[go: up one dir, main page]

JPH0649577B2 - Novel manganese compound and method for producing the same - Google Patents

Novel manganese compound and method for producing the same

Info

Publication number
JPH0649577B2
JPH0649577B2 JP1106599A JP10659989A JPH0649577B2 JP H0649577 B2 JPH0649577 B2 JP H0649577B2 JP 1106599 A JP1106599 A JP 1106599A JP 10659989 A JP10659989 A JP 10659989A JP H0649577 B2 JPH0649577 B2 JP H0649577B2
Authority
JP
Japan
Prior art keywords
manganese compound
magnesium
mgmn
manganese
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1106599A
Other languages
Japanese (ja)
Other versions
JPH02283621A (en
Inventor
健太 大井
良孝 宮井
実雄 榊原
俊作 加藤
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP1106599A priority Critical patent/JPH0649577B2/en
Publication of JPH02283621A publication Critical patent/JPH02283621A/en
Publication of JPH0649577B2 publication Critical patent/JPH0649577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野} 本発明は新規なマンガン化合物及びその製造方法に関す
るものである。さらに詳しくいえば、本発明はリチウム
電池用正極活物質として好適であり、かつ高いpH領域
におけるリチウム吸着剤として有用な新規なマンガン化
合物及びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a novel manganese compound and a method for producing the same. More specifically, the present invention relates to a novel manganese compound suitable as a positive electrode active material for lithium batteries and useful as a lithium adsorbent in a high pH range, and a method for producing the same.

[従来の技術] 従来、非水系一次電池の正極活物質として用いる二酸化
マンガンの結晶構造としては特公昭49−25571号
公報に開示されているようにγ−β型、或いは米国特許
第4,133,856に開示されているようにβ型が知
られている。
[Prior Art] Conventionally, as a crystal structure of manganese dioxide used as a positive electrode active material of a non-aqueous primary battery, as disclosed in JP-B-49-25571, a γ-β type or US Pat. , 856 are known.

一方、非水系二次電池の正極活物質としてはLiMn
及びその酸処理物が提案されている(特開昭63−
187569,昭63−114065)。LiMn
及びその酸処理物の特徴はマンガン酸化物にリチウム
をあらかじめドープすることにより三次元のチャンネル
構造を有するスピネル型のマンガン酸リチウムを合成
し、充放電によるリチウムのドープ、脱ドープがスムー
ズに行えるよう改良した点にある。しかしながら、これ
らの活物質はリチウムを用いて合成するため性能のわり
に高価になるという欠点を有し、いまだ実用に至ってい
ない。
On the other hand, LiMn 2 is used as the positive electrode active material of the non-aqueous secondary battery.
O 4 and its acid-treated products have been proposed (JP-A-63-63).
187569, Sho 63-114065). LiMn 2 O
4 and its acid-treated products are characterized in that manganese oxide is pre-doped with lithium to synthesize spinel-type lithium manganate having a three-dimensional channel structure, and lithium can be smoothly doped and dedoped by charging and discharging. There is a point that has been improved. However, since these active materials are synthesized using lithium, they have the drawback of being expensive in terms of performance, and have not yet been put into practical use.

一方、本発明者らは、イオン半径がリチウムよりわずか
に小さいマグネシウムを用いて調製したMgMn
やMgMnOを酸処理しても三次元のチャンネル構
造が形成されることを見出している(特開昭62−27
0420、日本海水学会誌第42巻、114ページ、1
988年)。これら酸処理物は水溶液中でリチウムの選
択吸着性に優れ、稀薄溶液からのリチウム吸着剤として
好適である。しかしながら、これら酸処理物は、10な
いし20%の比較的多量の水を含むため、有機溶媒中で
の安定性が悪く、非水系二次電池などの正極活物質とし
ては不適である。
On the other hand, the present inventors have prepared MgMn 2 O 4 prepared using magnesium whose ionic radius is slightly smaller than lithium.
It has been found that a three-dimensional channel structure is formed even when Mg or Mg 2 MnO 4 is acid-treated (Japanese Patent Laid-Open No. 62-27).
0420, Journal of the Japan Society of Sea Water 42, 114 pages, 1
988). These acid-treated products have excellent lithium selective adsorption properties in an aqueous solution and are suitable as a lithium adsorbent from a dilute solution. However, since these acid-treated products contain a relatively large amount of water of 10 to 20%, they have poor stability in organic solvents and are not suitable as a positive electrode active material for nonaqueous secondary batteries and the like.

