JPH06502479A - spiral heat exchanger - Google Patents
spiral heat exchangerInfo
- Publication number
- JPH06502479A JPH06502479A JP3517462A JP51746291A JPH06502479A JP H06502479 A JPH06502479 A JP H06502479A JP 3517462 A JP3517462 A JP 3517462A JP 51746291 A JP51746291 A JP 51746291A JP H06502479 A JPH06502479 A JP H06502479A
- Authority
- JP
- Japan
- Prior art keywords
- conduit
- spiral
- heat exchanger
- conduits
- spiral heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims description 13
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 6
- 229910010293 ceramic material Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 239000004576 sand Substances 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 2
- 239000002184 metal Substances 0.000 claims 2
- 229910052751 metal Inorganic materials 0.000 claims 2
- 238000000354 decomposition reaction Methods 0.000 claims 1
- 239000000945 filler Substances 0.000 claims 1
- 238000005192 partition Methods 0.000 claims 1
- 238000012546 transfer Methods 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000004364 calculation method Methods 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000003570 air Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- GSJBKPNSLRKRNR-UHFFFAOYSA-N $l^{2}-stannanylidenetin Chemical compound [Sn].[Sn] GSJBKPNSLRKRNR-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/04—Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/02—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
- F28D7/022—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 渦巻形熱交換器 本発明は、第1媒体が流通する円筒ケーシングと、シリンダー軸の回りに渦巻形 に走行し、第2媒体が流通する導管とを備えた渦巻形熱交換器に関する。この形 式の渦巻形熱交換器は、公開文書DE−3519315A1において開示される 。 この出版において開示された熱交換器の場合に、第2媒体が流通する渦巻形式に おける導管は、第1媒体が流通する円筒ケーシング内部に設けられる。この熱交 換器は、通常、中央加熱回路において使用され、排出ガスは、ケーシングを通っ て加熱ボイラーから流出し、渦巻形導管を通って流れる戻り水に熱を部分的に解 放し、燃料消費において節約を生む。渦巻形導管は、二重巻きであり、入口と出 口は、円筒ケーシングの一方の側にある。この熱交換器での問題は、比較的穏や かな熱伝達である。 家庭環境とプロセス産業において、小形熱交換器が、一方においであるプロセス 条件下における空間の不足と関連して、そして他方において、媒体間の特定温度 差に対する熱交換器の好都合な比出力(kW/m’)と、結果として可能な熱交 換表面の平方メートル当たりの低い比費用価格に関連して、非常に重要であるこ とが判明した。さらに産業において、幾つかの媒体流が互いに熱を交換する小寸 法の熱交換器を必要とする応構造が簡単に達成される。。 こねは、序文において述べた形式の熱交換器の場合において達成され、一つの渦 巻形導管のほかに、各場合にそれと代替的に、第3媒体が流通する少なくとも一 つの付加渦巻形導管が設けられ、第1媒体が流通する直線導管が、2つの渦巻形 導管内の中央に形成される。 発明による小形設計の結果として、渦巻形導管の対応する小曲率半径により、激 しい乱流が、これらの導管における媒体において生成され、その結果として、優 れた熱伝達が獲得される。同時に、表面積をできる限り大きく、流通空間をでき る限り小さくするという熱交換器に対する一般必要条件が満たされる。3つ以上 の導管によるこの設計の結果として、幾つかの流れが、いろいろな方法により相 互熱交換に流入する。2つの以」この渦巻形導管内に直線導管を封入することに より、最も熱い媒体が、直線導管を通って送られ、そして加熱される冷媒体が2 つ以上の渦巻形導管を通って送られる。結果的に、大きな外面領域は、比較的冷 たいままであり、円筒外側面において無絶縁で又は限定的絶縁で作動可能となる 。 発明はまた、」二記の熱交換器によって形成される各モジュールから構築された でトリックス形式熱交換器に関する。 発明は、図面を参咳して、例示の実施態様の補助によりさらに詳細に示される。 第1図は、発明による熱交換器の部分的斜視の部分的断面図を与える。 第2図は、熱伝達係数における渦巻直径と水速度の影響のグラフを与える。 第3図は、渦巻長の関数として導管における媒体温度のグラフを与える。っ 第1図は、発明による小形交換器3の図を与え、2つの渦巻形導管又はバイブ1 .2の各々が、交互に、直円筒導管4の回りに直接に巻回される。約19mmの 外lと約6mmの各導管の直径の非常に小形の構造の結果として、媒体の激しい 乱流と、結果的に優れた熱伝達が、渦巻形導管の非常に小さな曲率半径と、また 、非常に良い熱伝達率を有する壁により獲得される。熱交換器6の円筒ケーシン グは、絶縁材料から作られる。一実施態様において、各渦巻形バイブは、直線バ イブの回りに16の巻回を有し、その結果として、全熱交換器は、約235mm の長さを有する。発明による熱交換器は、例えば、砂を充填された2つの軟赤銅 パイプを、組立体を形成するために鋼ビンの回りに案内を施して巻回することに より、好都合に生産される。各銅バイブは、例えば、それぞれ、4.6mmと6 .35mmの内径と外径を有する。ビンの除去後、同一外径を有する直線赤銅バ イブが、同一部位に挿入される。それから、全組立体が、良好な熱伝達率を有す る液体錫又は別の液体材料に浸される。錫と銅パイプの開に最適接触を設け、バ イブ壁の間の全空間を満たすために、続いて、錫が、バーナー火炎を使用して再 び溶融される。この手段により、3つのバイブの間になお存在する中空空洞が、 一杯になるまで流入する液体金属により完全に満たされる。 他の生産手段と他の材料が、流通する媒体と応用により使用されることは自明で ある。この文脈において、独自の壁を備えた2つの渦巻形導管の生産とこれらに 導入される充填材料により、直線中央導管を独自のまた、直線導管の入[−1端 と出U]端に平行であるように、渦巻の入口端と出口端を曲げることは、特に都 合が良いっこのように、多数の熱交換器が、以下に示される人マトリックス形軌 交換器ユニットを形成するために、モア・ニラ−構造において組み立てられるっ 最後に、ポリエチレシが、全組立体の回りにバイブ絶縁体6として塗布される。 数回の試行とこれらの測定結果を以下に説明するが、これに基づいて、媒体とし て水/′水を使用する熱交換器により、少なくとも21000kW/m 3の比 出力が、4134℃の媒体間の平均温度差により達成される。これらの条件下で 、9200W/m2−にのに値と約2300W、/m2・Kの熱伝達係数が達せ られる。これらの値は、現行技術の熱交換器の値と対照される。 