[go: up one dir, main page]

JPH06506797A - Superconductor and its manufacturing method - Google Patents

Superconductor and its manufacturing method

Info

Publication number
JPH06506797A
JPH06506797A JP4507643A JP50764392A JPH06506797A JP H06506797 A JPH06506797 A JP H06506797A JP 4507643 A JP4507643 A JP 4507643A JP 50764392 A JP50764392 A JP 50764392A JP H06506797 A JPH06506797 A JP H06506797A
Authority
JP
Japan
Prior art keywords
temperature
mixture
hours
superconducting
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4507643A
Other languages
Japanese (ja)
Inventor
ヘッティッヒ,ベルンハルト
エルシュナー,シュテッフェン
ヴァイス,ヘルガ
ラング,クリストフ
ベッカー,ヴィンフリート
Original Assignee
ヘキスト・アクチェンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヘキスト・アクチェンゲゼルシャフト filed Critical ヘキスト・アクチェンゲゼルシャフト
Publication of JPH06506797A publication Critical patent/JPH06506797A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 超伝導体およびその製造方法 この発明は、高温において超伝導を生じるビスマス、ストロンチウム、銅および イツトリウムを基材とする物質に関する。[Detailed description of the invention] Superconductor and its manufacturing method This invention combines bismuth, strontium, copper, and Concerning substances based on yttrium.

従来の超伝導を生じる物質は、極めて高価な冷却材であるヘリウムの使用を必要 とする極低温においてのみ使用可能であるのに対して、新規の超伝導を生じる酸 化物物質は、比較的安価な冷却材である窒素を用いて得ることができる可成り高 温において作用する。このことは超伝導を生じる設備およびプラントの操業費を 低減させ、広範囲にわたる新規の考えられる用途を広げる。Traditional superconducting materials require the use of helium, an extremely expensive coolant. While it can only be used at extremely low temperatures, new superconducting acids The chemical material has a fairly high Acts at high temperatures. This reduces the operating costs of equipment and plants that produce superconductivity. reduction, opening up a wide range of new possible applications.

11JiJ7−比が11−1の元素ビスマス、ストロンチウムおよび銅を酸化物 の形で含有し、超伝導転移温度が20にの酸化物系超伝導体がすでに開示されて いる(CNii che lらのZ、phys、B68 (1987)421)  。しかし、約20にという超伝導転移温度は工業用としてはまだ十分ではない 。11JiJ7- oxides of the elements bismuth, strontium and copper with a ratio of 11-1 An oxide-based superconductor containing in the form of (CNii che et al. Z, phys, B68 (1987) 421) . However, the superconducting transition temperature of about 20 is still not sufficient for industrial use. .

超伝導転移温度が高く、さらにカルシウムを含有する酸化物系超伝導体がたとえ ばEP−A 03 27 044によって開示されている。Oxide-based superconductors with a high superconducting transition temperature and containing calcium are an example. For example, it is disclosed in EP-A 03 27 044.

Fuertes (phys ica C157(1989) 、p421)は Bi、SrおよびCuの酸化物の混合物を950’Cおよび700℃の二段階で 加熱して、化合物B14SrsCu、O,g。、の里結晶を得たが、しかしこれ は超伝導を示さなかった。Fuertes (phys ica C157 (1989), p421) A mixture of Bi, Sr and Cu oxides was heated in two steps at 950’C and 700°C. Upon heating, compound B14SrsCu,O,g. , got the village crystal, but this showed no superconductivity.

この発明の目的は調製条件を様々にして、新規酸化物系超伝導物質を得ることに ある。The purpose of this invention is to obtain new oxide-based superconducting materials by varying the preparation conditions. be.

意外なことIこ、ヒスマス、ストロンチウムおよび銅を含有し、より詳細には請 求項1記載の著しい特色を特徴とする物質の超伝導混合物の製造方法が見出され た。Surprisingly, it contains hismuth, strontium and copper. A method for producing a superconducting mixture of substances characterized by the remarkable features described in claim 1 has been discovered. Ta.

該化合物は、反応温度において、反応して相当する酸化物、とりわけ水酸化物お よび硝酸塩を生成する酸化物前駆物質として一般に使用することができる。また 、前記金属の酢酸塩、ギ酸塩、シュウ酸塩および炭酸塩を使用することも可能で ある。たとえば、Y(NO3)3、炭酸ストロンチウム、ビスマス酸、酸化ビス マス(I[I)およびCu2Oを使用することができる。At the reaction temperature, the compounds react to form the corresponding oxides, especially hydroxides and It can be commonly used as an oxide precursor to produce nitrates and nitrates. Also , it is also possible to use acetates, formates, oxalates and carbonates of said metals. be. For example, Y(NO3)3, strontium carbonate, bismuth acid, bis oxide Mass (I[I) and Cu2O can be used.