[発明が解決しようとする問題点] 本発明は、上述の従来の実情に鑑みて提案されたもので
あって、非水系溶媒に適したマンガン化合物、即ち含水
量が少なく、かつ、三次元のチャンネル構造が形成され
ているマンガン化合物を安価に提供することにある。
[Problems to be Solved by the Invention] The present invention has been proposed in view of the above-mentioned conventional circumstances, and is a manganese compound suitable for a non-aqueous solvent, that is, it has a low water content and is three-dimensional. It is to provide a manganese compound having a channel structure at low cost.

[問題点を解決するための手段] 本発明者らは、上記の目的を達成するため、安価な原料
であるマグネシウムを用いて調製したMgMn
らのマグネシウム抽出法を種々検討した結果、酸化性で
かつ酸性を示す薬剤を用いてマグネシウムを抽出する
と、もとのテトラゴナル型構造を保ち、かつ含水量の少
ないマンガン化合物が合成されるとの知見を得るに至っ
た。本発明は、かかる知見に基づいて完成せられたもの
であって、酸化性雰囲気下でマグネシウムの抽出を行う
ことにより安定なマンガン化合物を得ることを特徴とす
る。
[Means for Solving Problems] In order to achieve the above-mentioned object, the present inventors have studied various magnesium extraction methods from MgMn 2 O 4 prepared using magnesium, which is an inexpensive raw material, and as a result, It has been found that when magnesium is extracted using an oxidizing and acidic agent, a manganese compound having the original tetragonal structure and a low water content is synthesized. The present invention has been completed based on such findings, and is characterized in that a stable manganese compound is obtained by extracting magnesium under an oxidizing atmosphere.

本発明で得られたマンガン化合物は、先にMgMn
を酸処理して得られたマンガン化合物(面間隔4.6
3±0.03、2.71±0.03、2.42±0.0
3、2.33±0.03、2.00±0.03、1.5
4±0.03にX線回折ピークを持つ)とは明らかに異
なったX線回折特性を示すことから、さらに別の新規な
マンガン化合物であることは明白である。これは、酸化
性雰囲気下でマグネシウムの抽出を行うため三価のマン
ガンの不均化反応による溶解が抑制され、別の構造のマ
ンガン化合物が生成したものと考えられる。すなわち、
本発明はMgMnからのマグネシウム抽出後の物
質であって、かつ主要なX線回折ピークが面間隔4.8
9±0.05Å、2.74±0.03Å、2.47±
0.03Å、2.03±0.03Åにあるようなマンガ
ン化合物を提供するものである。
The manganese compound obtained in the present invention was previously prepared from MgMn 2 O.
4 was treated with an acid to obtain a manganese compound (spacing 4.6).
3 ± 0.03, 2.71 ± 0.03, 2.42 ± 0.0
3, 2.33 ± 0.03, 2.00 ± 0.03, 1.5
It has a clearly different X-ray diffraction characteristic (having an X-ray diffraction peak at 4 ± 0.03), and thus is clearly another novel manganese compound. It is considered that this is because the extraction of magnesium under an oxidizing atmosphere suppressed dissolution of trivalent manganese due to the disproportionation reaction, and produced a manganese compound having a different structure. That is,
The present invention is a substance after magnesium extraction from MgMn 2 O 4 , and the main X-ray diffraction peak is a face spacing of 4.8.
9 ± 0.05Å, 2.74 ± 0.03Å, 2.47 ±
The present invention provides a manganese compound as described in 0.03Å and 2.03 ± 0.03Å.

