JPH06510481A - Method and apparatus for regulating the humidity of a gas stream and simultaneously purifying the gas stream of undesirable acidic or alkaline gases - Google Patents
Method and apparatus for regulating the humidity of a gas stream and simultaneously purifying the gas stream of undesirable acidic or alkaline gasesInfo
- Publication number
- JPH06510481A JPH06510481A JP6502960A JP50296094A JPH06510481A JP H06510481 A JPH06510481 A JP H06510481A JP 6502960 A JP6502960 A JP 6502960A JP 50296094 A JP50296094 A JP 50296094A JP H06510481 A JPH06510481 A JP H06510481A
- Authority
- JP
- Japan
- Prior art keywords
- diaphragm
- gas stream
- hydroscopic
- acidic
- alkaline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/229—Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/268—Drying gases or vapours by diffusion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F2003/1435—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification comprising semi-permeable membrane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 本発明は、ガス流の湿度を調整し、そのガス流から、例えば、酸性あるいはアル カリ性のガスを浄化する方法に関する。[Detailed description of the invention] The present invention adjusts the humidity of a gas stream and removes from the gas stream, e.g. Concerning a method for purifying potash gas.
この方法によれば、水蒸気がそこを通って拡散する隔膜の保持力のある側に沿っ てガス流が導かれ、反対側の透過性のある側では、ハイドロスコピックな液体が 流れる。According to this method, along the retentive side of the diaphragm through which water vapor diffuses, on the opposite permeable side, a hydroscopic liquid is introduced. flows.
ガス流から、そこに含有される液体を、露点以下に冷却することにより凝縮し、 水蒸気を除去する方法は周知である。condensing the liquid contained therein from the gas stream by cooling it below its dew point; Methods for removing water vapor are well known.
ガス流の湿度を特に望ましい値に調整するために、まずガスを暖め、その温度で 液体を飽和させ、その後望ましい露点まで冷却することも可能である。In order to adjust the humidity of the gas stream to a particularly desired value, the gas is first warmed and then heated at that temperature. It is also possible to saturate the liquid and then cool it to the desired dew point.
ガスから水蒸気を除去する他の方法としては、ハイドロスコピックな媒体や塩を 使用するものがある。Other methods of removing water vapor from gases include hydroscopic media and salts. I have something to use.
この種の実用的にかつ継続的に使用可能な方法は、米国特許第4.915.83 8号に記載されている。空気から水蒸気を除去するために、乾燥すべき気流が微 小孔のある隔膜の保持側に導かれる。使用される隔膜は、いわゆる中空繊維膜で ある。A practical and continuously usable method of this type is described in U.S. Pat. No. 4.915.83. It is stated in No. 8. To remove water vapor from the air, a small amount of drying airflow is required. It is guided to the retaining side of the perforated septum. The membrane used is a so-called hollow fiber membrane. be.
ハイドロスコピックな液体は、隔膜の透過側に流れる。ガス流からの水蒸気は、 隔膜の気孔を通して、保持側から透過側へ拡散し、そこでハイドロスコピックな 液体により吸収され運び出される。Hydroscopic liquid flows to the permeate side of the diaphragm. Water vapor from the gas stream is Diffuses from the retentate side to the permeate side through the pores of the diaphragm, where hydroscopic Absorbed and carried away by liquids.
空気のようなガスの湿度を調整する方法は、建物内や輸送手段など、幅広い範囲 で応用できる。特に、これらのガスを、例えば硫化水素、二酸化硫黄、二酸化窒 素、二酸化炭素などの酸性ガスのみならず、アンモニアなどのようなアルカリ性 ガスのように好ましくない、例えば危険なガス部分から浄化することも、重要で ある。空気中の危険なガスを除去することに関して、工業地帯や部会、道路沿い における汚染大気の場合だけでなく、例えば、美術館内でのガスや煙草の煙の浸 透による美術作品の損傷を防ぐためなど、建物内部や輸送手段への応用も考えら れる。Methods for regulating the humidity of gases such as air can be used in a wide range of applications, including inside buildings and means of transportation. It can be applied in In particular, these gases can be converted into hydrogen sulfide, sulfur dioxide, nitrogen dioxide, Not only acidic gases such as carbon dioxide and carbon dioxide, but also alkaline gases such as ammonia, etc. It is also important to clean undesirable, e.g. hazardous gas parts, such as gases. be. In terms of removing dangerous gases from the air, industrial areas, subdivisions and roadsides In addition to the case of polluted air in Applications are also being considered inside buildings and to means of transportation, such as to prevent artwork from being damaged by transparent objects. It will be done.
