[go: up one dir, main page]

JPH0653412A - Semiconductor memory device and fabrication thereof - Google Patents

Semiconductor memory device and fabrication thereof

Info

Publication number
JPH0653412A
JPH0653412A JP4206358A JP20635892A JPH0653412A JP H0653412 A JPH0653412 A JP H0653412A JP 4206358 A JP4206358 A JP 4206358A JP 20635892 A JP20635892 A JP 20635892A JP H0653412 A JPH0653412 A JP H0653412A
Authority
JP
Japan
Prior art keywords
conductor film
film
contact hole
spacer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4206358A
Other languages
Japanese (ja)
Other versions
JP2827728B2 (en
Inventor
Shinya Iwasa
晋也 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4206358A priority Critical patent/JP2827728B2/en
Publication of JPH0653412A publication Critical patent/JPH0653412A/en
Priority to US08/315,850 priority patent/US5478768A/en
Application granted granted Critical
Publication of JP2827728B2 publication Critical patent/JP2827728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To eliminate deterioration of hold characteristics caused by a step for forming a fine contact hole connecting between a storage electrode and source drain region of a stacked capacitor type DRAM. CONSTITUTION:A contact hole connecting between a storage electrode and a source drain region is made, a first conductor film 11 and a first coating 12 are laminated sequentially on an interlayer insulation film interposed between the storage electrode and the source drain region, and then the first conductor film 11 and the first coating 12 are etched into a predetermined pattern thus forming a recess 13. A spacer 14 is formed on the inner wall part of the recess and a fine contact hole is made, while surpassing the resolution limit of photolithographic technology, with the first conductor film 11a and the spacer 14 as masks thus ensuring a margin between the contact hole and the source drain region 5-1 while suppressing junction leak current. This constitution enhances hold characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体記憶装置とその製
造方法に関し、特にダイナミック・ランダム・アクセス
・メモリ(DRAM)のキャパシタ構造および形成方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device and a method of manufacturing the same, and more particularly to a capacitor structure and a method of forming a dynamic random access memory (DRAM).

【0002】[0002]

【従来の技術】DRAMの高集積化に伴いセル面積が縮
小されるため、セル蓄積容量とセル面積との比を大きく
するため種々の試みがなされコンタクト孔においては、
微細化が促進している。特にスタックト・キャパシタ型
DRAMでは、セル蓄積容量確保、線間ノイズ対策とし
てビット線上部にキャパシタを形成するC.O.B(キ
ャパシタ・オーバー・ビットライン(Capacito
r Over Bitline)セル構造が16M D
RAMから採用され始め、またコンタクト孔の微細化に
伴い側壁スペーサ型コンタクト孔等が考案されている。
2. Description of the Related Art Since the cell area is reduced with the high integration of DRAMs, various attempts have been made to increase the ratio of cell storage capacity to cell area.
Miniaturization is promoted. In particular, in a stacked capacitor type DRAM, a C.I. O. B (Capacitor over bit line (Capacito
r Over Bitline) 16M D cell structure
It has been adopted from RAM, and sidewall spacer type contact holes have been devised with the miniaturization of contact holes.

【0003】図5は従来の高アスペクトのコンタクトを
有するスタックト・キャパシタ型DRAMセルの断面
図、図6(a),(b)はその製造工程順断面図であ
る。以下、これらの図を参照して説明する。
FIG. 5 is a sectional view of a conventional stacked capacitor type DRAM cell having a high aspect contact, and FIGS. 6A and 6B are sectional views in the order of manufacturing steps thereof. Hereinafter, description will be given with reference to these drawings.

【0004】P型シリコン基板1上に、公知のLOCO
S法を用いてフィールド酸化膜2を形成して区画された
素子形成領域にゲート絶縁膜3、ゲート電極4−1…、
を順次形成し、ゲートの両側においてN型不純物を導入
して、ソース・ドレンイン領域5−1,5−2を自己整
合的に形成する。基板上全面に第1の層間絶縁膜7を堆
積し、ソース・ドレイン領域5−2上にコンタクト孔7
を形成し、ビット線8を形成する。第2の層間絶縁膜を
開口し、蓄積電極1と、ソース・ドレイン領域5−2を
電気的に接続するためのコンタクト孔21を形成する。
このとき、フォトリソグラフィー技術の解像度限界のた
め、ソース・ドレイン領域5−2及びゲート電極4−1
に対し、コンタクト孔21は充分なマージンが確保でき
ないため、図6(a)に示すようにフィールド酸化膜2
上にコンタクト孔2が開口されるのでその後コンタクト
孔21内部にN型不純物を導入し、不純物拡散層20を
形成し接合漏れ電流を低減する。ステップガバレッヂの
良好な、絶縁膜を基板上全面に成長させ公知の異方性ド
ライエッチングを施し、コンタクト孔21側面に絶縁性
スペーサ19を形成してコンタクト孔21aを形成す
る。その後、蓄積電極16を所定のパターンに形成し、
キャパシタ絶縁膜17,プレート電極18を順次積層し
パターニングをしてキャパシタを形成する。
A known LOCO is formed on the P-type silicon substrate 1.
The field insulating film 2 is formed by using the S method, and the gate insulating film 3, the gate electrodes 4-1, ...
Are sequentially formed, and N-type impurities are introduced on both sides of the gate to form the source / drain-in regions 5-1 and 5-2 in a self-aligned manner. A first interlayer insulating film 7 is deposited on the entire surface of the substrate, and contact holes 7 are formed on the source / drain regions 5-2.
And the bit line 8 is formed. The second interlayer insulating film is opened to form a contact hole 21 for electrically connecting the storage electrode 1 and the source / drain region 5-2.
At this time, due to the resolution limit of the photolithography technique, the source / drain region 5-2 and the gate electrode 4-1 are formed.
On the other hand, since the contact hole 21 cannot secure a sufficient margin, as shown in FIG.
Since the contact hole 2 is opened above, N-type impurities are introduced into the inside of the contact hole 21 to form the impurity diffusion layer 20 to reduce the junction leakage current. An insulating film having good step coverage is grown on the entire surface of the substrate and well-known anisotropic dry etching is performed to form an insulating spacer 19 on the side surface of the contact hole 21 to form a contact hole 21a. Then, the storage electrode 16 is formed in a predetermined pattern,
A capacitor insulating film 17 and a plate electrode 18 are sequentially laminated and patterned to form a capacitor.