本発明で原料として用いられるMgMnは、例え
ばMgOとMnをモル比1:1の割合で混合し、
1100℃の温度で数時間加熱処理することにより、あ
るいは、マグネシウムの水酸化物、酸化物、炭酸塩、重
炭酸塩、硝酸塩、ハロゲン化物などとマンガンの含水酸
化物、酸化物、酸化水酸化物、炭酸塩、重炭酸塩、硝酸
塩などと適当な組合せで混合したのち、400℃以上の
温度で加熱処理することにより製造できる。
As MgMn 2 O 4 used as a raw material in the present invention, for example, MgO and Mn 2 O 3 are mixed at a molar ratio of 1: 1,
By heat treatment at a temperature of 1100 ° C. for several hours, or hydroxides, oxides, carbonates, bicarbonates, nitrates, halides of magnesium and hydrous oxides, oxides, oxide hydroxides of manganese. , Carbonate, bicarbonate, nitrate and the like in a suitable combination, and then heat-treated at a temperature of 400 ° C. or higher.

このMgMnを酸性でかつ酸化性を示す溶液中に
浸漬し、かきまぜて、マグネシウムを溶出除去したのち
固形物を水洗し、乾燥することにより目的のマンガン化
合物は得られる。酸性かつ酸化性を示す溶液としては、
酸性酸化剤を含む溶液、あるいは酸化剤と酸の混合物を
含む溶液のいずれも用いることができるが、処理操作の
点からは酸性酸化剤を含む溶液が好ましい。酸性酸化剤
としてはペルオクソニ硫酸塩、臭素などが知られている
が、水溶液中で弱酸性を示し、かつ適度の酸化力を有す
る酸化剤であれば、いずれも使用可能である。経済性や
取り扱いの容易さの面から酸性酸化剤のなかではペルオ
クソニ硫酸アンモニウムが好ましい。ペルオクソニ硫酸
アンモニウムの水溶液を加温すると酸素と水素イオンが
生成する。この生成酸素が酸化作用を示しマンガン酸化
物の溶解を抑制すると同時に、生成水素イオンがMgM
からのマグネシウムの溶出を容易にする。処理
温度は室温から100℃まで可能であるが望ましくは6
0〜80℃がよい。ペルオクソニ硫酸アンモニウムの濃
度は0.25〜2Nが好適であるが、これに限定するも
のではない。また、処理時間は加熱温度によるが通常は
0.5ないし4時間が好適である。
The target manganese compound is obtained by immersing this MgMn 2 O 4 in a solution that is acidic and oxidizing, stirring it to elute and remove magnesium, washing the solid with water, and drying. As a solution that is acidic and oxidative,
Either a solution containing an acidic oxidizing agent or a solution containing a mixture of an oxidizing agent and an acid can be used, but a solution containing an acidic oxidizing agent is preferable from the viewpoint of treatment operation. As the acidic oxidizing agent, peroxonisulfate, bromine and the like are known, but any oxidizing agent which exhibits weak acidity in an aqueous solution and has an appropriate oxidizing power can be used. Among the acidic oxidizers, ammonium peroxonisulfate is preferable from the viewpoint of economical efficiency and easy handling. When an aqueous solution of ammonium peroxodisulfate is heated, oxygen and hydrogen ions are generated. This generated oxygen suppresses the dissolution of manganese oxide by exhibiting an oxidizing action, and at the same time, the generated hydrogen ion is MgM.
Facilitates the elution of magnesium from n 2 O 4 . The processing temperature can be from room temperature to 100 ° C, but is preferably 6
0-80 degreeC is good. The concentration of ammonium peroxodisulfate is preferably 0.25 to 2N, but is not limited to this. The treatment time depends on the heating temperature, but usually 0.5 to 4 hours is preferable.

