JPH06506797A - Superconductor and its manufacturing method - Google Patents
Superconductor and its manufacturing methodInfo
- Publication number
- JPH06506797A JPH06506797A JP4507643A JP50764392A JPH06506797A JP H06506797 A JPH06506797 A JP H06506797A JP 4507643 A JP4507643 A JP 4507643A JP 50764392 A JP50764392 A JP 50764392A JP H06506797 A JPH06506797 A JP H06506797A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- mixture
- hours
- superconducting
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title description 5
- 238000004519 manufacturing process Methods 0.000 title description 3
- 239000000203 mixture Substances 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 12
- 229910052712 strontium Inorganic materials 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 229910052797 bismuth Inorganic materials 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 239000002243 precursor Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 5
- 241000238366 Cephalopoda Species 0.000 claims 1
- 230000005347 demagnetization Effects 0.000 claims 1
- 230000007704 transition Effects 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HFBWPRKWDIRYNX-UHFFFAOYSA-N Trietazine Chemical compound CCNC1=NC(Cl)=NC(N(CC)CC)=N1 HFBWPRKWDIRYNX-UHFFFAOYSA-N 0.000 description 1
- 229910009253 Y(NO3)3 Inorganic materials 0.000 description 1
- 229910009442 Y2O Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Inorganic materials [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- BXJPTTGFESFXJU-UHFFFAOYSA-N yttrium(3+);trinitrate Chemical compound [Y+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O BXJPTTGFESFXJU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/85—Superconducting active materials
- H10N60/855—Ceramic superconductors
- H10N60/857—Ceramic superconductors comprising copper oxide
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 超伝導体およびその製造方法 この発明は、高温において超伝導を生じるビスマス、ストロンチウム、銅および イツトリウムを基材とする物質に関する。[Detailed description of the invention] Superconductor and its manufacturing method This invention combines bismuth, strontium, copper, and Concerning substances based on yttrium.
従来の超伝導を生じる物質は、極めて高価な冷却材であるヘリウムの使用を必要 とする極低温においてのみ使用可能であるのに対して、新規の超伝導を生じる酸 化物物質は、比較的安価な冷却材である窒素を用いて得ることができる可成り高 温において作用する。このことは超伝導を生じる設備およびプラントの操業費を 低減させ、広範囲にわたる新規の考えられる用途を広げる。Traditional superconducting materials require the use of helium, an extremely expensive coolant. While it can only be used at extremely low temperatures, new superconducting acids The chemical material has a fairly high Acts at high temperatures. This reduces the operating costs of equipment and plants that produce superconductivity. reduction, opening up a wide range of new possible applications.
11JiJ7−比が11−1の元素ビスマス、ストロンチウムおよび銅を酸化物 の形で含有し、超伝導転移温度が20にの酸化物系超伝導体がすでに開示されて いる(CNii che lらのZ、phys、B68 (1987)421) 。しかし、約20にという超伝導転移温度は工業用としてはまだ十分ではない 。11JiJ7- oxides of the elements bismuth, strontium and copper with a ratio of 11-1 An oxide-based superconductor containing in the form of (CNii che et al. Z, phys, B68 (1987) 421) . However, the superconducting transition temperature of about 20 is still not sufficient for industrial use. .
超伝導転移温度が高く、さらにカルシウムを含有する酸化物系超伝導体がたとえ ばEP−A 03 27 044によって開示されている。Oxide-based superconductors with a high superconducting transition temperature and containing calcium are an example. For example, it is disclosed in EP-A 03 27 044.
Fuertes (phys ica C157(1989) 、p421)は Bi、SrおよびCuの酸化物の混合物を950’Cおよび700℃の二段階で 加熱して、化合物B14SrsCu、O,g。、の里結晶を得たが、しかしこれ は超伝導を示さなかった。Fuertes (phys ica C157 (1989), p421) A mixture of Bi, Sr and Cu oxides was heated in two steps at 950’C and 700°C. Upon heating, compound B14SrsCu,O,g. , got the village crystal, but this showed no superconductivity.
