[go: up one dir, main page]

JPH0648727A - Modification of coal ash - Google Patents

Modification of coal ash

Info

Publication number
JPH0648727A
JPH0648727A JP19972192A JP19972192A JPH0648727A JP H0648727 A JPH0648727 A JP H0648727A JP 19972192 A JP19972192 A JP 19972192A JP 19972192 A JP19972192 A JP 19972192A JP H0648727 A JPH0648727 A JP H0648727A
Authority
JP
Japan
Prior art keywords
coal ash
hot water
water treatment
amount
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19972192A
Other languages
Japanese (ja)
Other versions
JP2577166B2 (en
Inventor
Hideo Kato
加藤秀男
Masaru Meguro
勝 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4199721A priority Critical patent/JP2577166B2/en
Publication of JPH0648727A publication Critical patent/JPH0648727A/en
Application granted granted Critical
Publication of JP2577166B2 publication Critical patent/JP2577166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

(57)【要約】 【目的】 石炭をエネルギー源とする発電所等において
発生する多量の石炭灰を有効利用するための改質方法を
提供する。 【構成】 石炭灰に苛性ソーダ等のアルカリを添加し、
熱水処理して多孔質結晶物に改質するに際して、上記ア
ルカリ性反応液のアルカリ濃度を1〜7規定の範囲で制
御して細孔径の大きさを調節する石炭灰の改質方法。上
記アルカリ性反応液の熱水処理を二段で行い、二段目の
熱水処理前に該反応液中の溶出シリカ量に当量のアルミ
ナ源を添加し、熱水処理する石炭灰の改質方法。上記二
段目の熱水処理反応液の〔(アルカリ性液量)/(石炭
灰重量+アルミナ源重量)〕の比が2倍以上となるよう
に配合調整する石炭灰の改質方法。
(57) [Summary] [Objective] To provide a reforming method for effectively utilizing a large amount of coal ash generated in a power plant or the like using coal as an energy source. [Constitution] Add alkali such as caustic soda to coal ash,
A method for reforming coal ash, which comprises controlling the alkali concentration of the alkaline reaction liquid in the range of 1 to 7 N to control the size of the pore diameter when the porous crystalline material is treated by hot water treatment. Hot water treatment of the alkaline reaction liquid in two steps, adding an equivalent amount of alumina source to the amount of silica eluted in the reaction solution before the second step of hot water treatment, hot water treatment method of coal ash . A method for reforming coal ash, wherein the ratio of [(alkaline liquid amount) / (coal ash weight + alumina source weight)] of the second-stage hot water treatment reaction liquid is adjusted to be double or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石炭をエネルギー源と
する発電所等において発生する多量の石炭灰を有効利用
するための改質方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reforming method for effectively utilizing a large amount of coal ash generated in a power plant or the like using coal as an energy source.

【0002】[0002]

【従来技術】ゼオライトの細孔入口径の大きさを適当に
調節することができるとその用途は大幅に拡大すること
ができる。例えば、1989年に発行された「ゼオライ
トの最新応用技術」によると、合成ゼオライトにおいて
はイオン交換により適当な価数と大きさを持つカチオン
を導入することで、細孔の有効径を変化させるとか、ま
た、マグネシウム、硼素あるいは燐をゼオライトの細孔
内に含浸させることによって入口径を少し狭める等、ゼ
オライトの細孔に対して二次加工処理することによって
その入口径を調節することが知られている。
2. Description of the Related Art If the size of the pore inlet diameter of zeolite can be adjusted appropriately, its application can be greatly expanded. For example, according to "Latest Zeolite Application Technology" published in 1989, it is said that the effective diameter of pores is changed by introducing a cation having an appropriate valence and size into a synthetic zeolite by ion exchange. It is also known that the inlet diameter can be adjusted by performing secondary processing on the zeolite pores, such as slightly narrowing the inlet diameter by impregnating magnesium, boron or phosphorus into the zeolite pores. ing.