次のデータはまた、表1と表2において示された値から導出され、水/水(表1 )と2つ又は3つのバイブを流通する空気/窒素蒸気(表2)の場合である。 9200W/m2− K (水/水)と106W/m2−K(ガス/ガス)の最 大に値 −約21000kW/m3(水/水)と280 kW/m! (ガス/ガス)の 最大比出力 − 22600W/m2−K (水/水)と210W/m2− (ガス/ガス) の最大熱伝達係数α さらに高い値が、上記の試行に対して使用された2、5m/sの速度よりも高い 水速度において導管において達せられることが容易に考えらバイブ間の注入物質 、例えば、錫が、3つの導管間の非常に良好な熱伝達率を有することが重要であ ることは自明である。 測定結果に基づいた熱伝達係数の計算は、流れがある導管の壁温度が測定されな かったために、さらに困難にされる。これらの試行がこの形式の熱交換器の大域 評価を獲得することを意図されたために、それは、次の仮定をなす熱伝達係数を 計算するように選定される。 −各導管間の錫層の熱さは、銅導管壁が互いに最も接近した位置において最小1 mmである。 −導管間の溶融錫は、全位置において、渦巻の壁表面と直線導管に100%接触 する。 −銅の熱伝達係数として349W/m −Kの値を取り、そして錫の熱伝達係数 として65W/m−にの値を取る。 −2つの熱交換媒体に測定入口及び出口温度間の算術平均値が、1mm厚錫層の 中央における温度に対して取られる(第3図参照)。 ここで、温度変化は、各導管の縦方向において線形であることが仮定された。 導管壁の熱流密度は、各導管の熱平衡と内表面積から算出される伝達パワーの補 助により計算される。熱伝達係数は、材料厚の半分の熱抵抗(=錫層厚の半分子 −鋼導管壁厚)と、計算熱流密度と導管の平均内壁温度から算出される。計算例 は、以下に与えられるが、媒体の水/水(2130〜22624W/m2・K) に対するすべての計算熱伝達係数が表1に与えられる。 条件の結果として、実験Nol。とN013中の熱負荷は、多分、約2の因子だ け異なる。低熱伝達係数は、渦巻に適用され、そして高熱伝達係数は直円筒導管 に適用される。測定結果は、計算モデルのための入力として使用される。 表1は、媒体の水/水のための測定結果を示し、そして表2は、媒体の空気/窒 素蒸気のための測定結果を示す。 熱交換器の挙動の印象を獲得するために、液体媒体とガス媒体により、試行が為 された。結果は、上記の如(良好であった。 実験1.2と4(表1参照)の場合における如く、>22000のレイノルズ数 を有する渦巻における乱流に対する熱伝達を基礎として、媒体水と空気の両方に 対する2つの熱伝達係数の計算が、以下に与えられる。 VDI−Waermeat Ias (VDI熱アドアトラス1988)、第5 版において開示された方程式が、この計算のために使用された。これらの方程式 は、Nu=((ε/8) ・Re−Pr−(Pr)”’)/(1+12.7 ・ (ε/8 ・ (Pr”−1) ・(Prw) OL’)e=0.3164/R eO”+0.03 ・ (d/D)”ここで、 d=パイプ内径(第1図のdi)、m D=渦巻直径(第1図のDw) 、m Re=レイノルズ数 Pr=関連媒体のプラントル数 ε=0.3164/21616°2S+0.03−(0,004610,012 8)”=0.044 Nu= ((0,044/8) ・21616 ・3.0 ・ (3,0) O 目)/(1+12.7・v’0.44/8・(3,0”−1)・(3,6) O ”)=187.6 又はa=Nu−λ/d= (187,6・0.65)10.0046=2650 4 W/m” −K 熱空気の実験No、5に対して、上記の計算例によりα=177W/m2・Kで あることがわかる。 渦巻直径と計算熱伝達係数における水速度の影響が、第2図に示される。使用さ れたような、小渦巻又は「コイル」直径Dwにより、高熱伝達係数αと、こうし て、高熱伝達が、ある水速度に対して獲得される。 実験No、lに関して、熱伝達係数の単純化計算が、測定結果に基づいて、以下 に与えられる。 筒導管は使用されなかった。2つの端部は、閉鎖されず、その結果、環境空気の 自然対流が、この導管にお°いて発生した。表1において与えられた温度は、熱 交換が明らかに定常状態になった後測定された(実験N095を除く)。2つの 渦巻の外側は、パイプ絶縁片(ポリエチレン泡13mm厚)で絶縁された。 40.53℃の対数平均温度は、渦巻の入口及び出口端において測定0)+ ( 59,2−12,7))/2=40.80℃である。 対数平均温度差に関する偏差は、わずかに0.67%であるために、対数平均温 度差が、この計算において以下で使用される。熱交換器の縦方向における温度変 化は、第3図に示された如く、線形として見なされる。これは、渦巻における水 の非常に短いドエル時間(約0.32〜約056秒)の結果として許容される。 さらに、平均温度差は、渦巻半長において行き渡ると仮定される。その時、渦巻 における平均温度パターンは、次の如くである。 −熱媒体: (75,1+59.2)/2=67.15℃−冷媒体: (40, 0+12.7)/2=26.35℃平均「錫層」温度t、1.は、これら2つの 温度から、j−vl= (67゜15+26.35)/2=46.75℃として 計算される。これは、2つの導管における熱伝達係数が、全位置において同一値 を有する必要がないために、実条件の近似である。熱抵抗はまた、結果として局 所差を示す。 熱流密度qは、伝達された平均パワー(表1、実験No、l参照)と渦巻の内表 面積(=0.00923mりから、q=220010.00923=23835 3W/m”として計算される。全材料厚(銅+lI)の熱抵抗δ/λがまた、計 算された。このδ/λは、20.4・10−@m2・K/Wであった。材料厚δ での温度差は、平均熱流密度q(238353W/mりと熱抵抗δ/λ:△T( 材料厚)=238353−20.4・10−’=4.86℃から従う。この温度 差と平均[錫層J温(熱媒体側)と46.75−4.86/2=44.32℃( 冷媒体側)である。最後に、所望の熱伝達係数が、媒体と壁の間の温度差(すな わち、q/△T)によって平均熱流密度を割算することにより算出される。 すなわち、 −熱側において、238353/(67,15−49,18)=13264W/ m”−に −冷側において、238353/ (44,32〜26.35)=13264W /m2・K この場合これらの熱伝達係数は同一である。しかし、内部直線導管と渦巻の間の 内表面積における差の結果として、熱流密度は、媒体がこれらの導管を流通する ならば同一ではない。このため、この状況において同じように算定することは、 完全には正しくない。それにも拘わらず、この不正確さは、これらに対する壁温 度補正がわずかな小量であるために、表1に掲げられた熱伝達係数の計算に対し て受け入れられた。 今まで計算された熱伝達係数を使用して、「チェック」としても、円筒パイプの 熱損失の計算に対する公知の関係を使用して、チェック計算を実施することが可 能である。この場合に、関係は次の如くである。 Qcyl、=yr・ (Ti−72)/ (1(α、−D、)+ (1/2・λ Cu))−1n(DI/Di)+ (1/2λ5n)) ・In (D2/Di ))ここで、 QcyJ、=−導管における伝達パワー(W/m)Ti=熱媒体の平均温度(℃ ) λCUとλsnは、周囲温度(W/m−K)におけるそれぞれ銅と錫の鴫伝達係 数であり、そしてI)i、DLとD2は、上記の記号(m)に関連したそれぞれ の直径である。 図において表わされたように、これは、次の方稈式を与える。 Qcyl、=yr・ (67,15−46,75)/ fl/13264.0+ (1/ (2,349))−I n (6,35/4.6)+ (1/2.65 )) ・In (7,35/6.35)l又は Qcyl、=3565W/m 熱交換器の一渦巻の直線長は、約0.643mであり、Q=0. 643・35 65/1000=2.292kWが、渦巻毎に放棄されることを意味する。この 値は、2.21kWと2.19kWの測定値(表1、実験NO61参照)に良く 一致する。類似のチェック計算が、もちろん、他の実験に対して可能である。 考慮中の渦巻形熱交換器の良好な熱伝達が、測定(表を参照)と上記の計算デー タから見られる。発明による熱交換器の場合に、幾っがの媒体流が、都合良く、 同時に互いに熱を交換する。当該の一直線導管と後者の回りに巻装された2つ以 上の渦巻形導管を使用して、幾つかの組み合わせが、熱交換される媒体流に関し て可能である。これは、これらの流通媒体に関して大きな柔軟性を与える。 上記の如く、比較的小さな寸法の結果として、多数の熱交換器が、都合良く、大 マトリックス形熱交換ユニットを形成するために、モジュラ−構成において組み 立てられる。