【0005】[0005]

【発明が解決しようとする課題】この従来の蓄積電極1
6と、ソース・ドレイン領域51を電気的に接続するコ
ンタクト孔21aの形成方法では、コンタクト21aが
高アスペクト比になるのに伴い、蓄積電極16を構成す
るポリシリコン膜6のリンの拡散によるソース・ドレイ
ン領域5−1近傍のP型シリコン基板への不純物拡散が
不充分となり接合漏れ電流が増大するため、コンタクト
孔21開口後、イオン注入を施し不純物拡散層領域20
を形成する必要がある。しかし、コンタクト孔21がゲ
ート電極4−1に掛かるように開口されると、接合漏れ
電流低減のためのインオ注入により、トランジスタ特性
を変動させるため、充分なイオン注入が不可能である。
This conventional storage electrode 1
6 and the method of forming the contact hole 21a for electrically connecting the source / drain region 51 with each other, as the contact 21a has a high aspect ratio, the source due to the diffusion of phosphorus of the polysilicon film 6 forming the storage electrode 16 Impurity diffusion into the P-type silicon substrate near the drain region 5-1 is insufficient and junction leakage current increases. Therefore, after the contact hole 21 is opened, ion implantation is performed and the impurity diffusion layer region 20 is formed.
Need to be formed. However, if the contact hole 21 is opened so as to hang on the gate electrode 4-1, transistor characteristics are changed by in-implantation for reducing the junction leakage current, so that sufficient ion implantation is impossible.

【0006】また、コンタクト孔21aの形成法では、
コンタクト孔21を形成するための異方性ドライエッチ
ングと、コンタクト孔21側面の絶縁性スペーサ19を
形成するための異方性ドライエッチングにより、ソース
・ドレイン領域5−1に結晶欠陥が発生し、接合漏れ電
流を充分低減することが困難なため、ホールド特性が劣
化するという問題点があった
Further, in the method of forming the contact hole 21a,
Crystal defects occur in the source / drain region 5-1 due to anisotropic dry etching for forming the contact hole 21 and anisotropic dry etching for forming the insulating spacer 19 on the side surface of the contact hole 21. Since it is difficult to sufficiently reduce the junction leakage current, there was the problem that the hold characteristics deteriorated.

【課題を解決するための手段】本発明の半導体記憶装置
は、半導体基板の表面をゲート絶縁膜を介して選択的に
被覆するゲート電極および前記ゲート電極下部のチャネ
ル領域を挟んで前記半導体基板の表面部に設けられた一
対のソース・ドレイン領域を有するスイッチング用トラ
ンジスタと、前記スイッチング用トランジスタを覆う少
なくとも1つの層間絶縁膜の表面を選択的に被覆しコン
タクト孔を介して前記ソース・ドレイン領域の一方に接
続する蓄積電極を有する電荷蓄積用キャパシタとを含む
メモリセルを備えた半導体記憶装置において、前記層間
絶縁膜の表面に選択的に被着され所定の開口を有する第
1の導電体膜と、前記第1の導電体膜を前記開口側面に
設けられたスペーサと、前記スペーサ付きの前記開口と
自己整合する前記コンタクト孔と、前記コンタクト孔を
埋め、前記スペーサおよび前記第1の導電体膜を覆う第
2の導電体膜とからなる前記蓄積電極を有しているとい
うものである。
According to another aspect of the present invention, there is provided a semiconductor memory device, wherein a gate electrode selectively covering the surface of a semiconductor substrate via a gate insulating film and a channel region below the gate electrode are sandwiched between the semiconductor substrate. A switching transistor having a pair of source / drain regions provided on a surface portion, and a surface of at least one interlayer insulating film covering the switching transistor is selectively covered, and the source / drain region of the source / drain region is covered through a contact hole. In a semiconductor memory device including a memory cell including a charge storage capacitor having a storage electrode connected to one side, a first conductor film selectively deposited on a surface of the interlayer insulating film and having a predetermined opening, A spacer provided on the side surface of the opening for self-aligning the first conductor film with the opening with the spacer; And Ntakuto hole, filling the contact hole, is that has the storage electrode and a second conductive film covering the spacer and the first conductor film.