【0003】一方、発電所等において多量に発生する石
炭灰は、工業的には従来からの埋立て処分、セメント原
料としての活用や路盤材への利用等単純利用が主である
が、付加価値を有する素材としての利用へも指向される
ようになってきた。その一つに、石炭灰を化学的に処理
してイオン交換材、吸着材用の人工ゼオライトとして利
用する方法等が知られている。例えば特開昭61−09
0745号に石炭灰をアルカリ溶液で処理してゼオライ
トを生成させる方法が記載され、特開平04−0120
15号に石炭灰にスカム状Al灰を添加したものに苛性
ソーダを加えて煮沸処理してゼオライトを製造する方法
が記載されている。
On the other hand, the large amount of coal ash generated in a power plant or the like is industrially mainly used for conventional landfill, used as a raw material for cement, or simply used for roadbed materials. It has come to be directed to the use as a material having the above. As one of them, a method of chemically treating coal ash and using it as an ion-exchange material or an artificial zeolite for an adsorbent is known. For example, JP-A-61-09
No. 0745 describes a method of treating a coal ash with an alkaline solution to produce zeolite.
No. 15 describes a method for producing zeolite by adding caustic soda to a coal ash to which scum-like Al ash is added and boiling the mixture.

【0004】[0004]

【発明が解決しようとする課題】上記ゼオライトの細孔
入口径の大きさを二次加工処理することによって調節す
る方法は、具体的には合成ゼオライトの細孔の内表面を
他の物質で被覆するという二次加工処理を行うものであ
り、二次加工処理作業が煩雑となるだけでなく、不規則
に形成されている細孔に対して、均等にその入口径を狭
める処理は困難さを伴うものである。従って、ゼオライ
トの製造過程において所望の大きさの細孔径を生成する
ことが望まれている。
The method for adjusting the size of the pore entrance diameter of the zeolite by secondary processing is, specifically, to coat the inner surface of the pores of the synthetic zeolite with another substance. In addition to making the secondary processing work complicated, it is difficult to uniformly reduce the inlet diameter of irregularly formed pores. It is accompanied. Therefore, it is desired to generate a desired pore size in the zeolite manufacturing process.

【0005】石炭灰は元来ポゾラン物質として理解され
ているものであり、ポゾランの一つの特徴がアルカリ分
に可溶なアルミナ・シリカを含有している事である。本
発明者の研究によれば、この可溶性アルミナ・シリカ分
がアルカリ液中に溶出した場合、特に、シリカ分はアル
カリ処理した場合、ソーダ珪酸塩(所謂、水ガラス)を
形成し結晶化せずに残存し、石炭灰改質の阻害要因とな
り改質反応の進行を妨げている事が判明した。
Coal ash is originally understood as a pozzolanic substance, and one characteristic of pozzolan is that it contains alumina-silica which is soluble in alkali content. According to the research conducted by the present inventor, when the soluble alumina / silica content is eluted in an alkaline solution, particularly when the silica content is treated with alkali, soda silicate (so-called water glass) is formed and does not crystallize. It became clear that it remained in the ash and became an impediment factor to the coal ash reforming and hindered the progress of the reforming reaction.