この形式のマトリックス形熱交換ユニツ換ユニットは、例えば、発 明による単一熱交換器の当該導管によりセラセラミック粉末の当該ブロック−は 、続いて、焼成され、鉛線は各モジュールにおいて融解する。冷却後、当該3つ 以上の導管は、交換ユニットの6モジユールにおいてセラミック材料のままであ る。この形式の熱交換ユニットは、都合良く、例えば、1000℃を超える高温 に対して流通媒体を使用する応用に対して使用される。 補正書の写しCm訳文)提出書 (特許法第184Neの8)平成5年4月16 日 [Detailed description of the invention] Spiral type heat exchanger The present invention provides a spiral type heat exchanger comprising a cylindrical casing through which a first medium flows, and a conduit that runs in a spiral shape around the cylinder axis and through which a second medium flows. Regarding heat exchangers. this shape A spiral heat exchanger of the type is disclosed in publication document DE-3519315A1. In the case of the heat exchanger disclosed in this publication, the second medium flows in a spiral form. A conduit is provided inside the cylindrical casing through which the first medium flows. This heat exchange Exchangers are usually used in central heating circuits, where the exhaust gases leave the heating boiler through the casing and partially release the heat to the return water flowing through the spiral conduit. and generate savings in fuel consumption. A spiral conduit is double wound, with an inlet and an outlet. The mouth is on one side of the cylindrical casing. The problem with this heat exchanger is relatively mild. It is a simple heat transfer. In the domestic environment and in the process industry, compact heat exchangers are used, on the one hand, in connection with the lack of space under certain process conditions, and on the other hand, due to the favorable specific power of the heat exchanger (kW) for a specific temperature difference between the media. /m') and the resulting possible heat exchange This is of great importance in connection with the low specific cost price per square meter of converted surface. It turned out that. Furthermore, in industry, small volumes where several media streams exchange heat with each other are used. Adaptive structures requiring standard heat exchangers are easily achieved. . Kneading is achieved in the case of a heat exchanger of the type mentioned in the introduction, with one vortex In addition to the coiled conduit, in each case alternatively there is provided at least one additional spiral conduit through which the third medium flows, the straight conduit through which the first medium flows centrally within the two spiral conduits. is formed. As a result of the compact design of the invention, the corresponding small radius of curvature of the spiral conduit Strong turbulence is generated in the media in these conduits, resulting in heat transfer is obtained. At the same time, the surface area is as large as possible and the circulation space is minimized. The general requirement for heat exchangers to be as small as possible is met. As a result of this design with more than two conduits, several flows can be coupled in different ways. Flow into mutual heat exchange. There are two reasons for enclosing a straight conduit within this spiral conduit. Accordingly, the hottest medium is sent through a straight conduit and the cooled medium to be heated is sent through two or more spiral conduits. As a result, a large external surface area is relatively cold. It is possible to operate without insulation or with limited insulation on the outer surface of the cylinder. The invention also relates to a trix-type heat exchanger constructed from modules formed by two heat exchangers. The invention will be illustrated in more detail with the help of exemplary embodiments with reference to the drawings, in which: FIG. FIG. 1 provides a partially perspective, partially sectional view of a heat exchanger according to the invention. Figure 2 provides a graph of the effect of swirl diameter and water velocity on the heat transfer coefficient. FIG. 3 gives a graph of the medium temperature in the conduit as a function of spiral length. FIG. 1 gives a diagram of a miniature exchanger 3 according to the invention, comprising two spiral conduits or vibrators 1. 