[go: up one dir, main page]

JPH0651824A - Tool posture control method - Google Patents

Tool posture control method

Info

Publication number
JPH0651824A
JPH0651824A JP20080992A JP20080992A JPH0651824A JP H0651824 A JPH0651824 A JP H0651824A JP 20080992 A JP20080992 A JP 20080992A JP 20080992 A JP20080992 A JP 20080992A JP H0651824 A JPH0651824 A JP H0651824A
Authority
JP
Japan
Prior art keywords
tool
work
posture
vector
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20080992A
Other languages
Japanese (ja)
Inventor
Norihiko Kawashima
伯彦 川島
Nobuhito Mori
宣仁 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP20080992A priority Critical patent/JPH0651824A/en
Publication of JPH0651824A publication Critical patent/JPH0651824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To hold a posture teaching a tool posture to a work by detecting the change of a distance from the work corresponding to the output value of a sensor, changing a profiling vector corresponding to this detected value, changing a tool posture vector and keeping the relative angle of the work and a tool in a fixed state. CONSTITUTION:When an interpolation moving distance at interpolation positions T3 and T4 in the case of teaching the start and end points of a work 1 is defined as lt and a change amount due to the distance sensor is defined as (h), an angle theta34 from the position T4 to the position T3 is the rotation of theta34=tan<-1> h/lt. Namely, the relative posture of the tool to the work 1 can be maintained by correcting the tool posture at a position T5 just for the rotation amount obtained at the positions T3 and T4. Next, the work is moved just for the lt in the direction of the corrected simulation vector, an angle theta45 is calculated from the change amount of the distance sensor and the lt at positions T4 and T5, and the posture of the tool at a position T6 can be calculated by further rotating the tool posture at the position T5 corresponding to the theta45.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、産業用ロボットの手先
につけた工具の姿勢制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a posture control method for a tool attached to the hand of an industrial robot.

【0002】[0002]

【従来の技術】産業用ロボットにおいては、ロボットの
手先につけた工具の近傍に距離センサを取付け、この距
離センサにてセンサとワークとの距離(換言すればセン
サと工具との距離)を検出しこの距離を一定に保ちつつ
ワーク上の2点を教示してこの2点間を移動させるいわ
ゆる倣い動作を行なうものがある。
2. Description of the Related Art In an industrial robot, a distance sensor is attached near the tool attached to the hand of the robot, and the distance sensor detects the distance between the sensor and the work (in other words, the distance between the sensor and the tool). There is a so-called copying operation in which two points on a work are taught and a distance between the two points is moved while keeping this distance constant.

【0003】この場合、2点間の教示姿勢である工具の
始点教示姿勢と終点教示姿勢とを補間することにより工
具姿勢を得ており、図4(a)にてワーク1の始点と終
点とが同一の工具姿勢の場合には、補間姿勢も同一姿勢
となっている。また、図4(b)に示すように始点姿勢
と終点姿勢とが変化した場合には、補間姿勢は始点姿勢
から次第に終点姿勢に移って変化している。
In this case, the tool posture is obtained by interpolating the starting point teaching posture and the ending point teaching posture of the tool, which is the teaching posture between two points, and the starting point and the ending point of the work 1 are shown in FIG. 4 (a). Are the same tool posture, the interpolation posture is also the same posture. In addition, as shown in FIG. 4B, when the starting point attitude and the ending point attitude change, the interpolation attitude gradually changes from the starting point attitude to the ending point attitude.

【0004】[0004]

【発明が解決しようとする課題】上述の始点教示姿勢と
終点教示姿勢との補間によって、軌道補間点姿勢を決定
する方式にあっては、始点と終点との間の形状が一定で
あるとは限らず、工具とワークとの角度が補間姿勢毎に
異なることがある。このため、ワークに対する工具の姿
勢が常に一定であるとはいえず、例えば手先にグライン
ダをつけたロボット研削ではグラインダのワークに対す
る作用角度が異なることによって研削精度が一定しない
で低下するという問題があり、また、プラズマトーチに
よる溶断をロボットにて行なう場合には、ワークの厚み
変化につながって安定した溶断ができないという問題が
ある。
In the method of determining the trajectory interpolation point posture by the above-described interpolation of the starting point teaching posture and the ending point teaching posture, it is said that the shape between the starting point and the ending point is constant. Not limited to this, the angle between the tool and the work may differ for each interpolation posture. Therefore, it cannot be said that the attitude of the tool with respect to the work is always constant.For example, in robot grinding with a grinder attached to the hand, there is a problem that the grinding accuracy is not constant and deteriorates due to different working angles of the grinder. Further, when the robot uses the plasma torch for the fusing, there is a problem in that the work cannot be stably fused due to a change in the thickness of the work.

【0005】本発明は、上述の問題に鑑み倣い動作中の
工具姿勢を倣い方向の補正量に応じて変化させ、ワーク
に対する軌道補間点の工具姿勢を教示点の姿勢と一致さ
せるようにした工具姿勢制御方法の提供を目的とする。
In view of the above-mentioned problems, the present invention changes the tool attitude during the copying operation according to the correction amount in the copying direction so that the tool attitude at the trajectory interpolation point with respect to the workpiece matches the attitude at the teaching point. The purpose is to provide a posture control method.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成する本
発明は、産業用ロボットにてセンサによるワークの倣い
制御を行なうに当り、上記センサの出力値にて上記ワー
クとの距離の変化を検出し、この検出値にて倣いベクト
ルを変化させると共に工具姿勢ベクトルを変化させ、上
記ワークと工具との相対角度を一定状態に維持させるよ
うにしたことを特徴とする。
According to the present invention for achieving the above-mentioned object, when the industrial robot performs a copying control of a work by a sensor, the output value of the sensor is used to change the distance from the work. It is characterized in that the detection is performed, and the scanning vector is changed based on the detected value, and the tool posture vector is changed to maintain the relative angle between the work and the tool in a constant state.

【0007】[0007]

【作用】ワークの形状変化による倣いベクトル変化に基
づき工具姿勢ベクトルを変化させることにより、倣い方
向に応じた工具姿勢が得られ、この結果ワークの形状に
もとづいた工具姿勢が得られることになって、ワークに
対し工具姿勢を一定とすることができる。
By changing the tool posture vector based on the change of the scanning vector due to the change of the shape of the work, the tool posture corresponding to the scanning direction can be obtained, and as a result, the tool posture based on the shape of the work can be obtained. It is possible to make the tool posture constant with respect to the work.

【0008】[0008]

【実施例】ここで、図1〜図3を参照して本発明の実施
例を説明する。図1はワーク1に対して倣いベクトルと
工具姿勢ベクトルとの説明図であり、図2の補間位置T
3 ,T4 を拡大したものである。また、図2は、ワーク
1にあって始点P1 と終点P2 を教示した時の補間位置
をT1 2 34 ・・・という具合に示している。
EXAMPLES Examples of the present invention will now be described with reference to FIGS. FIG. 1 is an explanatory diagram of a copying vector and a tool posture vector with respect to the work 1, and the interpolation position T of FIG.
3 and T 4 are expanded. Also, FIG. 2 shows the interpolation position when teaching the starting point P 1 and the end point P 2 In the workpiece 1 so on T 1 T 2 T 3 T 4 ···.

【0009】図1において、補間位置T3 ,T4 での補
間移動距離をlt とする。一方、距離センサによる変化
量をhとした場合、位置T4 は位置T3 に対して次式θ
34の回転となる。
In FIG. 1, it is assumed that the interpolation movement distance at the interpolation positions T 3 and T 4 is l t . On the other hand, when the amount of change by the distance sensor is h, the position T 4 is calculated by the following equation θ with respect to the position T 3 .
34 turns.

【0010】[0010]

【数1】 [Equation 1]

【0011】つまり、位置T3 とT4 とで得られた回転
量θ34を位置T5 において工具姿勢をθ34だけ回転補正
することにより、ワーク1に対する工具相対姿勢を維持
することができる。このとき、倣い制御中の移動方向ベ
クトルである倣いベクトルもθ34だけ回転させ、このベ
クトル方向にlt だけ進んだ位置を次の補間位置T5
する。
That is, the tool relative attitude with respect to the work 1 can be maintained by correcting the rotation amount θ 34 obtained at the positions T 3 and T 4 at the position T 5 by rotating the tool attitude by θ 34 . At this time, the scanning vector which is the moving direction vector during scanning control is also rotated by θ 34 , and the position advanced by l t in this vector direction is set as the next interpolation position T 5 .

【0012】次に、修正した倣いベクトル方向にlt
け移動して、位置T4 ,T5 での距離センサの変化量と
前記lt とから角度θ45を算出し、位置T5 での工具姿
勢を更にθ45に合うように回転させて位置T6 での工具
姿勢を得ると共に倣いベクトルを回転角θ45方向に得
る。
Next, by moving by l t in the corrected scanning vector direction, the angle θ 45 is calculated from the change amount of the distance sensor at the positions T 4 and T 5 and l t, and at the position T 5 . The tool posture is further rotated to match θ 45 to obtain the tool posture at the position T 6 and the scanning vector is obtained in the rotation angle θ 45 direction.

【0013】こうして、順に位置Tn ,Tn+1 での操作
を繰り返し工具姿勢を決定し倣いベクトルを決定する。
Thus, the operations at the positions T n and T n + 1 are sequentially repeated to determine the tool posture and the scanning vector.

【0014】図4に示す形状のワーク1と同じワークを
本実施例にて倣い制御を行なうことにより、図3に示す
ようにワーク1の面に対して一定角を有する工具姿勢を
採ることができる。一例として、例えば斜面の倣いの場
合、一旦斜面に倣ってしまうと倣いベクトル方向が斜面
方向に一致し、距離センサの変化もないため姿勢は変化
させず、斜面に対し工具姿勢を一定角のまま移動でき
る。
By performing the copying control on the same work as the work 1 having the shape shown in FIG. 4 in this embodiment, a tool posture having a constant angle with respect to the surface of the work 1 can be taken as shown in FIG. it can. As an example, in the case of profiling a slope, once the profiling is performed on the sloping surface, the profiling vector direction coincides with the sloping surface, and there is no change in the distance sensor. You can move.

【0015】上記実施例では距離センサを用いた例を述
べているが、例えばロボットの6軸フランジ面に力セン
サを取り付けてその先に工具を取付け、進行方向に位置
制御を行ない上下方向に力制御を行なうハイブリッド制
御により、力センサの出力値を距離に換算することで、
倣い制御に力センサを適用し得る。
In the above embodiment, an example using a distance sensor is described. For example, a force sensor is attached to the 6-axis flange surface of the robot, a tool is attached to the tip of the force sensor, position control is performed in the advancing direction, and force is applied in the vertical direction. By converting the output value of the force sensor into a distance by hybrid control that performs control,
A force sensor may be applied to the copying control.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、ワ
ークに対する工具姿勢を教示した姿勢を保持するように
ワークに倣うことができ、例えばグラインダによる研削
ではグラインダと、ワークの接触角度が一定しているた
め、グラインダの工具作用点をひとつに定義でき、精度
の良い研削が可能となる。又、工具としてプラズマトー
チを使用し、ワークの溶断を実施する場合、溶断厚み変
化が少ないため、安定した溶断が可能である。
As described above, according to the present invention, the work can be traced so as to hold the posture in which the tool posture with respect to the work is taught. For example, in grinding by a grinder, the contact angle between the grinder and the work is constant. Therefore, the tool action point of the grinder can be defined as one, and accurate grinding can be performed. Further, when a plasma torch is used as a tool to perform the fusing of the work, the change in the fusing thickness is small and stable fusing is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】位置T3 ,T4 での本実施例の説明図。FIG. 1 is an explanatory diagram of the present embodiment at positions T 3 and T 4 .

【図2】始点から終点位置の補間説明図。FIG. 2 is an explanatory diagram of interpolation from a start point to an end point.

【図3】工具姿勢の説明図。FIG. 3 is an explanatory view of a tool posture.

【図4】従来の工具姿勢の説明図。FIG. 4 is an explanatory view of a conventional tool posture.