この空気中の好ましくない部分の除去は、上述の空気中の湿度の調整方法と同時 には起こりえない。例えば、それらの部分が相互に露点が一致すると仮定すれば 、露点以下に空気を冷却することにより、凝縮できる部分だけが除去できる。This removal of undesirable parts in the air is done at the same time as the above-mentioned method of adjusting the humidity in the air. It can't happen. For example, assuming those parts have mutually matching dew points, , by cooling the air below the dew point, only the part that can condense can be removed.
ハイドロスコピックな媒体が使用される場合には、水蒸気以外にはどのガスも除 去できない。If a hydroscopic medium is used, it excludes any gas except water vapor. I can't leave.
本発明は、この目的のために、ガス流の湿度の調整と、アルカリ性、酸性、ある いは中性の水溶液に吸収される好ましくないガスをその気体から除去することを 、一つの工程で同時に実施する方法に関する。本発明の方法は、除去すべきガス も拡散することができる隔膜が使用されることと、混合液の水分が、処理される ガス流の望ましい湿度バランスに調整され、その組成が、ガス流から除去される べき酸性あるいはアルカリ性の成分の溶解度に調整されるようなやり方で、ハイ ドロスコピックな液体が水分と混合されることに特徴がある。The present invention provides for this purpose the adjustment of the humidity of the gas stream and the alkaline, acidic, or to remove undesirable gases from the gas that are absorbed into neutral aqueous solutions. , relates to a method that is carried out simultaneously in one step. The method of the invention comprises: A diaphragm is also used that allows the moisture in the mixture to be disposed of. The desired humidity balance of the gas stream is adjusted and its composition is removed from the gas stream. The solubility of the acidic or alkaline components is adjusted to It is characterized by the fact that droscopic liquid is mixed with water.
このハイドロスコピックな混合液の水分は、調整されるべき湿度のバランスを決 定する。隔膜は、水蒸気を、保持側から透過側へ、あるいはその逆の方向のどち らにも通過させることができるので、水蒸気は、処理されるガスにも、除去され るガスにもどちらにも加えることができる。かかるガスが、隔膜の保持側から透 過側へ拡散し、隔膜の透過側に沿って流れるハイドロスコピックな混合液の酸性 あるいはアルカリ性の水分によって吸収される結果、湿度の調整と同時に処理さ れるべきガス成分は、ガス流から除去される。このために、水分は、除去される べき成分の溶解度が物理的あるいは化学的作用により増加および/あるいは促進 されるような組成でなくてはならない。組成は、除去されるガスの性質に合わせ て調整されなくてはならない。例えば、そこには、強いあるいは弱い、有機ある いは無機の、酸あるいはアルカリが溶解している。The water content of this hydroscopic mixture determines the humidity balance to be adjusted. Set. The diaphragm directs water vapor either from the retention side to the permeation side or vice versa. The water vapor can also be passed through the gas to be removed. It can be added to both gases. This gas permeates from the retaining side of the diaphragm. The acidity of the hydroscopic mixture that diffuses to the permeate side and flows along the permeate side of the diaphragm. Or as a result of being absorbed by alkaline moisture, it is treated at the same time as humidity adjustment. Gas components to be removed are removed from the gas stream. For this, water is removed The solubility of the desired component is increased and/or promoted by physical or chemical action. The composition must be such that the The composition is tailored to the nature of the gas being removed. must be adjusted accordingly. For example, there are strong or weak organic Or an inorganic acid or alkali is dissolved.
トリエチレングリコールやポリエチレングリコールやそれらの混合物のような極 性グリコール、アルコールあるいはグリセロールからなるハイドロスコピックな 液体を用いることにより、良い結果が得られる。ハイドロスコピックな性質を持 つ電解水溶液でもよい。概して、このような、ハイドロスコピックな混合物、す なわち中に溶解している部分を有するハイドロスコピックな液体は、使用される 隔膜やモジュール材と適合性のあるものが選択されるべきである。Poles like triethylene glycol or polyethylene glycol or mixtures thereof Hydroscopic substances consisting of glycols, alcohols or glycerol Good results are obtained using liquids. It has hydroscopic properties. An electrolytic aqueous solution may also be used. In general, all such hydroscopic mixtures i.e. a hydroscopic liquid with a dissolved part in it is used The choice should be one that is compatible with the diaphragm and module material.