【0006】更に、図1に示すように、反応効率の向上
を目的としてアルカリ分の使用比率を増大させていく
と、可溶性シリカ分は比例的に増大し、反応液の粘性を
上昇させ液の攪拌・固液分離が不能となり安定した工業
的規模での改質が不可能となった。更に、可溶性シリカ
分がソーダ珪酸塩となる為に、NaOHの消費量が増大
して経済的にも不利な結果となった。更に、図2に示す
ように、アルカリ分の使用比率を増大させても石炭灰の
改質結晶化度を示す陽イオン交換容量も向上せずにシリ
カ分の反応液への溶出量のみを増大させたに過ぎなかっ
た。その為に、上記特開昭61−090745号に記載
の如く、比較的低アルカリ濃度にて、その用途を限定し
た改質が主であった。
Further, as shown in FIG. 1, when the use ratio of the alkali content is increased for the purpose of improving the reaction efficiency, the soluble silica content is proportionally increased, increasing the viscosity of the reaction solution and increasing the viscosity of the solution. Stirring and solid-liquid separation became impossible, and stable industrial scale reformation became impossible. Further, since the soluble silica content becomes soda silicate, the consumption amount of NaOH increases, which is economically disadvantageous. Further, as shown in FIG. 2, even if the use ratio of the alkali component is increased, the cation exchange capacity indicating the modified crystallinity of the coal ash is not improved and only the elution amount of the silica component to the reaction liquid is increased. I just let it. Therefore, as described in JP-A No. 61-090745 mentioned above, the modification which mainly limits the use at a relatively low alkali concentration was mainly used.

【0007】石炭灰を改質して得た多孔質結晶物、所謂
人工ゼオライトを工業用途にまで拡大する為には、先に
述べた陽イオン交換容量が多いほど好ましい。ここで更
に本発明者等は特開平04−012015号に示すよう
に、石炭灰中の非晶質アルミ・シリカに着目してそれと
当量のAl分を添加する方法も試みた。この方法による
と前記方法よりも石炭灰改質反応は促進されるものの、
反応液中に残留する溶出シリカは残存しており、石炭の
銘柄により目標値未達のものもあった。これは、結晶物
の析出が反応液内に残留する石炭灰の表面に析出する事
により、反応液と石炭灰粒子の接触を妨害する事に起因
するものである事が判明した。また、石炭灰改質時に添
加するアルミナ源の添加比率は、非晶質アルミ・シリカ
に着目しただけでは不十分である事も判明した。
In order to expand the porous crystalline material obtained by modifying coal ash, so-called artificial zeolite, to industrial applications, it is preferable that the above-mentioned cation exchange capacity is large. Here, the present inventors also tried a method of paying attention to amorphous aluminum / silica in coal ash and adding an equivalent amount of Al to it, as shown in JP-A-04-012015. According to this method, the coal ash reforming reaction is accelerated as compared with the above method,
The eluted silica remained in the reaction solution remained, and some coal brands did not reach the target value. It has been found that this is due to the fact that the precipitation of the crystallized substance is deposited on the surface of the coal ash remaining in the reaction solution, thereby hindering the contact between the reaction solution and the coal ash particles. It was also found that the addition ratio of the alumina source added at the time of coal ash reforming was not sufficient just by paying attention to amorphous aluminum / silica.

【0008】本発明の目的は、産業廃棄物である石炭灰
を利用価値の高い人工ゼオライトに改質するに際して、
細孔径を所望の大きさに調節することである。そうして
この人工ゼオライトの陽イオン交換容量を最大限に大き
くし、更に、この改質操業を工業的規模にて安定して且
つ安価に実施できる技術を提供するものである。
[0008] An object of the present invention is to reform coal ash, which is an industrial waste, into artificial zeolite having a high utility value.
Adjusting the pore size to the desired size. Thus, the cation exchange capacity of the artificial zeolite can be maximized, and further, the reforming operation can be stably and inexpensively performed on an industrial scale.

【0009】[0009]

【課題を解決するための手段】本発明は、 (1)石炭灰に苛性ソーダ等のアルカリを添加し、熱水
処理して多孔質結晶物に改質するに際して、上記アルカ
リ性反応液のアルカリ濃度を1〜7規定の範囲で制御し
て、析出する多孔質結晶物の細孔径の大きさを調節する
ことを特徴とする石炭灰の改質方法である。
MEANS FOR SOLVING THE PROBLEMS The present invention is as follows: (1) When alkali such as caustic soda is added to coal ash and treated with hot water to reform into a porous crystalline substance, the alkali concentration of the alkaline reaction liquid is adjusted. A method for reforming coal ash, which is characterized in that the size of the pore diameter of the precipitated porous crystal is adjusted by controlling in the range of 1 to 7 N.