【0007】また、この半導体記憶装置の製造方法は、
半導体基板の表面をゲート絶縁膜を介して選択的に被覆
するゲート電極および前記ゲート電極下部のチャネル領
域を挟んで前記半導体基板の表面部に設けられた一対の
ソース・ドレイン領域を有するスイッチング用トランジ
スタを形成する工程と、少なくとも1つの層間絶縁膜を
堆積する工程と、最上層の前記層間絶縁膜上全面に前記
層間絶縁膜よりエッチングレートが小さい第1の導電体
膜を堆積する工程と、前記第1の導電体膜上全面に、第
1の被膜を形成する工程と、フォトリソグラフィー技術
を用いて前記スイッチング用トランジスタのソース・ド
レイン領域の一方の上部の前記第1の被膜及び前記第1
の導電体膜を所定のパターンに除去し凹部を形成する工
程と、前記層間絶縁膜よりエッチングレートが小さい第
2の被膜を形成し前記凹部の側面にスペーサを形成する
工程と、前記第1の導電体膜及び前記スペーサをマスク
として、前記一方のソース・ドレイン領域上にコンタク
ト孔を開口する工程と、前記第1の導電体膜及び前記ソ
ース・ドレイン領域とオーム接触する第2の導電体膜を
形成する工程と、前記第1の導電体膜及び前記第2の導
電体膜を所定のパターンに同時にエッチング除去する工
程とにより電荷蓄積用キャパシタの蓄積電極を形成する
というものである。
The method of manufacturing the semiconductor memory device is
A switching transistor having a pair of source / drain regions provided on the surface of the semiconductor substrate with a gate electrode selectively covering the surface of the semiconductor substrate via a gate insulating film and a channel region below the gate electrode sandwiched therebetween. A step of depositing at least one interlayer insulating film, a step of depositing a first conductor film having an etching rate lower than that of the interlayer insulating film on the entire surface of the uppermost interlayer insulating film, A step of forming a first film on the entire surface of the first conductor film, and the first film and the first film above one of the source / drain regions of the switching transistor by using a photolithography technique.
Forming a recess by removing the conductor film in a predetermined pattern, forming a second coating having an etching rate lower than that of the interlayer insulating film, and forming a spacer on a side surface of the recess; A step of forming a contact hole on the one source / drain region using the conductor film and the spacer as a mask, and a second conductor film that makes ohmic contact with the first conductor film and the source / drain region. And a step of simultaneously etching and removing the first conductor film and the second conductor film into a predetermined pattern to form a storage electrode of a charge storage capacitor.

【0008】[0008]

【実施例】次に本発明の実施例を図面を用いて説明す
る。図1は本発明の第1の実施例のスタックトキャパシ
タ型DRAMセルの断面図、図2(a)〜(c),図3
(a),(b)はその製造方法を説明するための工程順
断面図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a sectional view of a stacked capacitor type DRAM cell according to a first embodiment of the present invention, FIGS. 2 (a) to 2 (c) and FIG.
(A), (b) is process order sectional drawing for demonstrating the manufacturing method.

【0009】図2(a)に示すように、例えばP型シリ
コン基板1上に公知のLOCOS法を用いて分離領域
に、フィールド酸化膜2を形成して区画された素子形成
領域上にゲート絶縁膜3,ポリシリコン等からなるゲー
ト電極4−1,4−2,…を形成する。次にゲート電極
およびフィールド酸化膜をマスクにしてヒ素イオン又は
リンイオンを注入して自己整合的にN+ 型のソース・ド
レイン領域5−1,5−2を形成する。次に気相成長
(CVD)法により第1の層間絶縁膜5として、基板上
全面に酸化シリコン膜を約100nm堆積し、ソース・
ドレイン領域5−2上にコンタクト孔7を開口し、ビッ
ト線8を形成し、第2の層間絶縁膜9としてリフロー性
の高いBPSG膜を400〜600nm程度成長させ熱
処理を施す。その後酸化シリコン膜を約100nm程度
成長させ第3の層間絶縁膜10とする。第3の層間絶縁
膜10上に第1の層間絶縁膜6及び第2,第3の層間絶
縁膜9,10より異方性ドライエッチング次のエッチレ
ートが小さい第1の導電体膜11,例えばポリシリコン
膜を約100〜200nm程度堆積し、ポリシリコン膜
(11)上全面にCVD法を用いて第1の被膜12を酸
化シリコン膜等で形成する。
As shown in FIG. 2A, for example, a gate insulating film is formed on an element formation region which is defined by forming a field oxide film 2 in an isolation region on a P-type silicon substrate 1 by using a known LOCOS method. Film 3, gate electrodes 4-1, 4-2, ... Made of polysilicon or the like are formed. Next, using the gate electrode and the field oxide film as a mask, arsenic ions or phosphorus ions are implanted to form N @ + type source / drain regions 5-1 and 5-2 in a self-aligned manner. Next, a silicon oxide film is deposited to a thickness of about 100 nm on the entire surface of the substrate as a first interlayer insulating film 5 by a vapor deposition (CVD) method.
A contact hole 7 is opened on the drain region 5-2, a bit line 8 is formed, a BPSG film having a high reflow property is grown as a second interlayer insulating film 9 to a thickness of 400 to 600 nm, and heat treatment is performed. After that, a silicon oxide film is grown to a thickness of about 100 nm to form the third interlayer insulating film 10. Anisotropic dry etching is performed on the third interlayer insulating film 10 as compared with the first interlayer insulating film 6 and the second and third interlayer insulating films 9 and 10. A polysilicon film is deposited to a thickness of about 100 to 200 nm, and the first coating film 12 is formed of a silicon oxide film or the like on the entire surface of the polysilicon film (11) by the CVD method.