本発明には、工程の間、湿度を調整するために使用されるハイドロスコピックな 混合液を、再び望ましい水分を保有するまで再生する方法も含まれる。この方法 は、この目的のために、混合液がまずある温度まで加熱あるいは冷却され、そス 流に均衡状態になるまで接触させられ、作業温度まで冷却あるいは加熱されると いうことを特徴とする。The invention includes a hydroscopic system used to control humidity during the process. Also included is a method of regenerating the mixed liquid until it once again retains the desired moisture content. this method For this purpose, the mixture is first heated or cooled to a certain temperature and then When brought into contact with the flow until equilibrium is reached and cooled or heated to working temperature, It is characterized by saying.
使用される隔膜のモジュールは、−以上の隔膜からなり、それらは、微小多孔性 かつ疎水性である。例えば、ポリプロピレンは、この点で適切である。どのよう な場合でも、その目的のために、隔膜は充分な大きさの交換表面を持たねばなら ない。隔膜は中空繊維でもよいし、また、平面隔膜も応用できる。原則として、 隔膜のどちら側にガスあるいは液体が導かれても大差ない。例えば、中空繊維の 隔膜の場合、液体流あるいはガス流のどちらを繊維内を通過させることもできる 。The membrane modules used consist of - or more membranes, which are microporous and is hydrophobic. For example, polypropylene is suitable in this respect. How For that purpose, the diaphragm must have an exchange surface of sufficient size. do not have. The diaphragm may be a hollow fiber, or a flat diaphragm may also be applied. in principle, It makes no difference which side of the diaphragm the gas or liquid is guided to. For example, hollow fiber Diaphragms allow either liquid or gas flow to pass through the fibers. .
ある状況下においては、非多孔性の上層を持つ上記の隔膜を使用することが望ま しい。このような隔膜は、ハイドロスコピックな混合液の性質、および/あるい は、手順の行なわれ方の結果として、微小多孔性隔膜の孔を通して好ましからぬ ハイドロスコピックな混合液の透過が起こる場合に、特に有用である。上層隔膜 は、例えば、PDMS (シリコンラバー)、ポリトリメチルシリルプロピン、 あるいは、ポリマーを主成分とする薄いゲル層からなる。Under certain circumstances it may be desirable to use the above membranes with a non-porous top layer. Yes. Such a diaphragm depends on the nature of the hydroscopic mixture and/or may be undesirable through the pores of the microporous membrane as a result of the way the procedure is performed. It is particularly useful when permeation of hydroscopic mixtures occurs. Upper septum For example, PDMS (silicon rubber), polytrimethylsilylpropyne, Alternatively, it consists of a thin gel layer mainly composed of polymers.
当然、水蒸気と、処理されるガスから除去されるべき部分についてのこの上層の 透過性は、効果的な除去が行なわれることを保証できるように充分大きくなけれ ばならない。このような上層は、疎水性あるいは親水性であってよい。Naturally, this upper layer of water vapor and the part to be removed from the gas being treated The permeability must be large enough to ensure effective removal. Must be. Such an upper layer may be hydrophobic or hydrophilic.
非多孔性の上層を持つ隔膜を使用する場合、効果的な物質の移送を考慮すると、 液体、あるいはガスのそれぞれが隔膜のどちら側を流れるかの選択において、上 層上に液体を流すことが好ましい。しかしながら、ガス/空気相からの起こりう る汚染という点から、ガス/空気相の流れを上層上にするように選択がなされる こともある。このときには、汚れは上層の手前で蓄積し、隔膜の多孔層には浸透 しない。When using diaphragms with non-porous top layers, effective material transfer is considered In choosing which side of the diaphragm the liquid or gas flows on, Preferably, the liquid flows over the layer. However, the possible In view of the contamination caused by Sometimes. At this time, dirt accumulates before the upper layer and penetrates into the porous layer of the diaphragm. do not.
本発明には、上述の方法を実施するための装置も含まれる。The invention also includes an apparatus for carrying out the method described above.