2 are wound directly around the right cylindrical conduit 4 in turn. As a result of the very compact construction with an external diameter of approximately 19 mm and a diameter of each conduit of approximately 6 mm, a highly turbulent flow of the medium and a consequent excellent heat transfer are achieved due to the very small radius of curvature of the spiral conduits and the diameter of each conduit of approximately 6 mm. It is also obtained by the walls having very good heat transfer coefficient. Cylindrical casing of heat exchanger 6 The plug is made from insulating material. In one embodiment, each spiral vibrator has a straight bar It has 16 turns around the eaves, so that the total heat exchanger has a length of approximately 235 mm. The heat exchanger according to the invention consists, for example, in that two soft red copper pipes filled with sand are wound with guidance around a steel bottle to form an assembly. more conveniently produced. Each copper vibe is, for example, 4.6 mm and 6.6 mm, respectively. It has an inner and outer diameter of 35mm. After the bottle is removed, a straight copper bar with the same outer diameter is Eve is inserted at the same site. Then the whole assembly has good heat transfer coefficient immersed in liquid tin or another liquid material. Providing optimal contact between the tin and copper pipes, the barrier Subsequently, the tin is refilled using a burner flame to fill the entire space between the eve walls. and melted. By this means, the hollow cavity still existing between the three vibrators is completely filled with the liquid metal flowing in until it is full. It is obvious that other means of production and other materials may be used depending on the distribution medium and the application. In this context, the production of two spiral conduits with their own walls and the filling material introduced into them creates a straight central conduit with its own and parallel to the inlet [-1 and outlet U] ends of the straight conduit. It is especially important to bend the inlet and outlet ends of the volute so that With a good fit, a number of heat exchangers are assembled in a mower-kneeler structure to form the man-matrix type exchanger unit shown below.Finally, the polyethylene resin is assembled into the entire assembly. The vibrator insulator 6 is applied around the vibrator. Based on several trials and the results of these measurements, described below, we have determined that the medium With a water/water heat exchanger, a specific power of at least 21 000 kW/m 3 is achieved with an average temperature difference between the media of 4 134° C. Under these conditions, a value of 9200 W/m2- and a heat transfer coefficient of about 2300 W/m2-K can be reached. These values are contrasted with those of current technology heat exchangers. The following data are also derived from the values shown in Tables 1 and 2 for water/water (Table 1) and air/nitrogen vapor flowing through two or three vibes (Table 2). The maximum of 9200W/m2-K (water/water) and 106W/m2-K (gas/gas) Great value - about 21000kW/m3 (water/water) and 280 kW/m! Maximum specific power of (gas/gas) − 22600 W/m2-K (water/water) and maximum heat transfer coefficient α of 210 W/m2- (gas/gas) Higher values were used for the above trials. The injection material between the vibrators, for example tin, which can easily be achieved in the conduits at water velocities higher than 2.5 m/s, has a very good heat transfer coefficient between the three conduits. important That is self-evident. Calculation of the heat