この発明の目的は調製条件を様々にして、新規酸化物系超伝導物質を得ることに ある。The purpose of this invention is to obtain new oxide-based superconducting materials by varying the preparation conditions. be.
意外なことIこ、ヒスマス、ストロンチウムおよび銅を含有し、より詳細には請 求項1記載の著しい特色を特徴とする物質の超伝導混合物の製造方法が見出され た。Surprisingly, it contains hismuth, strontium and copper. A method for producing a superconducting mixture of substances characterized by the remarkable features described in claim 1 has been discovered. Ta.
該化合物は、反応温度において、反応して相当する酸化物、とりわけ水酸化物お よび硝酸塩を生成する酸化物前駆物質として一般に使用することができる。また 、前記金属の酢酸塩、ギ酸塩、シュウ酸塩および炭酸塩を使用することも可能で ある。たとえば、Y(NO3)3、炭酸ストロンチウム、ビスマス酸、酸化ビス マス(I[I)およびCu2Oを使用することができる。At the reaction temperature, the compounds react to form the corresponding oxides, especially hydroxides and It can be commonly used as an oxide precursor to produce nitrates and nitrates. Also , it is also possible to use acetates, formates, oxalates and carbonates of said metals. be. For example, Y(NO3)3, strontium carbonate, bismuth acid, bis oxide Mass (I[I) and Cu2O can be used.
反応の出発物質中の比率Cu:Σ(Bi+Sr+Cu)が025ないし030の 範囲内にあるのが好ましい。約955°Cから約855°Cへの冷却は徐々に、 たとえば精々10に/h、とくに精々5に/hの速度で行うのが好ましい。18 ないし2に/hの速度がとくに望ましい。The ratio Cu:Σ(Bi+Sr+Cu) in the starting materials for the reaction is from 025 to 030. Preferably within this range. The cooling from about 955°C to about 855°C gradually For example, it is preferred to operate at a speed of at most 10/h, in particular at most 5/h. 18 A speed of between 1 and 2 hours is particularly desirable.
反応混合物の955ないし965℃の温度に少なくとも10時間保つのが好まし く、また845ないし855°Cの温度に少なくとも10時間保つのが好ましい 。Preferably, the reaction mixture is kept at a temperature of 955 to 965°C for at least 10 hours. and preferably maintained at a temperature of 845 to 855°C for at least 10 hours. .
反応時間の上限は、単に経済的理由によって、定められる。The upper limit for the reaction time is determined solely by economic reasons.
845ないし855℃および955ないし965°Cにおける調質(tempe ring)の間、オーブン雰囲気中に少なくとも5容量%の酸素が存在すること が好ましい。10容量%の酸素がさらに好ましい。空気がとくに望ましい。室温 までの冷却はオーブン内で、従って徐々に行うのが好ましい。Temperature treatment at 845-855°C and 955-965°C at least 5% by volume of oxygen is present in the oven atmosphere during is preferred. More preferred is 10% oxygen by volume. Air is especially desirable. room temperature Preferably, the cooling is carried out in an oven and therefore gradually.
得られた溶融反応生成物の組成は、酸素含量を別にすれば、出発混合物の組成と 一致する。The composition of the resulting molten reaction product, apart from the oxygen content, is similar to that of the starting mixture. Match.
得られた生成物の超伝導転移温度は50ないし60にである。5QUID磁力計 を用いて滞磁率を測定した結果は5ないし35容量%の超伝導相を示す。The superconducting transition temperature of the product obtained is between 50 and 60°C. 5QUID magnetometer The magnetic retardation rate was measured using 5 to 35% by volume of superconducting phase.
この発明を実施例によってさらに詳細に説明する。This invention will be explained in more detail by way of examples.