反応の出発物質中の比率Cu:Σ(Bi+Sr+Cu)が025ないし030の 範囲内にあるのが好ましい。約955°Cから約855°Cへの冷却は徐々に、 たとえば精々10に/h、とくに精々5に/hの速度で行うのが好ましい。18 ないし2に/hの速度がとくに望ましい。The ratio Cu:Σ(Bi+Sr+Cu) in the starting materials for the reaction is from 025 to 030. Preferably within this range. The cooling from about 955°C to about 855°C gradually For example, it is preferred to operate at a speed of at most 10/h, in particular at most 5/h. 18 A speed of between 1 and 2 hours is particularly desirable.

反応混合物の955ないし965℃の温度に少なくとも10時間保つのが好まし く、また845ないし855°Cの温度に少なくとも10時間保つのが好ましい 。Preferably, the reaction mixture is kept at a temperature of 955 to 965°C for at least 10 hours. and preferably maintained at a temperature of 845 to 855°C for at least 10 hours. .

反応時間の上限は、単に経済的理由によって、定められる。The upper limit for the reaction time is determined solely by economic reasons.

845ないし855℃および955ないし965°Cにおける調質(tempe ring)の間、オーブン雰囲気中に少なくとも5容量%の酸素が存在すること が好ましい。10容量%の酸素がさらに好ましい。空気がとくに望ましい。室温 までの冷却はオーブン内で、従って徐々に行うのが好ましい。Temperature treatment at 845-855°C and 955-965°C at least 5% by volume of oxygen is present in the oven atmosphere during is preferred. More preferred is 10% oxygen by volume. Air is especially desirable. room temperature Preferably, the cooling is carried out in an oven and therefore gradually.

得られた溶融反応生成物の組成は、酸素含量を別にすれば、出発混合物の組成と 一致する。The composition of the resulting molten reaction product, apart from the oxygen content, is similar to that of the starting mixture. Match.

得られた生成物の超伝導転移温度は50ないし60にである。5QUID磁力計 を用いて滞磁率を測定した結果は5ないし35容量%の超伝導相を示す。The superconducting transition temperature of the product obtained is between 50 and 60°C. 5QUID magnetometer The magnetic retardation rate was measured using 5 to 35% by volume of superconducting phase.

この発明を実施例によってさらに詳細に説明する。This invention will be explained in more detail by way of examples.

実施例1 総体的な組成がBi、5r8−エY、Cu50、(式中、Xはゼロよりも大であ った)で、Bi2O3、Sr(NO3)2、CuOおよびY2O,の混合物の形 をなす試料をめのうの乳鉢の中で入念に粉砕して、均一にする。混合物をコラン ダムのるつぼの中で(空気中で)960°Cに4時間加熱し、960℃で20時 間保持し、60時間で850°Cまで冷却し、850℃で20時間保った後、オ ーブCン内で室温まで冷却した。得られた試料は超伝導転移温度Tcが50ない し60にの超伝導性を示す。超伝導容量比率はまずXが増すにつれて増大し、次 いで再び減少する。Y部分(x)の関数としての超伝導体の容量比率(SQUI D測定値)を表1に示す。Example 1 The overall composition is Bi, 5r8-E, Cu50, (wherein X is greater than zero) ) in the form of a mixture of Bi2O3, Sr(NO3)2, CuO and Y2O, Carefully crush the sample in an agate mortar to make it homogeneous. Coran the mixture Heated in a dam crucible (in air) to 960°C for 4 hours, then heated to 960°C for 20 hours. After cooling to 850°C for 60 hours and keeping at 850°C for 20 hours, The mixture was cooled to room temperature in oven C. The obtained sample has a superconducting transition temperature Tc of less than 50 It exhibits superconductivity of 60%. The superconducting capacity ratio first increases as X increases, and then decreases again. Capacity ratio of superconductor (SQUI) as a function of Y part (x) D measurement values) are shown in Table 1.

表1 すべての場合に、主相はFuertesが示した組成型を有する化合物Bi。Table 1 In all cases, the main phase is a compound Bi having the composition type given by Fuertes.