この目的のために、この装置は、除去されるべき水蒸気と、例えば酸性あるいは アルカリ性のガスのどちらもが拡散することができる一以上の隔膜からなる隔膜 モジュールを有し、浄化され、かつ湿度に関して調整されるべきガス流を隔膜の 片側に導き、酸性、アルカリ性、あるいは中性のハイドロスコピックな混合液を もう一方の側に導く手段を備える。For this purpose, the device combines the water vapor to be removed with e.g. A diaphragm consisting of one or more diaphragms through which both alkaline gases can diffuse The gas flow to be purified and regulated with respect to humidity is passed through the diaphragm. Direct the acidic, alkaline, or neutral hydroscopic mixture to one side. Provide means to lead to the other side.
したがって、隔膜は微小多孔性で、疎水性であり、充分に大きな交換表面を有す ることが望ましく、そこを通って拡散すべき物質にとって充分な透過性を持つ非 多孔性上層を備えてもよい。Therefore, the membrane is microporous, hydrophobic, and has a sufficiently large exchange surface. It is desirable that the A porous top layer may also be provided.
以下に、本発明による方法のいくつかの実施例を記載する。Below, some examples of the method according to the invention are described.
この記載では、本発明の様々な面が示される。In this description, various aspects of the invention are presented.
一般的に、吸収液、または混合液全体における、酸あるいはアルカリの濃度は、 場合に応じて、処理される空気流から除去される、あるいはそこに加えられる水 分の量で異なる。Generally, the concentration of acid or alkali in the absorption liquid or the entire mixed liquid is water removed from or added to the air stream being treated, as the case may be; The amount varies depending on the amount.
実施例1 500ppmの二酸化硫黄を含む湿気を帯びた窒素ガス流が、中空繊維隔膜モジ ュール(形式エンカ(ENKA)LM2PO6、ポリプロピレン繊維、微小多孔 性)の繊維内を4リットル/分の流速で導かれた。隔膜モジュールは、内径0゜ 6ミリの繊維を有し、総膜表面積は400cm2である。繊維の束は、その周囲 を、吸収液としての0.251/minのエチレングリコールと炭酸ナトリウム 溶液に取り巻かれる。Example 1 A stream of humid nitrogen gas containing 500 ppm sulfur dioxide is passed through the hollow fiber membrane module. (Type: ENKA) LM2PO6, polypropylene fiber, microporous The flow rate was 4 liters/min through the fibers. The diaphragm module has an inner diameter of 0° It has 6 mm fibers and a total membrane surface area of 400 cm2. The bundle of fibers is , 0.251/min ethylene glycol and sodium carbonate as absorption liquid Surrounded by solution.
この混合液におけるエチレングリコールと炭酸ナトリウム溶液の比は、重量比で 、4:1である。入ってくる窒素ガス流については、相対湿度約94%、露点1 2.1℃が測定された。二酸化硫黄の濃度は、500 p pmとなった。The ratio of ethylene glycol and sodium carbonate solution in this mixture is , 4:1. For the incoming nitrogen gas stream, the relative humidity is approximately 94%, with a dew point of 1 2.1°C was measured. The concentration of sulfur dioxide was 500 ppm.
出ていく窒素ガス流では、相対湿度約61%、露点12゜1℃が測定された。出 ていく窒素ガス流の二酸化硫黄濃度としては、0.5ppmの含有量が検出され た。In the exiting nitrogen gas stream, a relative humidity of approximately 61% and a dew point of 12°1°C were measured. Out The concentration of sulfur dioxide in the nitrogen gas stream detected was 0.5 ppm. Ta.
したがって、窒素ガス流の湿度が調整され、あるいは減少されると同時に、窒素 ガス流の二酸化硫黄含有量は99%減少したようである。Therefore, while the humidity of the nitrogen gas stream is adjusted or reduced, the nitrogen The sulfur dioxide content of the gas stream appears to have been reduced by 99%.
実施例2 実施例1と同様の隔膜モジュールで、乾燥した窒素ガス流が、500 ppmの 窒素含有量で、4リットル/分の流速で、繊維内を通して導かれた。繊維の周囲 には、吸収液として、約80%がエチレングリコール、約20%が1M炭酸ナト リウムからなる液体が注入された。吸収液は、流速的0.5リットル/分であっ た。実施温度は、約28℃であった。Example 2 In a diaphragm module similar to Example 1, the dry nitrogen gas stream was The nitrogen content was directed through the fibers at a flow rate of 4 liters/min. around the fibers The absorption liquid is about 80% ethylene glycol and about 20% 1M sodium carbonate. A liquid consisting of lium was injected. The absorption liquid had a flow rate of 0.5 liters/min. Ta. The operating temperature was approximately 28°C.