このような処理によりMgMn中のマグネシウム
は85%以上抽出される。また、マグネシウム抽出後の
マンガン酸化物は面間隔4.89±0.05Å、2.7
4±0.03Å、2.47±0.03Å、2.03±
0.03Åにピークのある回折図を与える。これらのピ
ークは原料であるMgMnのX線回折ピーク(A
STMカード No.23−392。面間隔4.884
Å、2.736Å、2.470Å、2.025ÅにX線
回折ピーク)に一致している。すなわち今回の処理でマ
グネシウムを抽出して得たマンガン酸化物は、もとのM
gMnのテトラゴナル構造を保持していることは
明らかであり、したがって、マグネシウムの抜けたあと
に三次元のチャンネル構造が形成されていることは明ら
かである。また、該マンガン酸化物の含水量は3%以下
であり、MgMn酸処理物にくらべ著しく小さく
非水溶媒系材料として好適である。
By such a treatment, 85% or more of magnesium in MgMn 2 O 4 is extracted. In addition, the manganese oxide after magnesium extraction has a surface spacing of 4.89 ± 0.05 Å 2.7.
4 ± 0.03Å, 2.47 ± 0.03Å, 2.03 ±
A diffraction pattern with a peak at 0.03Å is given. These peaks are the X-ray diffraction peaks (A) of the raw material MgMn 2 O 4.
STM card No. 23-392. Surface spacing 4.884
Å, 2.736 Å, 2.470 Å, 2.025 Å coincide with the X-ray diffraction peak). That is, the manganese oxide obtained by extracting magnesium by this treatment is the original M
It is clear that the tetragonal structure of gMn 2 O 4 is retained, and thus it is clear that a three-dimensional channel structure is formed after the escape of magnesium. In addition, the water content of the manganese oxide is 3% or less, which is significantly smaller than that of the MgMn 2 O 4 acid-treated product and is suitable as a non-aqueous solvent-based material.

酸性でかつ酸化性の薬剤を含む溶液での処理条件を変え
ることによって種々の濃度のマグネシウムを含有するテ
トラゴナル型マンガン酸化物を調製することが可能であ
る。
It is possible to prepare tetragonal manganese oxides containing various concentrations of magnesium by changing the treatment conditions with a solution containing an acidic and oxidizing agent.

[実施例] 次に実施例により本発明を詳細に説明する。EXAMPLES Next, the present invention will be described in detail with reference to examples.

実施例1. 水酸化マグネシウム11.7gと水酸化酸化マンガン3
5.2gを粉砕混合し、空気中で950℃で2時間加熱
処理した。この試料のX線回折パターンはASTMカー
ドNo.23−392のMgMnのデータと一致
している。
Example 1. Magnesium hydroxide 11.7 g and hydroxide manganese oxide 3
5.2 g was pulverized and mixed, and heat-treated in air at 950 ° C. for 2 hours. The X-ray diffraction pattern of this sample is ASTM card No. This is in agreement with the data of MgMn 2 O 4 of 23-392.

当該MgMn10gを1Nのペルオクソニ硫酸ア
ンモニウム溶液500ml中に入れ70℃で1時間または
2時間加熱した。その後、沈澱を口過し水洗したのち7
0℃で乾燥した。得られたマンガン酸化物のマグネシウ
ム含量及び含水量を第1表に示した。
10 g of the MgMn 2 O 4 was placed in 500 ml of 1N ammonium peroxodisulfate solution and heated at 70 ° C. for 1 hour or 2 hours. After that, the precipitate is swallowed and washed with water.
It was dried at 0 ° C. The magnesium content and water content of the obtained manganese oxide are shown in Table 1.

また、該マンガン酸化物のX線回折パターンを第1図に
示した。
The X-ray diffraction pattern of the manganese oxide is shown in FIG.