(Sr、 Y)ICu50.である。第二相は公知の二層化合物B14(Sr、 Ca)Cu40+s−yの組成型を有する組成り12(Sr、 Y)2Cu20 .を有していた。X線結晶学は、さらに、少なくとも一つの小部分の第二層を示 す。この第二相によるX線回折線を表2に示す。(Sr, Y) ICu50. It is. The second phase is a known two-layer compound B14 (Sr, Ca) Composition 12 (Sr, Y)2Cu20 having a composition type of Cu40+s-y .. It had X-ray crystallography also shows at least one small portion of the second layer. vinegar. Table 2 shows the X-ray diffraction lines of this second phase.

これらの線の強度はXが増につれて増大するが、化合物Bg(Sr、 Y)、、 Cu50.の回折線の強度はXが増すにつれて減少する。x=0.4の場合の試 料のX線回折線を表3に書き記す。波長が1.54056人の単色光を使用した 。同じ試料の滞磁率の測定曲線を図1に示す。The intensity of these lines increases as X increases, but for compounds Bg(Sr, Y), Cu50. The intensity of the diffraction lines decreases as X increases. Trial when x=0.4 The X-ray diffraction lines of the materials are listed in Table 3. Monochromatic light with a wavelength of 1.54056 people was used. . Figure 1 shows the measurement curve of the magnetic reluctance of the same sample.

表2 20 d 1 24.694 3.602 26.3 25.842 3.444 18.5 32.887 2.721 58.4 35.074 2.556 9.7 36.734 2.444 8.5 47.190 1.924 26.4 57.474 1.602 14.0 実施例2 同じ出発物質ではあるが、Bi36Yll asrscu50+という出発混合 物組成の異なる物質を用いて寓施例1を繰返した。得られた黒色組成物の超伝導 転移温度は50ないし60にである。超伝導相の容量比率は15%である。Table 2 20 d 1 24.694 3.602 26.3 25.842 3.444 18.5 32.887 2.721 58.4 35.074 2.556 9.7 36.734 2.444 8.5 47.190 1.924 26.4 57.474 1.602 14.0 Example 2 Same starting material but starting mixture Bi36Yll asrscu50+ Example 1 was repeated using materials with different compositions. Superconductivity of the obtained black composition The transition temperature is between 50 and 60°C. The capacity ratio of the superconducting phase is 15%.

表3 N 2θ 面間隔 強度 1 5.187 17.02322 10.62 7、390 11.9532 g 7.73 23.868 3.72499 15.84 24.694 3 .60233 26.35 25、842 3.44474 18.56 27 、241 3.27095 53.57 28.191 3.16285 21 .28 28.977 3.07887 11.09 29.740 3.00 156 30.710 31.039 2.87879 100.011 31 .678 2.82217 13.412 32.887 2.72114 5 8.413 33.341 2.6g514 72.414 35.074 2 .55637 9.715 36.734 2.44452 8.516 37 、155 2.41778 14.117 37.510 2.39575 1 2.91g 44.069 2.05318 10.819 44.442 2 .03679 +、3.320 45、320 1.99938 17.921  46.634 1.94605 16.622 47.190 1.9244 2 26.423 50、410 1.80877 8.424 50.730  1.79810 12.925 51、075 1.78676 9.726  55、487 1.65468 10.027 56.044 1.6395 6 13.828 56、361 1.63107 9.629 57、474  1.60211 14.030 57、744 1.59526 14.43 1 58、167 1.58467 +4.632 59、981 1.541 00 11.6−二°、::=;;−二−°ソーJ?−−二;;;、二’m l ’l’ kτ:;;;、す;:°二tτ:;:みフ二;;==フ::“”°J“ 1“°7°°−“−“′10“乏1Σン)f弓力「11丁heLvnn@**P uem+allle++n+p+e+5vlIn−−11kar++tMe@e file++Ief11−・+に@≠■■堰魔浴{w)y%m@lorthew ave電aalla−喝w++y+i+閾1フロントページの続き (72)発明者 ヴアイス、ヘルガ ドイツ連邦共和国デー−6230フランクアルト・アム・マイン、ティオトマン シュトラーセ 11 (72)発明者 ラング、クリストフ ドイツ連邦共和国デー−6000フランクアルト・アム・マイン、ミルゼブルク シュトラーセ 7 (72)発明者 ベツカー、ヴインフリートドイツ連邦共和国デー−6239プ レムタール、アム・エツジエンハング 7Table 3 N 2θ Planar spacing Strength 1 5.187 17.02322 10.62 7, 390 11.9532 g 7.73 23.868 3.72499 15.84 24.694 3 .. 60233 26.35 25, 842 3.44474 18.56 27 , 241 3.27095 53.57 28.191 3.16285 21 .. 28 28.977 3.07887 11.09 29.740 3.00 156 30.710 31.039 2.87879 100.011 31 .. 678 2.82217 13.412 32.887 2.72114 5 8.413 33.341 2.6g514 72.414 35.074 2 .. 55637 9.715 36.734 2.44452 8.516 37 , 155 2.41778 14.117 37.510 2.39575 1 2.91g 44.069 2.05318 10.819 44.442 2 .. 03679 +, 3.320 45, 320 1.99938 17.921 46.634 1.94605 16.622 47.190 1.9244 2 26.423 50, 410 1.80877 8.424 50.730 1.79810 12.925 51,075 1.78676 9.726 55, 487 1.65468 10.027 56.044 1.6395 6 13.828 56, 361 1.63107 9.629 57, 474 1.60211 14.030 57, 744 1.59526 14.43 1 58, 167 1.58467 +4.632 59, 981 1.541 00 11.6-2°, ::=;;-2-° So J? --2;;;、2'ml ’l’ kτ:;;;、 す;:°二tτ:;:Miふ二;;==ふ::“”°J“ 1"°7°°-"-"'10"poor 1Σn) f bow power "11 heLvnn@**P uem+alle++n+p+e+5vlIn--11kar++tMe@e file++Ief11-・+@≠■■Weir magic bath {w)y%m@lorthew ave electric aalla-cheer w++y+i+threshold 1 continuation of front page (72) Inventor: Vuis, Helga Day of the Federal Republic of Germany - 6230 Frankfurt am Main, Tiotmann Strasse 11 (72) Inventor Lang, Christophe Federal Republic of Germany Day - 6000 Frankfurt am Main, Milseburg Strasse 7 (72) Inventor Becker, Winfried Federal Republic of Germany Day-6239P Remtal, Am Etzienhang 7