transfer coefficient based on the measurement results is performed only when the wall temperature of the flowing conduit is not measured. This makes it even more difficult. Since these trials were intended to obtain a global evaluation of this type of heat exchanger, it was chosen to calculate the heat transfer coefficient making the following assumptions: - The heat of the tin layer between each conduit is a minimum of 1 mm at the location where the copper conduit walls are closest to each other. - The molten tin between the conduits has 100% contact with the spiral wall surfaces and the straight conduits at all locations. - the heat transfer coefficient of copper takes a value of 349 W/m-K, and the heat transfer coefficient of tin takes a value of 65 W/m-K. - The arithmetic mean value between the measured inlet and outlet temperatures of the two heat exchange media is taken for the temperature in the middle of a 1 mm thick tin layer (see Figure 3). Here, the temperature change was assumed to be linear in the longitudinal direction of each conduit. The heat flow density of the conduit wall is a compensation of the transferred power calculated from the thermal balance and internal surface area of each conduit. Calculated by assistance. The heat transfer coefficient is calculated from the thermal resistance of half the material thickness (=half the tin layer thickness - steel conduit wall thickness), the calculated heat flow density, and the average inner wall temperature of the conduit. Examples of calculations are given below, but all calculated heat transfer coefficients for the medium water/water (2130-22624 W/m2·K) are given in Table 1. As a result of the conditions, Experiment No. and the heat load in N013 is probably a factor of about 2. It's different. Low heat transfer coefficients apply to volutes and high heat transfer coefficients apply to right cylindrical conduits. The measurement results are used as input for the computational model. Table 1 shows the measurement results for the medium water/water and Table 2 shows the measurement results for the medium air/nitrogen. Measurement results for elementary vapor are shown. Trials were carried out with liquid and gaseous media to obtain an impression of the behavior of the heat exchanger. The results were good, as in the case of experiments 1.2 and 4 (see Table 1), on the basis of heat transfer for turbulent flow in vortices with a Reynolds number >22000. to both Calculations of the two heat transfer coefficients for are given below. The equations disclosed in VDI-Waermeat Ias (VDI Thermal Atlas 1988), 5th edition were used for this calculation. These equations are Nu=((ε/8) ・Re-Pr-(Pr)'')/(1+12.7 ・(ε/8 ・(Pr"-1) ・(Prw) OL')e= 0.3164/ReO”+0.03・(d/D)”where, d=pipe inner diameter (di in Figure 1), m D=spiral diameter (Dw in Figure 1), m Re=Reynolds number Pr= Prandtl number of related medium ε=0.3164/21616°2S+0.03-(0,004610,012 8)”=0.044 Nu= ((0,044/8) ・21616 ・3.0 ・ ( 3,0) Oth)/(1+12.7・v'0.44/8・(3,0"-1)・(3,6)O")=187.6 or a=Nu-λ/d = (187,6・0.65)10.0046=2650 4 W/m” −K For hot air experiment No. 5, the above calculation example shows that α=177W/m2・K The effect of water velocity on the spiral diameter and calculated heat transfer coefficient is shown in Figure 2. The small spiral or “coil” diameter Dw, such as Thus, high heat transfer is obtained for a given water velocity. For experiment No. 1, a simplified calculation of the heat transfer coefficient is given below, based on the measurement results. No tubing was used. The two ends were not closed, so that natural convection of ambient air occurred in this conduit. The temperatures given in Table 1 were measured after the heat exchange had apparently reached steady state (except for experiment N095). The outside of the two convolutions was insulated