【0010】その後、フォトリソグラフィー技術を用い
て、公知の異方性ドライエッチングにより第1の被膜1
2及びポリシリコン膜(11)を順次エッチング除去
し、図2(b)に示すように、凹部13を形成する。第
1及び第2,第3の層間絶縁膜よりエッチングレートが
小さく、ステップカバレッジの良好な導電体膜又は絶縁
膜(第2の被膜)例えばポリシリコン膜や、窒化シリコ
ン膜をCVD法で成長し、第1の被膜12をマスクをし
て異方性ドライエッチングを施し、図2(c)に示すよ
うに、凹部13の内壁部にスペーサ14を形成する。そ
の後、ポリシリコン膜(11),及びスペーサ14をマ
スクにして、全面に異方性ドライエッチングを施こし、
図3(a)に示すように、第1〜第3の層間絶縁膜をエ
ッチング除去し、コンタクト孔15を形成する。このと
き、第1の被膜12も同時にエッチング除去されポリシ
リコン膜(11)ほエッチングレートが小さいため、第
1〜第3の層間絶縁膜を保護する。スペーサ14の高さ
は低くなり、スペーサ14aとなる。
After that, the first coating film 1 is formed by known anisotropic dry etching using photolithography technique.
2 and the polysilicon film (11) are sequentially removed by etching to form a recess 13 as shown in FIG. 2 (b). A conductor film or an insulating film (second film), such as a polysilicon film or a silicon nitride film, which has a smaller etching rate than the first, second, and third interlayer insulating films and has good step coverage, is grown by a CVD method. Then, anisotropic dry etching is performed using the first coating film 12 as a mask to form a spacer 14 on the inner wall of the recess 13 as shown in FIG. Then, using the polysilicon film (11) and the spacer 14 as a mask, anisotropic dry etching is performed on the entire surface,
As shown in FIG. 3A, the contact holes 15 are formed by etching away the first to third interlayer insulating films. At this time, the first coating film 12 is also removed by etching at the same time, and the etching rate of the polysilicon film (11) is small, so that the first to third interlayer insulating films are protected. The height of the spacer 14 becomes lower and becomes the spacer 14a.

【0011】その後、図3(b)に示すように、第2の
導電体膜16としてポリシリコン膜を約200nm程度
CVD法により成長したのちリン拡散法を施し、フォト
リソグラフィー技術を用いてポリシリコン膜(11),
及びポリシリコン膜(16)を異方性ドライエッチング
により同時にエッチング除去することにより、第1の導
電体膜11a,第2の導電体膜16からなる蓄積電極を
形成し、図1に示すように、蓄積電極を被覆するキャパ
シタ絶縁膜17及びキャパシタ絶縁膜上に、プレート電
極18となるポリシリコン膜を堆積したのちリン拡散を
施し、フォトリグララフィー技術により所定の形にパタ
ーニングを施す。
After that, as shown in FIG. 3B, a polysilicon film is grown as the second conductor film 16 to a thickness of about 200 nm by a CVD method, and then a phosphorus diffusion method is applied to the polysilicon film by a photolithography technique. Membrane (11),
By simultaneously etching and removing the polysilicon film (16) by anisotropic dry etching, a storage electrode composed of the first conductor film 11a and the second conductor film 16 is formed, and as shown in FIG. Then, a polysilicon film to be the plate electrode 18 is deposited on the capacitor insulating film 17 and the capacitor insulating film covering the storage electrodes, phosphorus is diffused, and patterning is performed in a predetermined shape by a photolithography technique.

【0012】第3の層間絶縁膜10上に形成した第1の
導電体膜11に孔をあけ、その側面にスペーサを設けた
のちコンタクト孔15を形成するので、コンタクト孔1
5とソース・ドレイン領域5−1とのマージンの確保が
容易となる。また、ソースドレイン領域5−1の周辺部
にエッチング時にダメージが加わるのを避けることがで
きるので接合漏れ電流が低減され、メモリセルのホール
ド特性が改善される。
Since a hole is formed in the first conductor film 11 formed on the third interlayer insulating film 10 and a spacer is provided on the side surface thereof and then the contact hole 15 is formed, the contact hole 1 is formed.
5 and the source / drain region 5-1 can be easily secured. Further, it is possible to prevent the peripheral portion of the source / drain region 5-1 from being damaged during etching, so that the junction leakage current is reduced and the hold characteristic of the memory cell is improved.

【0013】図4は本発明の第2の実施例のDRAMセ
ルを示す断面図である。
FIG. 4 is a sectional view showing a DRAM cell according to the second embodiment of the present invention.