【0010】また本発明は、 (2)アルカリ性反応液の熱水処理を二段で行い、二段
目の熱水処理前に該反応液中の溶出シリカ量に当量のア
ルミナ源を添加し、熱水処理することを特徴とする前記
(1)項記載の石炭灰の改質方法である。
Further, according to the present invention, (2) hot water treatment of an alkaline reaction liquid is carried out in two steps, and an alumina source in an amount equivalent to the amount of eluted silica in the reaction liquid is added before the second hot water treatment, The method for reforming coal ash according to the item (1) is characterized in that hot water treatment is performed.

【0011】また本発明は、 (3)二段目の熱水処理反応液の〔(アルカリ性液量)
/(石炭灰重量+アルミナ源重量)〕の比が2倍以上と
なるように配合調整することを特徴とする前記(1)項
乃至(2)項記載の石炭灰の改質方法である。
The present invention also provides (3) [(alkaline liquid amount) of the second stage hot water treatment reaction liquid.
/ (Coal ash weight + alumina source weight)] is adjusted so that the ratio is at least two times, which is the method for reforming coal ash according to the above (1) or (2).

【0012】[0012]

【作用】本発明者等は、ポゾラン質である石炭灰に苛性
ソーダ等のアルカリを添加し、熱水処理して多孔質結晶
物に改質するに実験において、上記アルカリ性反応液の
アルカリ濃度に応じて析出する多孔質結晶物の組成が異
なることに着目し、実験を重ねたところ、例えば濃度3
規定の苛性ソーダを添加し、攪拌しながら大気圧下で温
度100℃以下の条件に加熱しながら反応させると析出
する多孔質結晶物の組成はフィリップサイトを主体とし
た組成物で、その細孔径は4オングストロームであっ
た。また、濃度5規定の苛性ソーダを使用した場合はハ
イドロキシソーダライトが主体となり、その細孔径は
2.5オングストロームであった。
The present inventors conducted experiments in which alkali such as caustic soda was added to coal ash, which is a pozzolanic material, and hot water treatment was performed to modify it into a porous crystalline material, depending on the alkali concentration of the alkaline reaction solution. As a result of repeated experiments focusing on the difference in the composition of the porous crystalline substance that precipitates,
The composition of the porous crystal that precipitates when a specified caustic soda is added and reacted under heating at a temperature of 100 ° C. or lower under stirring at atmospheric pressure is a composition mainly composed of phillipsite, and its pore size is It was 4 angstroms. When caustic soda having a concentration of 5N was used, hydroxysodalite was the main component, and the pore size was 2.5 angstrom.

【0013】上記のように、添加するアルカリ源の濃度
を選択することにより熱水処理で析出させる多孔質結晶
物の組成及びその比率を調節することができるので、そ
の組成物によってもたらされる細孔径を調節することが
できる。
As described above, by selecting the concentration of the alkali source to be added, the composition and the ratio of the porous crystals precipitated by the hydrothermal treatment can be adjusted, so that the pore size produced by the composition can be adjusted. Can be adjusted.