with a piece of pipe insulation (polyethylene foam 13 mm thick). The log mean temperature of 40.53°C is 0) + (59,2-12,7))/2 = 40.80°C measured at the inlet and outlet ends of the vortex. The deviation regarding the logarithmic mean temperature difference is only 0.67%, so the logarithmic mean temperature difference is only 0.67%. The degree difference is used below in this calculation. Temperature variation in the longitudinal direction of the heat exchanger The transformation can be viewed as linear, as shown in FIG. This is acceptable as a result of the very short dwell time of the water in the vortex (about 0.32 to about 0.56 seconds). Furthermore, the average temperature difference is assumed to prevail over the spiral half-length. Then, the average temperature pattern in the vortex is as follows. - Heating medium: (75, 1 + 59.2) / 2 = 67.15 °C - Cooling medium: (40, 0 + 12.7) / 2 = 26.35 °C Average "tin layer" temperature t, 1. is calculated from these two temperatures as j-vl=(67°15+26.35)/2=46.75°C. This is an approximation of real conditions since the heat transfer coefficients in the two conduits do not need to have the same value at all locations. Thermal resistance also results in local Shows the difference. The heat flow density q is determined by the average power transferred (see Table 1, experiment No. 1) and the inner surface of the vortex. From the area (=0.00923 m), it is calculated as q=220010.00923=23835 3W/m". The thermal resistance δ/λ of the total material thickness (copper + lI) is also calculated as calculated. This δ/λ was 20.4·10−@m2·K/W. The temperature difference at material thickness δ follows from the average heat flow density q (238353 W/m) and thermal resistance δ/λ: ΔT (material thickness) = 238353-20.4・10-' = 4.86°C. Temperature difference and average [Tin layer J temperature (heating medium side) and 46.75 - 4.86/2 = 44.32℃ (cooling medium side).Finally, the desired heat transfer coefficient is The temperature difference between That is, it is calculated by dividing the average heat flow density by q/ΔT). That is, - On the hot side, 238353/(67,15-49,18) = 13264W/m"- - On the cold side, 238353/ (44,32~26.35) = 13264W/m2 K In this case, these The heat transfer coefficients of It is not entirely correct to calculate the wall temperature for these in the same way. The temperature correction was accepted for the heat transfer coefficient calculations listed in Table 1 because it is only a small amount. Using the heat transfer coefficients calculated so far, it is possible to carry out a check calculation, also as a "check", using the known relationship for the calculation of heat loss in cylindrical pipes. It is Noh. In this case, the relationship is as follows. Qcyl, =yr. )) where QcyJ, = - power transferred in the conduit (W/m) Ti = average temperature of the heating medium (°C) λCU and λsn are the copper and tin tin transmissions, respectively, at the ambient temperature (W/m-K) Person in charge and I) i, DL and D2 are the respective diameters associated with the symbol (m) above. As represented in the figure, this gives the following culm equation: Qcyl,=yr・(67,15-46,75)/fl/13264.0+ (1/(2,349))-In(6,35/4.6)+(1/2.65))・In (7,35/6.35)l or Qcyl, = 3565W/m The linear length of one spiral of the heat exchanger is approximately 0.643m, and Q=0.643・35 65/1000=2. This means that 292 kW is given up per vortex. This value agrees well with the measured values of 2.21kW and 2.19kW (see Table 1, Experiment No. 61). Similar check calculations are of course possible for other experiments. A good heat transfer of the spiral heat exchanger under consideration is confirmed by the measurements (see table) and the calculated data above. It can be seen from Ta. In the case of the heat exchanger according to the invention, several media