【0014】本実施例は第1の導電体膜11bの上方へ
スペーサが突出しているので第2の導電体膜16aの表
面積が大きくなり蓄積容量を大きくできる。このような
構造は、図2(b)における凹部13の側面にスペーサ
14を形成するための異方性ドライエッチングのオーバ
ーエッチング量と、コンタクト孔15を形成するための
異方性ドライエッチングによるスペーサ14のエッチン
グ量より、ポリシリコン膜(11)上に形成する第1の
被膜12の膜厚を厚くすることにより実現できる。
In this embodiment, since the spacer is projected above the first conductor film 11b, the surface area of the second conductor film 16a is increased and the storage capacity can be increased. Such a structure has an overetching amount of anisotropic dry etching for forming the spacer 14 on the side surface of the recess 13 in FIG. 2B and a spacer by anisotropic dry etching for forming the contact hole 15. This can be achieved by increasing the thickness of the first coating film 12 formed on the polysilicon film (11) from the etching amount of 14.

【0015】[0015]

【発明の効果】以上説明したように本発明は、電荷蓄積
用のキャパシタとスイッチング用トランジスタ間の層間
絶縁膜上に、層間絶縁膜よりエッチングレートの小さい
第1の導電体膜を層間絶縁膜上に形成し、第1導電体膜
上に第1の被膜を形成したのち、スイッチング用トラン
ジスタのソース・ドレイン領域の一方の上方に第1の導
電体膜及び第1の被膜を所定のパターンにエッチング除
去し凹部を形成し、凹部の内壁部に層間絶縁膜よりエッ
チングレートの小さい材料よりなるスペーサを形成し、
スペーサ及び第1の導電体膜をマスクとして一方のソー
ス・ドレイン領域上に微細コンタント孔を開口すること
によりコンタクト孔とソース・ドレイン領域とのマージ
ンが確保され、ソース・ドレイン領域へのエッチングに
よるダメージが緩和されることにより接合漏れ電流が軽
減できる。またスペーサを第1の導電体膜より上方へ突
出させることにより蓄積電極の表面積が増加し、蓄積電
極容量が増大する。以上により、半導体記憶装置のホー
ルド特性が向上する。
As described above, according to the present invention, the first conductor film having a smaller etching rate than the interlayer insulating film is formed on the interlayer insulating film between the charge storage capacitor and the switching transistor. And forming a first coating on the first conductive film, and then etching the first conductive film and the first coating in a predetermined pattern above one of the source / drain regions of the switching transistor. The recess is removed to form a recess, and a spacer made of a material having a smaller etching rate than the interlayer insulating film is formed on the inner wall of the recess.
By opening a minute contact hole on one of the source / drain regions using the spacer and the first conductor film as a mask, a margin between the contact hole and the source / drain region is secured, and the source / drain region is damaged by etching. Is reduced, the junction leakage current can be reduced. Moreover, the surface area of the storage electrode is increased by projecting the spacer above the first conductor film, and the storage electrode capacitance is increased. As described above, the hold characteristic of the semiconductor memory device is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるDRAMセルを
示す断面図である。
FIG. 1 is a sectional view showing a DRAM cell according to a first embodiment of the present invention.

【図2】第1の実施例の製造方法の説明のため(a)〜
(c)に分図して示す工程順断面図である。
2A to 2C are explanatory views of the manufacturing method of the first embodiment.
It is a process order sectional view divided and shown in (c).

【図3】図2に対応する工程の後工程の説明のため
(a),(b)に分図して示す工程順断面図である。
3A to 3C are sectional views in order of the processes, which are illustrated by dividing them into (a) and (b) for explaining a post-process corresponding to FIG.

【図4】本発明の第2の実施例におけるDRAMセルを
示す断面図である。
FIG. 4 is a sectional view showing a DRAM cell according to a second embodiment of the present invention.

【図5】従来例におけるDRAMセルを示す断面図であ
る。
FIG. 5 is a sectional view showing a DRAM cell in a conventional example.

【図6】従来例における製造方法の説明のため(a),
(b)に分図して示す工程順断面図である。
6A and 6B are explanatory views of a manufacturing method in a conventional example (a),
It is a process order sectional view divided and shown in (b).