【0014】上記石炭灰に添加するアルカリとしては公
知のアルカリ源が使用できるが、経済的には苛性ソーダ
が適している。このアルカリ濃度を1〜7規定の範囲に
制限したのは、濃度1規定未満であると結晶化率が低下
し、人工ゼオライトとしての品質が劣化する。一方、濃
度7規定を越えると改質効果に殆ど差が見られず、経済
的でない。 上記したように、本発明の実施に際してア
ルカリ分の濃度を変更する場合、例えばアルカリ濃度を
増すと可溶性シリカ分は比例的に増大し、反応液の粘性
を上昇させ液の攪拌・固液分離ができなくなる。更に、
可溶性シリカ分がソーダ珪酸塩となる為に、NaOHの
消費量が増大する。このような場合には、アルカリによ
る熱水処理を施した際の溶出シリカが、所謂水ガラス形
態である事を応用して、溶出分を十二分に溶出させる一
次反応ゾーンを設定し、この一次熱水処理によって反応
液中に水ガラスを生成させた後、反応液中の溶出シリカ
量に当量のアルミナ源を添加してアルカリ液中にて二次
熱水処理を施すことにより、水ガラスを多孔質結晶物、
所謂ゼオライトに変換させるものである。
Known alkali sources can be used as the alkali added to the coal ash, but caustic soda is economically suitable. The reason why the alkali concentration is limited to the range of 1 to 7 N is that if the concentration is less than 1 N, the crystallization rate decreases and the quality of the artificial zeolite deteriorates. On the other hand, if the concentration exceeds 7 N, there is almost no difference in the modification effect, which is not economical. As described above, when the concentration of the alkali component is changed in the practice of the present invention, for example, when the alkali concentration is increased, the soluble silica component is proportionally increased, the viscosity of the reaction solution is increased, and the stirring / solid-liquid separation of the solution is performed. become unable. Furthermore,
Since the soluble silica content becomes soda silicate, the consumption amount of NaOH increases. In such a case, by applying the fact that the eluted silica at the time of hot water treatment with an alkali is a so-called water glass form, a primary reaction zone is set in which the eluted amount is sufficiently eluted, After water glass is generated in the reaction solution by the primary hot water treatment, the equivalent amount of alumina source is added to the amount of eluted silica in the reaction solution, and the secondary hot water treatment is performed in the alkaline solution to obtain the water glass. The porous crystalline material,
It is converted to so-called zeolite.

【0015】また、一次熱水処理において溶出分である
シリカを十二分に溶出させる条件は、図3に示すよう
に、大気圧下、温度100℃にて2時間反応を実施する
ことが好ましい。
As for the conditions for eluting silica, which is the eluate in the primary hot water treatment, to the extent that it is preferable to carry out the reaction for 2 hours at 100 ° C. under atmospheric pressure as shown in FIG. .

【0016】上記溶出シリカ量に当量のアルミナ源を添
加するアルミナ分としては、金属アルミニウム、水酸化
アルミニウム、酸化アルミニウムが使用することができ
る。また、経済的観点からアルミニウム溶解時に副生す
る酸化アルミニウムと金属アルミニウムの混合物となっ
た、所謂アルミドロスが有望である。
Metal alumina, aluminum hydroxide, and aluminum oxide can be used as the alumina component to which an equivalent amount of alumina source is added to the amount of eluted silica. Further, from an economical point of view, so-called aluminum dross, which is a mixture of aluminum oxide and metallic aluminum produced as a by-product when aluminum is dissolved, is promising.

【0017】上記アルミナ分の添加比率は、反応液中に
溶出したシリカ分と当量添加する必要があり、当量未満
となると溶出シリカが水ガラスとして反応液中に残留
し、ゼオライトの生成歩留りを低下するだけでなく、反
応液の最終処理を煩雑にする。一方、過剰に添加すると
未反応アルミナの介在する反応液の最終処理を煩雑にす
る。
The alumina content should be added in an amount equivalent to the silica content eluted in the reaction solution. If it is less than the equivalent level, the eluted silica will remain in the reaction solution as water glass, reducing the yield of zeolite formation. In addition, it complicates the final treatment of the reaction solution. On the other hand, if added excessively, the final treatment of the reaction solution in which unreacted alumina intervenes becomes complicated.