入ってくる窒素ガス流中の相対湿度は約10%、露点は。The relative humidity in the incoming nitrogen gas stream is approximately 10%, and the dew point is.
5.5℃と測定された。It was measured as 5.5°C.
出ていく窒素ガス流中では、二酸化硫黄濃度0.5ppm、相対湿度約41%( j1点14.0℃)が測定された。In the exiting nitrogen gas stream, the sulfur dioxide concentration is 0.5 ppm and the relative humidity is approximately 41% ( j1 point 14.0°C) was measured.
したがって、窒素ガス流の湿度が調整され、あるいは、増加すると同時に、窒素 ガス流の二酸化硫黄量は99%減少したようである。Therefore, while the humidity of the nitrogen gas stream is adjusted or increased, the nitrogen The amount of sulfur dioxide in the gas stream appears to have been reduced by 99%.
実施例3 実施例1および2と同様の構成で、窒素ガス流からの二酸化硫黄の除去の程度に 、炭酸ナトリウムの濃度がどのような影響を与えるかが観察された。このために 、炭酸ナトリウム溶液は、1モル濃度から、それぞれ0.3モル濃度および0゜ 1モル濃度に薄められた。0.3モル濃度の炭酸ナトリウムでは、二酸化硫黄の 除去程度は依然として99%以上であった。0.1モル濃度の炭酸ナトリウムで は、SOの除去程度は約90%に低下したようであった。Example 3 With a configuration similar to Examples 1 and 2, the extent of sulfur dioxide removal from the nitrogen gas stream , it was observed what effect the concentration of sodium carbonate had. For this , sodium carbonate solutions range from 1 molar to 0.3 molar and 0°, respectively. Diluted to 1 molar concentration. At 0.3 molar concentration of sodium carbonate, the amount of sulfur dioxide The degree of removal was still above 99%. At 0.1 molar concentration of sodium carbonate It appeared that the extent of SO removal was reduced to about 90%.
実施例4 実施例1および2と同様の実験構成で、エチレングリコールと(炭酸ナトリウム を含有しない)水の混合物の場合と水だけの場合とで、窒素ガス流からどのよう な二酸化硫黄の除去が行なわれるかが観察された。窒素ガス中の出ていく二酸化 硫黄の濃度は、ここでは、51.3 p pmに低下した。除去程度は、最大5 0%であった。実験時間が長い場合には、除去程度は約40%以下に低下した。Example 4 In an experimental setup similar to Examples 1 and 2, ethylene glycol and (sodium carbonate) from a nitrogen gas stream in the case of a water mixture (containing no water) and in the case of water alone It was observed whether the removal of sulfur dioxide took place. Dioxide leaving nitrogen gas The concentration of sulfur was now reduced to 51.3 ppm. The maximum removal level is 5 It was 0%. For longer experimental times, the extent of removal decreased to less than about 40%.
実施例3および4の結果から、炭酸ナトリウムを追加せずに、あるいは0.1モ ル濃度未満の濃度で炭酸ナトリウムを追加することで、二酸化硫黄の除去程度は 急速に低下することが推測できる。その場合、溶液は、急速に二酸化硫黄で飽和 状態になり、それ以上の吸収が妨げられるようである。効果的な二酸化硫黄の除 去と、同時に行なわれる窒素ガス流の湿度の調整のために、炭酸ナトリウムの濃 度は0.1モル濃度以上であることがめ実施例1および2と同様の実験構成で、 しかし吸収液として、トリエチレングリコール(TEG)と炭酸カリウム溶液( 1モル濃度)の混合物を用いる差をもって、実施例1の実験が繰り返された。こ の混合物中のTEGと炭酸カリウム溶液の比は、重量比で4:1であった。実施 例1と同様の、除湿、および、同時に、二酸化硫黄の除去の程度が測定された。From the results of Examples 3 and 4, it can be seen that without adding sodium carbonate or with 0.1 molar The extent of sulfur dioxide removal can be reduced by adding sodium carbonate at a concentration below the It can be inferred that it will decline rapidly. In that case, the solution is rapidly saturated with sulfur dioxide condition, which appears to prevent further absorption. Effective sulfur dioxide removal Concentrations of sodium carbonate were added to remove and simultaneously adjust the humidity of the nitrogen gas stream. Since the concentration was 0.1 molar or more, the experimental configuration was the same as in Examples 1 and 2. However, as absorption liquids, triethylene glycol (TEG) and potassium carbonate solution ( The experiment of Example 1 was repeated with the difference that a 1 molar mixture was used. child The ratio of TEG and potassium carbonate solution in the mixture was 4:1 by weight. implementation Similar to Example 1, the degree of dehumidification and, at the same time, the removal of sulfur dioxide was measured.