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 フィールド酸化膜 3 ゲート酸化膜 4−1,4−2 ゲート電極 5−1,5−2 ソース・ドレイン領域 6 第1の層間絶縁膜 7 コンタクト孔 8 ビット線 9 第2の層間絶縁膜 10 第3の層間絶縁膜 11,11a,11b 第1の導電体膜(ポリシリコ
ン膜) 12 第1の被膜 13 凹部 14,14a,14b スペーサ 15 コンタクト孔 16 第2の導電体膜 17,17a キャパシタ絶縁膜 18,18a プレート電極 19 絶縁性スペーサ 20 不純物拡散領域 21,21a コンタクト孔
1 P-type silicon substrate 2 Field oxide film 3 Gate oxide film 4-1, 4-2 Gate electrode 5-1 and 5-2 Source / drain region 6 First interlayer insulating film 7 Contact hole 8 Bit line 9 Second Interlayer insulating film 10 Third interlayer insulating film 11, 11a, 11b First conductor film (polysilicon film) 12 First coating 13 Recesses 14, 14a, 14b Spacer 15 Contact hole 16 Second conductor film 17 , 17a Capacitor insulating film 18, 18a Plate electrode 19 Insulating spacer 20 Impurity diffusion region 21, 21a Contact hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面をゲート絶縁膜を介し
て選択的に被覆するゲート電極および前記ゲート電極下
部のチャネル領域を挟んで前記半導体基板の表面部に設
けられた一対のソース・ドレイン領域を有するスイッチ
ング用トランジスタと、前記スイッチング用トランジス
タを覆う少なくとも1つの層間絶縁膜の表面を選択的に
被覆しコンタクト孔を介して前記ソース・ドレイン領域
の一方に接続する蓄積電極を有する電荷蓄積用キャパシ
タとを含むメモリセルを備えた半導体記憶装置におい
て、前記層間絶縁膜の表面に選択的に被着され所定の開
口を有する第1の導電体膜と、前記第1の導電体膜の前
記開口側面に設けられたスペーサと、前記スペーサ付き
の前記開口と自己整合する前記コンタクト孔と、前記コ
ンタクト孔を埋め、前記スペーサおよび前記第1の導電
体膜を覆う第2の導電体膜とからなる前記蓄積電極を有
していることを特徴とする半導体記憶装置。
1. A pair of source / drain regions provided on a surface portion of the semiconductor substrate with a gate electrode selectively covering the surface of the semiconductor substrate via a gate insulating film and a channel region below the gate electrode sandwiched therebetween. And a charge storage capacitor having a storage transistor which selectively covers the surface of at least one interlayer insulating film covering the switching transistor and which is connected to one of the source / drain regions through a contact hole. A semiconductor memory device including a memory cell including: a first conductor film selectively deposited on a surface of the interlayer insulating film and having a predetermined opening; and an opening side surface of the first conductor film. A spacer provided on the contact hole, the contact hole that self-aligns with the opening with the spacer, and the contact hole is filled, A semiconductor memory device having the storage electrode including the spacer and a second conductor film covering the first conductor film.
【請求項2】 スペーサの高さが第1の導電体膜の厚さ
より大きい請求項1記載の半導体記憶装置。
2. The semiconductor memory device according to claim 1, wherein the height of the spacer is larger than the thickness of the first conductor film.
【請求項3】 半導体基板の表面をゲート絶縁膜を介し
て選択的に被覆するゲート電極および前記ゲート電極下
部のチャネル領域を挟んで前記半導体基板の表面部に設
けられた一対のソース・ドレイン領域を有するスイッチ
ング用トランジスタを形成する工程と、少なくとも1つ
の層間絶縁膜を堆積する工程と、最上層の前記層間絶縁
膜上全面に前記層間絶縁膜よりエッチングレートが小さ
い第1の導電体膜を堆積する工程と、前記第1の導電体
膜上全面に、第1の被膜を形成する工程と、フォトリソ
グラフィー技術を用いて前記スイッチング用トランジス
タのソース・ドレイン領域の一方の上部の前記第1の被
膜及び前記第1の導電体膜を所定のパターンに除去し凹
部を形成する工程と、前記層間絶縁膜よりエッチングレ
ートが小さい第2の被膜を形成し前記凹部の側面にスペ
ーサを形成する工程と、前記第1の導電体膜及び前記ス
ペーサをマスクとして、前記一方のソース・ドレイン領
域上にコンタクト孔を開口する工程と、前記第1の導電
体膜及び前記ソース・ドレイン領域とオーム接触する第
2の導電体膜を形成する工程と、前記第1の導電体膜及
び前記第2の導電体膜を所定のパターンに同時にエッチ
ング除去する工程とにより電荷蓄積用キャパシタの蓄積
電極を形成することを特徴とする半導体記憶装置の製造
方法。
3. A pair of source / drain regions provided on the surface of the semiconductor substrate with a gate electrode selectively covering the surface of the semiconductor substrate via a gate insulating film and a channel region below the gate electrode sandwiched therebetween. And a step of depositing at least one interlayer insulating film, and depositing a first conductor film having an etching rate smaller than that of the interlayer insulating film on the entire surface of the uppermost interlayer insulating film. And a step of forming a first coating on the entire surface of the first conductor film, and the first coating on one of the source / drain regions of the switching transistor using a photolithography technique. And a step of removing the first conductor film in a predetermined pattern to form a recess, and a second step having an etching rate smaller than that of the interlayer insulating film. Forming a coating film to form a spacer on the side surface of the recess; forming a contact hole on the one source / drain region using the first conductor film and the spacer as a mask; A second conductor film in ohmic contact with the first conductor film and the source / drain regions, and the first conductor film and the second conductor film are simultaneously etched and removed into a predetermined pattern. And a step of forming a storage electrode of a charge storage capacitor.
JP4206358A 1992-08-03 1992-08-03 Semiconductor memory device and method of manufacturing the same Expired - Lifetime JP2827728B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4206358A JP2827728B2 (en) 1992-08-03 1992-08-03 Semiconductor memory device and method of manufacturing the same
US08/315,850 US5478768A (en) 1992-08-03 1994-09-30 Method of manufacturing a semiconductor memory device having improved hold characteristic of a storage capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206358A JP2827728B2 (en) 1992-08-03 1992-08-03 Semiconductor memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0653412A true JPH0653412A (en) 1994-02-25
JP2827728B2 JP2827728B2 (en) 1998-11-25

Family

ID=16522001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206358A Expired - Lifetime JP2827728B2 (en) 1992-08-03 1992-08-03 Semiconductor memory device and method of manufacturing the same

Country Status (2)