streams advantageously exchange heat with each other simultaneously. said straight conduit and two or more wrapped around the latter. Using the above spiral conduit, several combinations are possible regarding the media flow to be heat exchanged. It is possible. This gives great flexibility regarding these distribution media. As a result of the relatively small dimensions mentioned above, a large number of heat exchangers can be conveniently assembled in a modular configuration to form a large matrix heat exchange unit. Can be erected. This type of matrix type heat exchange unit is, for example, The block of ceramic powder is then fired through the conduit of the single heat exchanger according to the invention, and the lead wire is melted in each module. After cooling, the three or more conduits remain of ceramic material in the six modules of the replacement unit. Ru. This type of heat exchange unit is advantageously used for applications using flowing media, for example for high temperatures above 1000°C. Copy of amendment Cm translation) Submission (Patent Law No. 184Ne-8) April 16, 1993
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL9002251 | 1990-10-16 | ||
NL9002251A NL9002251A (en) | 1990-10-16 | 1990-10-16 | SPIRAL HEAT EXCHANGER. |
PCT/NL1991/000205 WO1992007226A1 (en) | 1990-10-16 | 1991-10-16 | Spiral heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06502479A true JPH06502479A (en) | 1994-03-17 |
JP3122464B2 JP3122464B2 (en) | 2001-01-09 |
Family
ID=19857833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03517462A Expired - Fee Related JP3122464B2 (en) | 1990-10-16 | 1991-10-16 | Spiral heat exchanger |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0553238B1 (en) |
JP (1) | JP3122464B2 (en) |
AT (1) | ATE148219T1 (en) |
DE (1) | DE69124391T2 (en) |
DK (1) | DK0553238T3 (en) |
NL (1) | NL9002251A (en) |
WO (1) | WO1992007226A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352784A (en) * | 1993-07-15 | 1994-10-04 | Minnesota Mining And Manufacturing Company | Fused cycloalkylimidazopyridines |
US5648516A (en) * | 1994-07-20 | 1997-07-15 | Minnesota Mining And Manufacturing Company | Fused cycloalkylimidazopyridines |
ATE195735T1 (en) * | 1993-07-15 | 2000-09-15 | Minnesota Mining & Mfg | IMIDAZO (4,5-C)PYRIDINE-4-AMINE |
US5644063A (en) * | 1994-09-08 | 1997-07-01 | Minnesota Mining And Manufacturing Company | Imidazo[4,5-c]pyridin-4-amine intermediates |
EP0867678A1 (en) * | 1997-03-26 | 1998-09-30 | Artur Zachajewicz | Multicoaxial tube heat exchanger |
EP1632277A1 (en) * | 2004-09-03 | 2006-03-08 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Process and apparatus for carrying out crystallization |
US8721981B2 (en) | 2009-11-30 | 2014-05-13 | General Electric Company | Spiral recuperative heat exchanging system |
DE102010007249A1 (en) | 2010-02-09 | 2011-08-11 | Went, Tilo, 53474 | Heat exchanger, particularly condenser, is provided with double helix-shaped wall that is introduced in cylinder of two separate helical tubes |
EP2404666A1 (en) | 2010-07-09 | 2012-01-11 | Rhodia Opérations | Module for continuous transformation of at least one fluid product, associated unit and method. |
WO2011117540A1 (en) | 2010-03-23 | 2011-09-29 | Rhodia Operations | Module for the continuous conversion of at least one fluid product, and associated unit and method |
CN105277022A (en) * | 2015-11-30 | 2016-01-27 | 李家海 | Tube-tube interlaced type heat exchanger |
WO2017214489A1 (en) * | 2016-06-09 | 2017-12-14 | Fluid Handling Llc | 3d spiral heat exchanger |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE203759C (en) * | 1907-12-24 | 1908-10-29 | ||
SE441302B (en) * | 1980-05-27 | 1985-09-23 | Euroheat Ab | TREATMENT HEAD EXCHANGER WITH SPIRALLY INDEPENDED RODS IN A STACK |