実施例1 総体的な組成がBi、5r8−エY、Cu50、(式中、Xはゼロよりも大であ った)で、Bi2O3、Sr(NO3)2、CuOおよびY2O,の混合物の形 をなす試料をめのうの乳鉢の中で入念に粉砕して、均一にする。混合物をコラン ダムのるつぼの中で(空気中で)960°Cに4時間加熱し、960℃で20時 間保持し、60時間で850°Cまで冷却し、850℃で20時間保った後、オ ーブCン内で室温まで冷却した。得られた試料は超伝導転移温度Tcが50ない し60にの超伝導性を示す。超伝導容量比率はまずXが増すにつれて増大し、次 いで再び減少する。Y部分(x)の関数としての超伝導体の容量比率(SQUI D測定値)を表1に示す。Example 1 The overall composition is Bi, 5r8-E, Cu50, (wherein X is greater than zero) ) in the form of a mixture of Bi2O3, Sr(NO3)2, CuO and Y2O, Carefully crush the sample in an agate mortar to make it homogeneous. Coran the mixture Heated in a dam crucible (in air) to 960°C for 4 hours, then heated to 960°C for 20 hours. After cooling to 850°C for 60 hours and keeping at 850°C for 20 hours, The mixture was cooled to room temperature in oven C. The obtained sample has a superconducting transition temperature Tc of less than 50 It exhibits superconductivity of 60%. The superconducting capacity ratio first increases as X increases, and then decreases again. Capacity ratio of superconductor (SQUI) as a function of Y part (x) D measurement values) are shown in Table 1.
表1 すべての場合に、主相はFuertesが示した組成型を有する化合物Bi。Table 1 In all cases, the main phase is a compound Bi having the composition type given by Fuertes.
(Sr、 Y)ICu50.である。第二相は公知の二層化合物B14(Sr、 Ca)Cu40+s−yの組成型を有する組成り12(Sr、 Y)2Cu20 .を有していた。X線結晶学は、さらに、少なくとも一つの小部分の第二層を示 す。この第二相によるX線回折線を表2に示す。(Sr, Y) ICu50. It is. The second phase is a known two-layer compound B14 (Sr, Ca) Composition 12 (Sr, Y)2Cu20 having a composition type of Cu40+s-y .. It had X-ray crystallography also shows at least one small portion of the second layer. vinegar. Table 2 shows the X-ray diffraction lines of this second phase.
これらの線の強度はXが増につれて増大するが、化合物Bg(Sr、 Y)、、 Cu50.の回折線の強度はXが増すにつれて減少する。x=0.4の場合の試 料のX線回折線を表3に書き記す。波長が1.54056人の単色光を使用した 。同じ試料の滞磁率の測定曲線を図1に示す。The intensity of these lines increases as X increases, but for compounds Bg(Sr, Y), Cu50. The intensity of the diffraction lines decreases as X increases. Trial when x=0.4 The X-ray diffraction lines of the materials are listed in Table 3. Monochromatic light with a wavelength of 1.54056 people was used. . Figure 1 shows the measurement curve of the magnetic reluctance of the same sample.
表2 20 d 1 24.694 3.602 26.3 25.842 3.444 18.5 32.887 2.721 58.4 35.074 2.556 9.7 36.734 2.444 8.5 47.190 1.924 26.4 57.474 1.602 14.0 実施例2 同じ出発物質ではあるが、Bi36Yll asrscu50+という出発混合 物組成の異なる物質を用いて寓施例1を繰返した。得られた黒色組成物の超伝導 転移温度は50ないし60にである。超伝導相の容量比率は15%である。Table 2 20 d 1 24.694 3.602 26.3 25.842 3.444 18.5 32.887 2.721 58.4 35.074 2.556 9.7 36.734 2.444 8.5 47.190 1.924 26.4 57.474 1.602 14.0 Example 2 Same starting material but starting mixture Bi36Yll asrscu50+ Example 1 was repeated using materials with different compositions. Superconductivity of the obtained black composition The transition temperature is between 50 and 60°C. The capacity ratio of the superconducting phase is 15%.