これらの結果から明らかなように、マグネシウム抽出後
も該マンガン酸化物はもとのテトラゴナル構造を保持し
ており、三次元のチャンネル構造が形成されていること
がわかる。また含水量は低く、非水系電池の正極材料と
して適当である。
As is clear from these results, it is understood that the manganese oxide retains the original tetragonal structure even after extraction with magnesium, and a three-dimensional channel structure is formed. It also has a low water content and is suitable as a positive electrode material for non-aqueous batteries.

実施例2. 実施例1で合成したB試料90重量%に導電剤としてア
セチレンブラック6重量%及び結着剤として4重量%の
ポリテトラフルオロエチレンを加え、3t/cmの圧力
でステンレス板上に直径15mmに加圧成型したのち、1
50℃で5時間真空乾燥して陽極ペレットとした。陰極
はステンレス板上にリチウム金属箔を圧着して作成し
た。セパレータはポリプロピレン製薄膜を用い電解液に
はプロピレンカーボネイトとテトラヒドロフランとの等
体積混合溶液に過塩素酸リチウムを1M溶解したものを
用いて電池を作成した。この電池を1mAで3時間ごと
の充放電を繰り返し、サイクル特性を検討した。第2図
は電池のサイクル特性を示し、20回のサイクルまで電
圧変化はほとんどなくサイクル特性が良好なことがわか
る。
Example 2. To 90% by weight of the B sample synthesized in Example 1, 6% by weight of acetylene black as a conductive agent and 4% by weight of polytetrafluoroethylene as a binder were added, and a diameter of 15 mm was obtained on a stainless steel plate by a pressure of 3 t / cm 2. After pressure molding, 1
It was vacuum dried at 50 ° C. for 5 hours to obtain an anode pellet. The cathode was prepared by pressure-bonding a lithium metal foil on a stainless plate. A battery was prepared by using a polypropylene thin film as the separator and using an electrolyte solution obtained by dissolving 1M of lithium perchlorate in a mixed solution of propylene carbonate and tetrahydrofuran in an equal volume. This battery was repeatedly charged and discharged at 1 mA every 3 hours to examine the cycle characteristics. FIG. 2 shows the cycle characteristics of the battery, and it can be seen that there is almost no voltage change up to 20 cycles and the cycle characteristics are good.

[発明の効果] 以上のようにMgMnからマグネシウムを抽出し
て得られるマンガン化合物は、三次元のチャンネル構造
を有し、リチウムの挿入/抽出反応が容易に進行するた
め、非水系二次電池の正極活物質として好適であり、そ
の工業的価値は極めて大である。
[Effects of the Invention] As described above, the manganese compound obtained by extracting magnesium from MgMn 2 O 4 has a three-dimensional channel structure, and the insertion / extraction reaction of lithium easily proceeds. It is suitable as a positive electrode active material for secondary batteries, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明で得られたマンガン化合物のX線回折
結果を示す特性図であり、A、Bはそれぞれ第1表のA
試料、B試料に相当する。第2図は、本発明で得られた
マンガン化合物を正極活物質として用いた有機電解質電
池の充放電サイクル特性を示す特性図である。
FIG. 1 is a characteristic diagram showing the X-ray diffraction result of the manganese compound obtained in the present invention, where A and B are A in Table 1, respectively.
It corresponds to the sample and the B sample. FIG. 2 is a characteristic diagram showing charge / discharge cycle characteristics of an organic electrolyte battery using the manganese compound obtained in the present invention as a positive electrode active material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 俊作 香川県高松市花ノ宮町2丁目3番3号 工 業技術院四国工業技術試験所内 (56)参考文献 特開 昭63−64919(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunsaku Kato 2-3-3 Hananomiya-cho, Takamatsu-shi, Kagawa Inside Shikoku Institute of Industrial Technology, Industrial Technology Institute (56) Reference JP-A-63-64919 (JP, A) )