US4316502A (en) * | 1980-11-03 | 1982-02-23 | E-Tech, Inc. | Helically flighted heat exchanger |
FR2549215B1 (en) * | 1983-07-11 | 1988-06-24 | Produits Refractaires | MOLDED HEAT EXCHANGERS IN REFRACTORY MATERIAL |
DE3519315A1 (en) * | 1985-05-30 | 1986-12-04 | kabelmetal electro GmbH, 3000 Hannover | Heat exchanger consisting of a jacket tube and a tube arranged in the interior of the jacket tube and extending in a spiral fashion |
-
1990
- 1990-10-16 NL NL9002251A patent/NL9002251A/en not_active Application Discontinuation
-
1991
- 1991-10-16 DE DE69124391T patent/DE69124391T2/en not_active Expired - Fee Related
- 1991-10-16 AT AT91919518T patent/ATE148219T1/en not_active IP Right Cessation
- 1991-10-16 WO PCT/NL1991/000205 patent/WO1992007226A1/en active IP Right Grant
- 1991-10-16 DK DK91919518.0T patent/DK0553238T3/en active
- 1991-10-16 JP JP03517462A patent/JP3122464B2/en not_active Expired - Fee Related
- 1991-10-16 EP EP91919518A patent/EP0553238B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE69124391T2 (en) | 1997-08-21 |
WO1992007226A1 (en) | 1992-04-30 |
DK0553238T3 (en) | 1997-07-07 |
EP0553238B1 (en) | 1997-01-22 |
DE69124391D1 (en) | 1997-03-06 |
JP3122464B2 (en) | 2001-01-09 |
ATE148219T1 (en) | 1997-02-15 |
EP0553238A1 (en) | 1993-08-04 |
NL9002251A (en) | 1992-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Prabhanjan et al. | Natural convection heat transfer from helical coiled tubes | |
JPH06502479A (en) | spiral heat exchanger | |
Mirgolbabaei et al. | Numerical estimation of mixed convection heat transfer in vertical helically coiled tube heat exchangers | |
Annaratone | Engineering heat transfer | |
CN109506505B (en) | Heat pipe with optimized distance design | |
FI77529B (en) | VAERMEVAEXLARE. | |
Garimella et al. | Heat Transfer and Pressure Drop Characteristics of Spirally Fluted Annuli: Part II—Heat Transfer | |
Sahin | Entropy generation and pumping power in a turbulent fluid flow through a smooth pipe subjected to constant heat flux | |
JPH0581838B2 (en) | ||
Andrzejczyk et al. | Experimental and computational fluid dynamics studies on straight and U-bend double tube heat exchangers with active and passive enhancement methods | |
CN109506504B (en) | Upper and lower pipe box heat pipe | |
Zhao et al. | Experimental and numerical study on thermal‐hydraulic performance of printed circuit heat exchanger for liquefied gas vaporization | |
JP5288169B2 (en) | Heat exchanger and water heater | |
Swanepoel et al. | Research Note: Preliminary investigation of heat transfer augmentation by means of spiral wires in the annulus of tube-in-tube heat exchangers | |
Rousset et al. | Pressure drop and transient heat transport in forced flow single phase helium II at high Reynoldsnumbers | |
Alur | Experimental studies on plate fin heat exchangers | |
CN112580272A (en) | Optimized design method of LNG air temperature type gasifier based on numerical simulation | |
Kumar et al. | Experimental investigation of heat transfer in a triple tube heat exchanger with coiled spring inserts | |
CN109506506B (en) | Diameter-optimized heat pipe | |
JPH0674688A (en) | Heat exchanger particularly for corrosive fluid | |
WO2009049240A2 (en) | Heat exchanger including fluid lines encased in aluminum | |
JPS6082782A (en) | Carbon block type heat pipe system heat exchanger | |
Diepeveen | Redesigning the evaporator for the Triogen ORC (Organic Rankine cycle) for use in the containerized version of this ORC (the so called Triogen E-box) | |
CN207880442U (en) | Electric heating carburetor | |
Dumitrache et al. | Naval U-tube Heat Exchanger, design and CFX analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071020 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081020 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091020 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |