平面図である。FIG. 1 is a plan view showing a MOS type transistor structure of a semiconductor device according to the present invention.
【図2】図1に示す半導体装置のMOS型トランジスタ
構造を製造する工程を示す一部断面図である。2 is a partial cross-sectional view showing a process of manufacturing a MOS type transistor structure of the semiconductor device shown in FIG.
【図3】図1に示す半導体装置のMOS型トランジスタ
構造を製造する工程を示す一部断面図である。FIG. 3 is a partial cross-sectional view showing a process of manufacturing a MOS transistor structure of the semiconductor device shown in FIG.
1 活性領域 2 ゲート電極 3 素子分離領域 4 ソース 5 ドレイン 11 半導体基板 12 フィールド酸化膜 13 ゲート酸化膜 DESCRIPTION OF SYMBOLS 1 Active region 2 Gate electrode 3 Element isolation region 4 Source 5 Drain 11 Semiconductor substrate 12 Field oxide film 13 Gate oxide film
Claims (2)
ゲート電極を形成した構造を有する半導体装置におい
て、 前記ゲート電極は、活性領域と斜めに交差する構造を有
することを特徴とする半導体装置。1. A semiconductor device having a structure in which a gate electrode is formed on a semiconductor substrate via a gate oxide film, wherein the gate electrode has a structure diagonally intersecting an active region. .
とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the intersecting angle is 45 degrees.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20559792A JPH0653493A (en) | 1992-07-31 | 1992-07-31 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20559792A JPH0653493A (en) | 1992-07-31 | 1992-07-31 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0653493A true JPH0653493A (en) | 1994-02-25 |
Family
ID=16509515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20559792A Pending JPH0653493A (en) | 1992-07-31 | 1992-07-31 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0653493A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567553A (en) * | 1994-07-12 | 1996-10-22 | International Business Machines Corporation | Method to suppress subthreshold leakage due to sharp isolation corners in submicron FET structures |
KR100275327B1 (en) * | 1997-06-24 | 2000-12-15 | 김영환 | Transistor Formation Method of Semiconductor Device |
-
1992
- 1992-07-31 JP JP20559792A patent/JPH0653493A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567553A (en) * | 1994-07-12 | 1996-10-22 | International Business Machines Corporation | Method to suppress subthreshold leakage due to sharp isolation corners in submicron FET structures |
US6144081A (en) * | 1994-07-12 | 2000-11-07 | International Business Machines Corporation | Method to suppress subthreshold leakage due to sharp isolation corners in submicron FET structures |
KR100275327B1 (en) * | 1997-06-24 | 2000-12-15 | 김영환 | Transistor Formation Method of Semiconductor Device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6638816B2 (en) | Integrated circuit device with MIM capacitance circuit and method of manufacturing the same | |
JPH0231464A (en) | Semiconductor device | |
JPH0653493A (en) | Semiconductor device | |
JPH08181223A (en) | Manufacture of semiconductor device | |
JPS6039848A (en) | Manufacture of semiconductor device | |
JPS62293776A (en) | Manufacture of semiconductor device | |
JPH09148449A (en) | Method for manufacturing semiconductor device | |
JPH03171671A (en) | Semiconductor device and manufacture thereof | |
JP2817226B2 (en) | Method for manufacturing semiconductor device | |
JPS6058644A (en) | Semiconductor device | |
JPH065562A (en) | Method for forming semiconductor thin film | |
KR100244408B1 (en) | Manufacture of semiconductor device | |
JPS61107742A (en) | semiconductor equipment | |
JPH0444250A (en) | Manufacture of semiconductor device | |
JPH0529624A (en) | Thin film transistor and manufacturing method thereof | |
JPS62130525A (en) | Manufacturing method for semiconductor integrated circuits | |
JPH0475346A (en) | Manufacture of semiconductor device | |
JPH04291919A (en) | Manufacture of semiconductor device | |
JPH02170416A (en) | Manufacture of semiconductor integrated circuit | |
JPS61185974A (en) | Manufacturing method of semiconductor device | |
JPS6032976B2 (en) | Integrated circuit manufacturing method | |
JPH05275620A (en) | Semiconductor device | |
JPH02150070A (en) | Semiconductor memory | |
JPH02159734A (en) | Method of manufacturing field effect transistor | |
JPH05166831A (en) | Manufacture of semiconductor device |