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】MgMnからマグネシウムを抽出し
て得られる物質であって面間隔4.89±0.05Å、
2.74±0.03Å、2.47±0.03Å、2.0
3±0.03ÅにX線回折ピークを有するマンガン化合
物。
1. A substance obtained by extracting magnesium from MgMn 2 O 4 , which has an interplanar spacing of 4.89 ± 0.05 Å,
2.74 ± 0.03Å, 2.47 ± 0.03Å, 2.0
A manganese compound having an X-ray diffraction peak at 3 ± 0.03Å.
【請求項2】MgMnを酸性かつ酸化性の薬剤を
含む溶液で処理し、マグネシウムを抽出することを特徴
とする特許請求範囲第1項記載のマンガン化合物の製造
方法。
2. The method for producing a manganese compound according to claim 1, wherein MgMn 2 O 4 is treated with a solution containing an acidic and oxidizing agent to extract magnesium.
JP1106599A 1989-04-25 1989-04-25 Novel manganese compound and method for producing the same Expired - Lifetime JPH0649577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1106599A JPH0649577B2 (en) 1989-04-25 1989-04-25 Novel manganese compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1106599A JPH0649577B2 (en) 1989-04-25 1989-04-25 Novel manganese compound and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02283621A JPH02283621A (en) 1990-11-21
JPH0649577B2 true JPH0649577B2 (en) 1994-06-29

Family

ID=14437609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1106599A Expired - Lifetime JPH0649577B2 (en) 1989-04-25 1989-04-25 Novel manganese compound and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0649577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246170B2 (en) 2013-03-27 2016-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. MgMn2O4 with a crystal structure analogue to CaFe2O4, CaMn2O4, or CaTi2O4 as rechargeable magnesium battery cathode

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3110738B2 (en) * 1989-08-07 2000-11-20 富士電気化学株式会社 Non-aqueous electrolyte secondary battery
DE69325552T2 (en) * 1992-07-29 2000-03-23 Tosoh Corp., Shinnanyo Manganese oxides, their production and their use
JP4501181B2 (en) * 1999-08-31 2010-07-14 ソニー株式会社 Non-aqueous electrolyte battery and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246170B2 (en) 2013-03-27 2016-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. MgMn2O4 with a crystal structure analogue to CaFe2O4, CaMn2O4, or CaTi2O4 as rechargeable magnesium battery cathode

Also Published As

Publication number Publication date
JPH02283621A (en) 1990-11-21

Similar Documents

Publication Publication Date Title
JP3356295B2 (en) Manganese oxide compounds
EP0712173B1 (en) Positive electrode active material for nonaqueous cell and its process of preparation
JPS63187569A (en) Nonaqueous secondary battery
JPH10172571A (en) Lithium secondary battery and manufacture of its positive electrode active material
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP3377802B2 (en) Manganese dioxide based material
JPH07262984A (en) Non-aqueous electrolyte secondary battery
JPH1064516A (en) Lithium battery
JP2001332262A (en) Positive electrode active substance for nonaqueous electrolyte secondary battery
KR19980074069A (en) Method for producing LiMn₂O₄ cathode active material for lithium ion battery
JP2001508391A (en) Preparation method of lithium manganese oxide
JPH0649577B2 (en) Novel manganese compound and method for producing the same
JPH07302587A (en) Nonaqueous electrolyte lithium secondary battery
JP3407042B2 (en) Lithium ion secondary battery positive electrode material and method for producing the same
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3110738B2 (en) Non-aqueous electrolyte secondary battery
JP2528183B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JPH09110431A (en) Production of lithium-manganese oxide based on limno2
JP2002231246A (en) Positive electrode active maerail for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2002033101A (en) Lithium-manganese oxide and lithium secondary battery using it
JP3104321B2 (en) Non-aqueous electrolyte lithium secondary battery and method for producing the same
JP3092823B2 (en) Lithium battery
JPH09330701A (en) Nonaqueous electrolyte secondary battery
JP2002270171A (en) Positive electrode active material for non-aqueous electrolyte lithium secondary battery and producing method thereof
JP2003036847A (en) Lithium chromium titanium oxide having ramsdellite type crystal structure, method for producing the same, and lithium secondary battery using the oxide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term