Country Link
US (1) US5478768A (en)
JP (1) JP2827728B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286337A (en) * 1989-04-08 1990-11-26 Heidelberger Druckmas Ag Sheet fed rotary press
JPH06260442A (en) * 1992-11-27 1994-09-16 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
US6127734A (en) * 1995-08-25 2000-10-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device comprising a contact hole of varying width thru multiple insulating layers
US6452251B1 (en) * 2000-03-31 2002-09-17 International Business Machines Corporation Damascene metal capacitor
KR100372101B1 (en) * 1995-12-29 2003-04-03 주식회사 하이닉스반도체 Method for forming semiconductor device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679671B2 (en) * 1995-03-30 1997-11-19 日本電気株式会社 Method for manufacturing capacitive element of semiconductor storage device
US5960318A (en) * 1995-10-27 1999-09-28 Siemens Aktiengesellschaft Borderless contact etch process with sidewall spacer and selective isotropic etch process
JPH09199680A (en) * 1996-01-17 1997-07-31 Nec Corp Semiconductor device and manufacturing method thereof
TW312831B (en) * 1996-08-16 1997-08-11 United Microelectronics Corp Manufacturing method of semiconductor memory device with capacitor(3)
TW366592B (en) * 1996-08-16 1999-08-11 United Microelectronics Corp DRAM memory and the manufacturing method for the memory cells
TW308727B (en) * 1996-08-16 1997-06-21 United Microelectronics Corp Semiconductor memory device with capacitor (4)
US5744833A (en) * 1996-08-16 1998-04-28 United Microelectronics Corporation Semiconductor memory device having tree-type capacitor
TW351846B (en) * 1996-08-16 1999-02-01 United Microelectronics Corp Method for fabricating memory cell for DRAM
TW427012B (en) * 1996-08-16 2001-03-21 United Microelectronics Corp The manufacturing method of double-combined capacitor DRAM cells
TW312828B (en) * 1996-08-16 1997-08-11 United Microelectronics Corp Manufacturing method of semiconductor memory device with capacitor(5)
TW297948B (en) * 1996-08-16 1997-02-11 United Microelectronics Corp Memory cell structure of DRAM
TW304288B (en) * 1996-08-16 1997-05-01 United Microelectronics Corp Manufacturing method of semiconductor memory device with capacitor
US5796138A (en) * 1996-08-16 1998-08-18 United Microelectronics Corporation Semiconductor memory device having a tree type capacitor
TW304290B (en) * 1996-08-16 1997-05-01 United Microelectronics Corp The manufacturing method for semiconductor memory device with capacitor
TW306036B (en) * 1996-08-16 1997-05-21 United Microelectronics Corp Semiconductor memory device with capacitor (part 2)
US5759890A (en) * 1996-08-16 1998-06-02 United Microelectronics Corporation Method for fabricating a tree-type capacitor structure for a semiconductor memory device
TW302524B (en) * 1996-08-16 1997-04-11 United Microelectronics Corp Memory cell structure of dynamic random access memory and manufacturing method thereof
US5739060A (en) * 1996-08-16 1998-04-14 United Microelecrtronics Corporation Method of fabricating a capacitor structure for a semiconductor memory device
JP2977077B2 (en) * 1996-08-16 1999-11-10 ユナイテッド マイクロエレクトロニクス コープ Semiconductor memory device with tree-type capacitor
US5683922A (en) * 1996-10-04 1997-11-04 United Microelectronics Corporation Method of fabricating a self-aligned contact
KR100506101B1 (en) * 1996-11-14 2006-04-21 텍사스 인스트루먼츠 인코포레이티드 A method of fabricating a memory cell array and memory cell array
JP2862129B2 (en) * 1996-11-21 1999-02-24 日本電気株式会社 Method for manufacturing semiconductor device
US6238971B1 (en) 1997-02-11 2001-05-29 Micron Technology, Inc. Capacitor structures, DRAM cell structures, and integrated circuitry, and methods of forming capacitor structures, integrated circuitry and DRAM cell structures
JP2943914B2 (en) * 1997-02-19 1999-08-30 日本電気株式会社 Semiconductor device and manufacturing method thereof
US5763306A (en) * 1997-10-24 1998-06-09 Vanguard International Semiconductor Corporation Method of fabricating capacitor over bit line COB structure for a very high density DRAM applications
TW365705B (en) * 1997-12-01 1999-08-01 Windbond Electronics Corp Manufacturing method of DRAM stacked type capacitor
JPH11168199A (en) * 1997-12-02 1999-06-22 Nippon Steel Corp Semiconductor memory device and method of manufacturing the same
GB2336714B (en) * 1997-12-24 2000-03-08 United Semiconductor Corp Method of fabricating capacitor
US6043131A (en) * 1998-03-12 2000-03-28 Worldwide Semiconductor Manufacturing Corporation Method for making a flower shaped DRAM capacitor
US6180453B1 (en) 1998-12-21 2001-01-30 Vanguard International Semiconductor Corporation Method to fabricate a DRAM cell with an area equal to five times the minimum used feature, squared
KR100470165B1 (en) 1999-06-28 2005-02-07 주식회사 하이닉스반도체 Method for fabrication of semiconductor device
DE19935130C1 (en) 1999-07-27 2001-02-22 Siemens Ag Method for producing a contact hole for a semiconductor memory component
KR100476690B1 (en) * 2003-01-17 2005-03-18 삼성전자주식회사 Semiconductor device and Method of manufacturing the same
DE102004063949B4 (en) * 2004-09-09 2008-10-16 Qimonda Ag Method for producing a capacitor having a cup-shaped electrode structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216665A (en) * 1990-12-15 1992-08-06 Sharp Corp Semiconductor memory element and its manufacture