Claims (7)

【特許請求の範囲】[Claims] 1.ビスマス、ストロンチウムおよび銅を含む物質の超伝導混合物の調製方法に おいて、該方法が、Y2O3またはY2O3前駆物質と、前記金属の酸化物また は酸化物前駆物質との混合物を調製し、次の原子比を諸式に従うように定め、B i:(Bi+Sr+Cu)=0.2ないし0.35Cu:(Bi+Sr+Cu) =0.2ないし0.40Y:Sr=0.012ないし0.111、およびΣ(S r+Y)=30ないし50原子%次いで前記混合物を十分に粉砕して、均一にし 、さらに955ないし965℃の温度に少なくとも5時間加熱し、845ないし 855℃に冷却して、少なくとも5時間この温度に保持し、次に室温まで冷却す ることを含むことを特徴とする方法。1. For the preparation of superconducting mixtures of materials containing bismuth, strontium and copper wherein the method comprises Y2O3 or a Y2O3 precursor and an oxide or B prepares a mixture with an oxide precursor, determines the following atomic ratios according to the formulas, and B i: (Bi+Sr+Cu)=0.2 to 0.35Cu: (Bi+Sr+Cu) =0.2 to 0.40Y: Sr=0.012 to 0.111, and Σ(S r+Y)=30 to 50 at% Then, the mixture is thoroughly ground to make it homogeneous. , further heated to a temperature of 955 to 965 °C for at least 5 hours, and further heated to a temperature of 845 to 965 °C for at least 5 hours Cool to 855°C and hold at this temperature for at least 5 hours, then cool to room temperature. A method comprising: 2.960℃から850℃に冷却する間に、冷却を精々10K/h、とりわけ精 々5K/h、好ましくは精々2K/hの速度で行うことを特徴とする請求項1記 載の方法。2. During cooling from 960°C to 850°C, the cooling rate is at most 10K/h, especially when Claim 1, characterized in that it is carried out at a speed of at most 5 K/h, preferably at most 2 K/h. How to put it on. 3.混合物を955ないし965℃の温度で少なくとも10時間保持することを 特徴とする請求項1記載の方法。3. holding the mixture at a temperature of 955 to 965°C for at least 10 hours; The method of claim 1, characterized in that: 4.混合物を845ないし855℃の温度で少なくとも10時間保持することを 特徴とする請求項1記載の方法。4. holding the mixture at a temperature of 845 to 855°C for at least 10 hours; The method of claim 1, characterized in that: 5.加熱中の雰囲気が少なくとも5容量%の酸素を含むことを特徴とする請求項 1記載の方法。5. Claim characterized in that the atmosphere during heating contains at least 5% by volume of oxygen. The method described in 1. 6.酸化物の形をしたビスマス、ストロンチウムおよび銅を含む物質の超伝導混 合物において、酸化物の形をしたYも存在し、かつ次の原子比が諸式にあてはま ることを特徴とする混合物: Bi:(Bi+Sr+Cu)=0.2ないし0.35Cu:(Bi+Sr+Cu )=0.2ないし0.40Y:Sr=0.012ないし0.111およびΣ(S r+Y)=30ないし50原子%。6. Superconducting mixtures of materials containing bismuth, strontium and copper in the form of oxides In the compound, Y in the form of oxide also exists, and the following atomic ratios apply to the various formulas. A mixture characterized by: Bi: (Bi+Sr+Cu)=0.2 to 0.35Cu: (Bi+Sr+Cu )=0.2 to 0.40Y: Sr=0.012 to 0.111 and Σ(S r+Y)=30 to 50 atom%. 7.超伝導移転温度が50ないし60Kで、かつSQUID磁力計を用いる滞磁 率測定により求めた超伝導相の容量比率が5ないし35%であることを特徴とす る請求項6記載の混合物。7. Demagnetization with a superconducting transfer temperature of 50 to 60 K and using a SQUID magnetometer The capacity ratio of the superconducting phase determined by rate measurement is 5 to 35%. 7. The mixture according to claim 6.
JP4507643A 1991-04-26 1992-04-09 Superconductor and its manufacturing method Pending JPH06506797A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4113726A DE4113726A1 (en) 1991-04-26 1991-04-26 SUPER CHARACTER AND METHOD FOR THE PRODUCTION THEREOF
DE4113726.4 1991-04-26
PCT/EP1992/000803 WO1992020107A1 (en) 1991-04-26 1992-04-09 Superconductor and process for making it