この結果から、実施例1から4で用いた混合物の場合と同様に、TEGと炭酸カ リウム溶液の混合物を用いて、窒素ガス流の湿度が調整され、同時に二酸化硫黄 含有量が99%減少できることが結論される。From this result, as in the case of the mixtures used in Examples 1 to 4, TEG and carbonate Using a mixture of nitrogen gas solutions, the humidity of the nitrogen gas stream is adjusted and at the same time sulfur dioxide It is concluded that the content can be reduced by 99%.
フロントページの続き (51) Int、 C1,5識別記号 庁内整理番号B 01 D 53/3 4 119 6953−4DIContinuation of front page (51) Int, C1,5 identification symbol Internal reference number B 01 D 53/3 4 119 6953-4DI
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL9201226A NL9201226A (en) | 1992-07-08 | 1992-07-08 | METHOD AND APPARATUS FOR REGULATING THE HUMIDITY OF A GAS FLOW AND PURIFYING IT AT THE SAME TIME FROM UNWANTED ACID OR BASIC GASES. |
NL9201226 | 1992-07-08 | ||
PCT/EP1993/001773 WO1994001204A1 (en) | 1992-07-08 | 1993-07-02 | Method and device for regulating the humidity of a gas flow and at the same time purifyng it of undesired acid or alkaline gasses |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06510481A true JPH06510481A (en) | 1994-11-24 |
Family
ID=19861036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6502960A Pending JPH06510481A (en) | 1992-07-08 | 1993-07-02 | Method and apparatus for regulating the humidity of a gas stream and simultaneously purifying the gas stream of undesirable acidic or alkaline gases |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0607387A1 (en) |
JP (1) | JPH06510481A (en) |
NL (1) | NL9201226A (en) |
WO (1) | WO1994001204A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5399188A (en) * | 1993-12-01 | 1995-03-21 | Gas Research Institute | Organic emissions elimination apparatus and process for same |
NL9400483A (en) * | 1994-03-25 | 1995-11-01 | Tno | Method for absorbing gas/liquid with the aid of hollow fibre membranes |
NL9401233A (en) * | 1994-03-25 | 1995-11-01 | Tno | Membrane gas absorption method. |
AUPM592694A0 (en) * | 1994-05-30 | 1994-06-23 | F F Seeley Nominees Pty Ltd | Vacuum dewatering of desiccant brines |
NL9400976A (en) * | 1994-06-15 | 1996-01-02 | Tno | Method and device for removing ammonia from gas. |
US5490884A (en) * | 1994-09-09 | 1996-02-13 | Tastemaker | Method and system for extracting a solute from a fluid using dense gas and a porous membrane |
US5954858A (en) * | 1995-11-22 | 1999-09-21 | North Carolina State University | Bioreactor process for the continuous removal of organic compounds from a vapor phase process stream |
US6083297A (en) * | 1995-12-13 | 2000-07-04 | Whatman, Inc. | Gas dehydration membrane with low oxygen and nitrogen permeability |
US6926829B2 (en) | 2000-03-06 | 2005-08-09 | Kvaerner Process Systems A.S. | Apparatus and method for separating fluids through a membrane |
US6666906B2 (en) * | 2000-11-08 | 2003-12-23 | Clearwater International, L.L.C. | Gas dehydration using membrane and potassium formate solution |
DE10059910C2 (en) | 2000-12-01 | 2003-01-16 | Daimler Chrysler Ag | Device for continuous humidification and dehumidification of the supply air of production processes or ventilation systems |
US6497749B2 (en) * | 2001-03-30 | 2002-12-24 | United Technologies Corporation | Dehumidification process and apparatus using collodion membrane |
US6517607B2 (en) * | 2001-06-04 | 2003-02-11 | Gas Technology Institute | Method and apparatus for selective removal of a condensable component from a process stream with latent heat recovery |
GB0228074D0 (en) | 2002-12-02 | 2003-01-08 | Molecular Products Ltd | Carbon dioxide absorption |
US8679230B2 (en) | 2008-12-19 | 2014-03-25 | Michael L. Strickland | Reducing emissions of VOCs from low-pressure storage tanks |