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140389A (en) * 1988-01-08 1992-08-18 Hitachi, Ltd. Semiconductor memory device having stacked capacitor cells
US4951175A (en) * 1988-05-18 1990-08-21 Kabushiki Kaisha Toshiba Semiconductor memory device with stacked capacitor structure and the manufacturing method thereof
JP2838412B2 (en) * 1988-06-10 1998-12-16 三菱電機株式会社 Capacitor for semiconductor memory device and method of manufacturing the same
US5180683A (en) * 1988-06-10 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing stacked capacitor type semiconductor memory device
JP2633650B2 (en) * 1988-09-30 1997-07-23 株式会社東芝 Semiconductor memory device and method of manufacturing the same
US5059548A (en) * 1989-04-03 1991-10-22 Hyundai Electronics Industries Co., Ltd. Method of making a semiconductor memory device having a double stacked capacitor
US5175121A (en) * 1989-05-10 1992-12-29 Samsung Electronics Co., Ltd. Method for manufacturing a stacked capacitor DRAM semiconductor device
JPH0770617B2 (en) * 1989-05-15 1995-07-31 株式会社東芝 Semiconductor memory device
US5243220A (en) * 1990-03-23 1993-09-07 Kabushiki Kaisha Toshiba Semiconductor device having miniaturized contact electrode and wiring structure
US5114873A (en) * 1990-05-21 1992-05-19 Samsung Electronics Co., Ltd. Method for manufacturing a stacked capacitor DRAM cell
US5126280A (en) * 1991-02-08 1992-06-30 Micron Technology, Inc. Stacked multi-poly spacers with double cell plate capacitor
US5194753A (en) * 1991-11-19 1993-03-16 Micron Technology, Inc. Method of preventing storage node to storage node shorts in fabrication of memory integrated circuitry having stacked capacitors and stacked capacitor memory integrated circuits
JPH0677428A (en) * 1992-08-25 1994-03-18 Nec Corp Semiconductor memory device and manufacturing method thereof
KR940016805A (en) * 1992-12-31 1994-07-25 김주용 Manufacturing method of laminated capacitor of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216665A (en) * 1990-12-15 1992-08-06 Sharp Corp Semiconductor memory element and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286337A (en) * 1989-04-08 1990-11-26 Heidelberger Druckmas Ag Sheet fed rotary press
JPH06260442A (en) * 1992-11-27 1994-09-16 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
US6097052A (en) * 1992-11-27 2000-08-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and a method of manufacturing thereof
US6586329B1 (en) 1992-11-27 2003-07-01 Mitsubishi Denki Kabshiki Kaisha Semiconductor device and a method of manufacturing thereof
US6127734A (en) * 1995-08-25 2000-10-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device comprising a contact hole of varying width thru multiple insulating layers
KR100372101B1 (en) * 1995-12-29 2003-04-03 주식회사 하이닉스반도체 Method for forming semiconductor device
US6452251B1 (en) * 2000-03-31 2002-09-17 International Business Machines Corporation Damascene metal capacitor

Also Published As

Publication number Publication date
US5478768A (en) 1995-12-26
JP2827728B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
JP2827728B2 (en) Semiconductor memory device and method of manufacturing the same
US5468670A (en) Method for fabricating a semiconductor memory device having a stacked capacitor cell
JP2633650B2 (en) Semiconductor memory device and method of manufacturing the same
USRE46890E1 (en) Method of forming semiconductor device having contact pad on source/drain region in peripheral circuit area
JP4074674B2 (en) Method for manufacturing DRAM
KR100509210B1 (en) Dram cell arrangement and method for its production
JPH08250677A (en) Semiconductor memory device and manufacturing method thereof
US6333233B1 (en) Semiconductor device with self-aligned contact and its manufacture
US5250830A (en) Dynamic type semiconductor memory device and its manufacturing method
US5821579A (en) Semiconductor memory device and method of manufacturing the same
US6060350A (en) Semiconductor memory device having word line conductors provided at lower level than memory cell capacitor and method of manufacturing same
US20030008453A1 (en) Semiconductor device having a contact window and fabrication method thereof
US5536673A (en) Method for making dynamic random access memory (DRAM) cells having large capacitor electrode plates for increased capacitance
US5362664A (en) Method for fabricating a semiconductor memory device
US5913129A (en) Method of fabricating a capacitor structure for a dynamic random access memory
JPH03174765A (en) Semiconductor memory device and manufacture thereof
JPH0715949B2 (en) DRAM cell and manufacturing method thereof
JPH07288313A (en) Capacitor preparation of a semiconductor memory device
US20060163638A1 (en) Semiconductor device and method for fabricating the same
JPH05304269A (en) Semiconductor device
JPH03165557A (en) Semiconductor device provided with stacked capacitor cell
JPH1197529A (en) Manufacture of semiconductor device
US6580175B1 (en) Semiconductor layout structure for a conductive layer and contact hole
JPH0878640A (en) Semiconductor memory device and manufacturing method thereof
US7052955B2 (en) Semiconductor memory device and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980818

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

EXPY Cancellation because of completion of term