表3 N 2θ 面間隔 強度 1 5.187 17.02322 10.62 7、390 11.9532 g 7.73 23.868 3.72499 15.84 24.694 3 .60233 26.35 25、842 3.44474 18.56 27 、241 3.27095 53.57 28.191 3.16285 21 .28 28.977 3.07887 11.09 29.740 3.00 156 30.710 31.039 2.87879 100.011 31 .678 2.82217 13.412 32.887 2.72114 5 8.413 33.341 2.6g514 72.414 35.074 2 .55637 9.715 36.734 2.44452 8.516 37 、155 2.41778 14.117 37.510 2.39575 1 2.91g 44.069 2.05318 10.819 44.442 2 .03679 +、3.320 45、320 1.99938 17.921 46.634 1.94605 16.622 47.190 1.9244 2 26.423 50、410 1.80877 8.424 50.730 1.79810 12.925 51、075 1.78676 9.726 55、487 1.65468 10.027 56.044 1.6395 6 13.828 56、361 1.63107 9.629 57、474 1.60211 14.030 57、744 1.59526 14.43 1 58、167 1.58467 +4.632 59、981 1.541 00 11.6−二°、::=;;−二−°ソーJ?−−二;;;、二’m l ’l’ kτ:;;;、す;:°二tτ:;:みフ二;;==フ::“”°J“ 1“°7°°−“−“′10“乏1Σン)f弓力「11丁heLvnn@**P uem+allle++n+p+e+5vlIn−−11kar++tMe@e file++Ief11−・+に@≠■■堰魔浴{w)y%m@lorthew ave電aalla−喝w++y+i+閾1フロントページの続き (72)発明者 ヴアイス、ヘルガ ドイツ連邦共和国デー−6230フランクアルト・アム・マイン、ティオトマン シュトラーセ 11 (72)発明者 ラング、クリストフ ドイツ連邦共和国デー−6000フランクアルト・アム・マイン、ミルゼブルク シュトラーセ 7 (72)発明者 ベツカー、ヴインフリートドイツ連邦共和国デー−6239プ レムタール、アム・エツジエンハング 7Table 3 N 2θ Planar spacing Strength 1 5.187 17.02322 10.62 7, 390 11.9532 g 7.73 23.868 3.72499 15.84 24.694 3 .. 60233 26.35 25, 842 3.44474 18.56 27 , 241 3.27095 53.57 28.191 3.16285 21 .. 28 28.977 3.07887 11.09 29.740 3.00 156 30.710 31.039 2.87879 100.011 31 .. 678 2.82217 13.412 32.887 2.72114 5 8.413 33.341 2.6g514 72.414 35.074 2 .. 55637 9.715 36.734 2.44452 8.516 37 , 155 2.41778 14.117 37.510 2.39575 1 2.91g 44.069 2.05318 10.819 44.442 2 .. 03679 +, 3.320 45, 320 1.99938 17.921 46.634 1.94605 16.622 47.190 1.9244 2 26.423 50, 410 1.80877 8.424 50.730 1.79810 12.925 51,075 1.78676 9.726 55, 487 1.65468 10.027 56.044 1.6395 6 13.828 56, 361 1.63107 9.629 57, 474 1.60211 14.030 57, 744 1.59526 14.43 1 58, 167 1.58467 +4.632 59, 981 1.541 00 11.6-2°, ::=;;-2-° So J? --2;;;、2'ml ’l’ kτ:;;;、 す;:°二tτ:;:Miふ二;;==ふ::“”°J“ 1"°7°°-"-"'10"poor 1Σn) f bow power "11 heLvnn@**P uem+alle++n+p+e+5vlIn--11kar++tMe@e file++Ief11-・+@≠■■Weir magic bath {w)y%m@lorthew ave electric aalla-cheer w++y+i+threshold 1 continuation of front page (72) Inventor: Vuis, Helga Day of the Federal Republic of Germany - 6230 Frankfurt am Main, Tiotmann Strasse 11 (72) Inventor Lang, Christophe Federal Republic of Germany Day - 6000 Frankfurt am Main, Milseburg Strasse 7 (72) Inventor Becker, Winfried Federal Republic of Germany Day-6239P Remtal, Am Etzienhang 7
Claims (7)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4113726A DE4113726A1 (en) | 1991-04-26 | 1991-04-26 | SUPER CHARACTER AND METHOD FOR THE PRODUCTION THEREOF |
DE4113726.4 | 1991-04-26 | ||
PCT/EP1992/000803 WO1992020107A1 (en) | 1991-04-26 | 1992-04-09 | Superconductor and process for making it |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06506797A true JPH06506797A (en) | 1994-07-28 |
Family
ID=6430459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4507643A Pending JPH06506797A (en) | 1991-04-26 | 1992-04-09 | Superconductor and its manufacturing method |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0581792A1 (en) |