US10782261B2 (en) * | 2014-03-25 | 2020-09-22 | The Procter & Gamble Company | Apparatus for sensing environmental humidity changes |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4147754A (en) * | 1975-07-28 | 1979-04-03 | General Electric Company | System for selective removal of hydrogen sulfide from a mixture of gases |
NL8702150A (en) * | 1987-09-09 | 1989-04-03 | Tno | METHOD AND MEMBRANE FOR REMOVING WATER VAPOR BY VAPOR PERMEATION FROM A GAS-VAPOR MIXTURE. |
US4900448A (en) * | 1988-03-29 | 1990-02-13 | Honeywell Inc. | Membrane dehumidification |
NL8902897A (en) * | 1989-11-23 | 1991-06-17 | Tno | PURIFYING AIR. |
NL9000783A (en) * | 1990-04-03 | 1991-11-01 | Tno | MEMBRANE SEPARATION PROCESS FOR DEWATERING A GAS, VAPOR OR LIQUID MIXTURE BY PERVAPORATION, VAPOR PERMEATION OR GAS SEPARATION. |
US5084073A (en) * | 1990-10-11 | 1992-01-28 | Union Carbide Industrial Gases Technology Corporation | Membrane drying process and system |
-
1992
- 1992-07-08 NL NL9201226A patent/NL9201226A/en not_active Application Discontinuation
-
1993
- 1993-07-02 WO PCT/EP1993/001773 patent/WO1994001204A1/en not_active Application Discontinuation
- 1993-07-02 JP JP6502960A patent/JPH06510481A/en active Pending
- 1993-07-02 EP EP93915837A patent/EP0607387A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
NL9201226A (en) | 1994-02-01 |
EP0607387A1 (en) | 1994-07-27 |
WO1994001204A1 (en) | 1994-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06510481A (en) | Method and apparatus for regulating the humidity of a gas stream and simultaneously purifying the gas stream of undesirable acidic or alkaline gases | |
DE68926421T2 (en) | Process for removing dissolved gases from a liquid | |
JP2571841B2 (en) | Gas dehydration method | |
US4583996A (en) | Apparatus for separating condensable gas | |
US7318854B2 (en) | System and method for selective separation of gaseous mixtures using hollow fibers | |
ATE146698T1 (en) | APPARATUS AND METHOD FOR ELIMINATION OF RADON | |
US10456738B2 (en) | Method and apparatus for separating one or more components from a composition | |
US4606740A (en) | Separation of polar gases from nonpolar gases | |
JPH07112122A (en) | Carbon dioxide separating gelatinous membrane and its production | |
JP3999423B2 (en) | Carbon dioxide separation and dehumidification method and apparatus using liquid membrane | |
CN112423867A (en) | Carbon dioxide separation membrane comprising carbonic anhydrase | |
FR2729306A1 (en) | PROCESS FOR SEPARATING ACIDIC GAS FROM GASEOUS MIXTURES USING COMPOSITE MEMBRANES FORMED OF SEL-POLYMER MIXTURES | |
US7625427B2 (en) | Apparatus and process for carbon dioxide absorption | |
EP1740291B1 (en) | Membrane for separating co2 and process for the production thereof | |
JP2006507882A5 (en) | ||
JP4022341B2 (en) | Dehumidification method and apparatus | |
CN102580559A (en) | Hydrophilic single skin layer tubular high polymer porous membrane | |
KR20130102484A (en) | Membrane stripping process for removing volatile organic compounds from latex | |
JPH022820A (en) | Separation of mixed solution | |
Žitková et al. | Application of Water‐Swollen Thin‐Film Composite Membrane in Flue Gas Purification | |
Khosravi et al. | Effect of different additives on separation performance of flat sheet PVDF membrane contactor | |
JP2022184754A (en) | Gas separation method | |
JP7120523B2 (en) | Method for producing water treatment separation membrane and water treatment separation membrane produced thereby | |
JPS63209731A (en) | Method for producing pressurized air for instrumentation and air drive equipment | |
JPS63126521A (en) | Dehydrating method for triethylene glycol |