Publications (1)

Publication Number Publication Date
JPH06506797A true JPH06506797A (en) 1994-07-28

Family

ID=6430459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4507643A Pending JPH06506797A (en) 1991-04-26 1992-04-09 Superconductor and its manufacturing method

Country Status (4)

Country Link
EP (1) EP0581792A1 (en)
JP (1) JPH06506797A (en)
DE (1) DE4113726A1 (en)
WO (1) WO1992020107A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0557951A1 (en) * 1992-02-28 1993-09-01 Hoechst Aktiengesellschaft Oxide ceramic superconducting material and production method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1338754C (en) * 1987-12-28 1996-12-03 Jun Akimitsu Metal oxide material
US5126316A (en) * 1988-08-24 1992-06-30 E. I. Du Pont De Nemours And Company Bi2 Sr3-x Yx Cu2 O8+y superconducting metal oxide compositions

Also Published As

Publication number Publication date
EP0581792A1 (en) 1994-02-09
DE4113726A1 (en) 1992-10-29
WO1992020107A1 (en) 1992-11-12

Similar Documents

Publication Publication Date Title
JP3009133B2 (en) Superconducting material and method for producing the same
EP0280812B1 (en) Superconductivity in square - planar compound systems
JP3332350B2 (en) Superconductor and method of using the same
Haldar et al. EuBa2Cu3O x produced by oxidation of a rapidly solidified precursor alloy: An alternative preparation method for high T c ceramic superconductors
US4990488A (en) Superconductors Bi-Sr-Cu-O
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
JPH06506797A (en) Superconductor and its manufacturing method
US5270292A (en) Method for the formation of high temperature semiconductors
JPH02503789A (en) Improved manufacturing method for 90K superconductor
US5208214A (en) Multiphase superconductor and process for its production
JPH01192758A (en) Superconducting ceramic
JPH03502918A (en) Superconducting metal oxide composition and method for producing the same
CA2453922C (en) Oxide high-critical temperature superconductor acicular crystal and method for producing the same
JPH0446015A (en) Oxide superconducting material and its production
JP2593480B2 (en) Manufacturing method of oxide superconductor
JPH04214027A (en) Oxide superconductor and its manufacturing method
JPH02217316A (en) High-temperature superconductive material and its manufacture
JPH0465395A (en) Superconducting fibrous crystal and its production
JPH04292420A (en) Superconducting compound and method for its preparation
KR100265031B1 (en) A na-intervened superconductors and their preparing method
JP2745888B2 (en) Manufacturing method of oxide superconductor
JPH069262A (en) High temperature superconductor of oxide ceramic and preparation thereof
JPH04501407A (en) Superconducting metal oxide composition and method for producing and using the same
Sheen et al. Superconductivity at 63 K in YSr2. 2Cu2. 6Fe0. 25Oy
JPH013009A (en) Superconducting materials and their manufacturing methods