【符号の説明】[Explanation of symbols]

1 ワーク 2 工具 1 work 2 tool

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B25J 9/22 G05B 19/403 C 9064−3H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location B25J 9/22 G05B 19/403 C 9064-3H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 産業用ロボットにてセンサによるワーク
の倣い制御を行なうに当り、 上記センサの出力値にて上記ワークとの距離の変化を検
出し、この検出値にて倣いベクトルを変化させると共に
工具姿勢ベクトルを変化させ、上記ワークと工具との相
対角度を一定状態に維持させるようにした工具姿勢制御
方法。
1. When performing a copying control of a work by a sensor in an industrial robot, a change in the distance to the work is detected by the output value of the sensor, and the copying vector is changed by the detected value. A tool posture control method for changing a tool posture vector to maintain the relative angle between the work and the tool in a constant state.
JP20080992A 1992-07-28 1992-07-28 Tool posture control method Pending JPH0651824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20080992A JPH0651824A (en) 1992-07-28 1992-07-28 Tool posture control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20080992A JPH0651824A (en) 1992-07-28 1992-07-28 Tool posture control method

Publications (1)

Publication Number Publication Date
JPH0651824A true JPH0651824A (en) 1994-02-25

Family

ID=16430561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20080992A Pending JPH0651824A (en) 1992-07-28 1992-07-28 Tool posture control method

Country Status (1)

Country Link
JP (1) JPH0651824A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066713A (en) * 2007-09-13 2009-04-02 Mitsubishi Heavy Ind Ltd Attitude control method and attitude control device
WO2020141579A1 (en) * 2019-01-04 2020-07-09 ソニー株式会社 Control device, control method, and program
WO2022071585A1 (en) * 2020-10-02 2022-04-07 川崎重工業株式会社 Robot system and control method for robot system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066713A (en) * 2007-09-13 2009-04-02 Mitsubishi Heavy Ind Ltd Attitude control method and attitude control device
US8554357B2 (en) 2007-09-13 2013-10-08 Mitsubishi Heavy Industries, Ltd. Posture control method and posture control device
WO2020141579A1 (en) * 2019-01-04 2020-07-09 ソニー株式会社 Control device, control method, and program
CN113226663A (en) * 2019-01-04 2021-08-06 索尼集团公司 Control device, control method, and program
JPWO2020141579A1 (en) * 2019-01-04 2021-11-18 ソニーグループ株式会社 Controls, control methods, and programs
CN113226663B (en) * 2019-01-04 2024-04-26 索尼集团公司 Control device, control method, and program
CN113226663B9 (en) * 2019-01-04 2024-09-20 索尼集团公司 Control device, control method, and program
WO2022071585A1 (en) * 2020-10-02 2022-04-07 川崎重工業株式会社 Robot system and control method for robot system
JPWO2022071585A1 (en) * 2020-10-02 2022-04-07

Similar Documents

Publication Publication Date Title
US8706300B2 (en) Method of controlling a robotic tool
JPH0810949A (en) Method for controlling welding robot system in multi-layer over laying
JPH07266272A (en) Follow-up method and device for manipulator
JP5765557B2 (en) Trajectory tracking device and method for machining robot
US11890759B2 (en) Robot control method
JP7307263B2 (en) Deburring device and control system
JPH0651824A (en) Tool posture control method
JP3380028B2 (en) Profile control method of pipe surface by force control robot
JP7309592B2 (en) Robot curved surface scanning control method
JP2002239733A (en) Weld line profiling judging device and profiling control device
JPS60195617A (en) Automatic robot teaching method
JP7360824B2 (en) Robot control device and robot control system
JPH0394979A (en) Welding position detector
TWI809532B (en) Apparatus of controlling robot
JP4447746B2 (en) Teaching method of robot trajectory
JP3166316B2 (en) Teaching and control method of playback type robot
JPH0866879A (en) Method for controlling robot
KR20180078094A (en) Method for automatically setting robot T.C.P
JPH074781B2 (en) How to reproduce the posture of the robot jig
JPS624552A (en) Copying control method
JPS6039207A (en) Automatic teaching method for industrial robots
JPH11156550A (en) Plasma cutting device
JPH05123866A (en) Position control system for welding torch using sensor
JPH04123884A (en) Follow-up controller of three dimensional laser beam machine
JP2778285B2 (en) Copying sensor robot system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000725