JP (1) | JPH06506797A (en) |
DE (1) | DE4113726A1 (en) |
WO (1) | WO1992020107A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0557951A1 (en) * | 1992-02-28 | 1993-09-01 | Hoechst Aktiengesellschaft | Oxide ceramic superconducting material and production method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1338754C (en) * | 1987-12-28 | 1996-12-03 | Jun Akimitsu | Metal oxide material |
US5126316A (en) * | 1988-08-24 | 1992-06-30 | E. I. Du Pont De Nemours And Company | Bi2 Sr3-x Yx Cu2 O8+y superconducting metal oxide compositions |
-
1991
- 1991-04-26 DE DE4113726A patent/DE4113726A1/en not_active Withdrawn
-
1992
- 1992-04-09 JP JP4507643A patent/JPH06506797A/en active Pending
- 1992-04-09 WO PCT/EP1992/000803 patent/WO1992020107A1/en not_active Application Discontinuation
- 1992-04-09 EP EP92908142A patent/EP0581792A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
EP0581792A1 (en) | 1994-02-09 |
DE4113726A1 (en) | 1992-10-29 |
WO1992020107A1 (en) | 1992-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3009133B2 (en) | Superconducting material and method for producing the same | |
EP0280812B1 (en) | Superconductivity in square - planar compound systems | |
JP3332350B2 (en) | Superconductor and method of using the same | |
Haldar et al. | EuBa2Cu3O x produced by oxidation of a rapidly solidified precursor alloy: An alternative preparation method for high T c ceramic superconductors | |
US4990488A (en) | Superconductors Bi-Sr-Cu-O | |
US5591698A (en) | Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors | |
JPH06506797A (en) | Superconductor and its manufacturing method | |
US5270292A (en) | Method for the formation of high temperature semiconductors | |
JPH02503789A (en) | Improved manufacturing method for 90K superconductor | |
US5208214A (en) | Multiphase superconductor and process for its production | |
JPH01192758A (en) | Superconducting ceramic | |
JPH03502918A (en) | Superconducting metal oxide composition and method for producing the same | |
CA2453922C (en) | Oxide high-critical temperature superconductor acicular crystal and method for producing the same | |
JPH0446015A (en) | Oxide superconducting material and its production | |
JP2593480B2 (en) | Manufacturing method of oxide superconductor | |
JPH04214027A (en) | Oxide superconductor and its manufacturing method | |
JPH02217316A (en) | High-temperature superconductive material and its manufacture | |
JPH0465395A (en) | Superconducting fibrous crystal and its production | |
JPH04292420A (en) | Superconducting compound and method for its preparation | |
KR100265031B1 (en) | A na-intervened superconductors and their preparing method | |
JP2745888B2 (en) | Manufacturing method of oxide superconductor | |
JPH069262A (en) | High temperature superconductor of oxide ceramic and preparation thereof | |
JPH04501407A (en) | Superconducting metal oxide composition and method for producing and using the same | |
Sheen et al. | Superconductivity at 63 K in YSr2. 2Cu2. 6Fe0. 25Oy | |
JPH013009A (en) | Superconducting materials and their manufacturing methods |