【0018】上記一次熱水処理において、反応液に溶出
するシリカ分は、石炭灰の性質と反応液のアルカリ濃度
に関係している。図1はアルカリ反応液の苛性ソーダ濃
度と溶出シリカの割合の関係を示したグラフであって、
図1から明らかなように、アルミナ源添加量の設定はア
ルカリ濃度と石炭灰の性質の関数にて求めることが好ま
しい。即ち、本発明者等の研究によると、石炭灰の性質
を表す指標として、石炭灰に含有するムライト質の含有
率にても代表することができるものであり、例えば下記
(1)、(2)式で設定できる。
In the above-mentioned primary hot water treatment, the silica content eluted in the reaction solution is related to the properties of coal ash and the alkali concentration of the reaction solution. FIG. 1 is a graph showing the relationship between the concentration of caustic soda in the alkaline reaction liquid and the ratio of eluted silica,
As is clear from FIG. 1, it is preferable to set the addition amount of the alumina source by a function of alkali concentration and properties of coal ash. That is, according to the research conducted by the present inventors, the content rate of the mullite contained in the coal ash can be represented as an index showing the properties of the coal ash. For example, the following (1), (2 ) Expression can be set.

【0019】 Y=α×(アルカリ規定濃度)−0.041 (1) α=0.42×(ムライト含有比率)+0.02 (2) Y:アルミナ源−kg/kg−石炭灰 上記式から求められるアルミナ源量を添加することによ
り、反応液中に溶出したシリカ分は完全に多孔質結晶物
として回収され残留溶出シリカは皆無となり、工業的規
模で安価に、更に高効率で石炭灰の改質が達成される。
Y = α × (normal alkali concentration) -0.041 (1) α = 0.42 × (mullite content ratio) +0.02 (2) Y: Alumina source-kg / kg-Coal ash From the above formula By adding the required amount of alumina source, the silica content eluted in the reaction solution is completely recovered as a porous crystal substance, and no residual eluted silica is present. Modification is achieved.

【0020】上記アルミナ源の添加は、反応液濃度に比
例して添加比率を上昇させることとなるが、工業的規模
にて安定した操業を達成させるには、下記の条件を満足
する必要がある。即ち、上記二次熱水処理液の〔(苛性
ソーダ液量)/石炭灰重量+アルミナ源重量)〕の比が
2倍以上となるように配合調整するものである。上記条
件を逸脱すると、反応攪拌が不十分となると同時に反応
後の処置が不能となり好ましくない。
The addition of the above-mentioned alumina source raises the addition ratio in proportion to the concentration of the reaction solution, but in order to achieve stable operation on an industrial scale, it is necessary to satisfy the following conditions. . That is, the mixture is adjusted so that the ratio of [(amount of caustic soda solution) / weight of coal ash + weight of alumina source)] of the secondary hot water treatment solution is double or more. If the above conditions are not satisfied, reaction stirring becomes insufficient, and at the same time, treatment after the reaction becomes impossible, which is not preferable.

【0021】また、二次熱水処理反応の完結条件は大気
圧下、温度100℃条件にて3時間反応させることが好
ましい。必要以上に反応時間を長く設定する事は経済的
にも不利であり、一次反応2時間と二次反応3時間にて
石炭灰の充分な改質が達成できる。
Further, it is preferable to complete the secondary hot water treatment reaction under atmospheric pressure at a temperature of 100 ° C. for 3 hours. It is economically disadvantageous to set the reaction time longer than necessary, and sufficient reforming of coal ash can be achieved in the primary reaction of 2 hours and the secondary reaction of 3 hours.

【0022】[0022]

【実施例】SiO2 :45.7%、Al2 3 :21.
0%、ムライト:14%の組成からなる石炭灰にそれぞ
れ濃度の異なる苛性ソーダを添加し、異なるアルカリ濃
度の反応液を生成し、一次熱水処理を100℃×2hr
実施し、その後Alドロスをそれぞれの水準量に添加し
二次熱水処理を100℃×3hr実施した。各処理条件
を表1に示す。
EXAMPLE SiO 2 : 45.7%, Al 2 O 3 : 21.
Caustic soda with different concentrations was added to coal ash having a composition of 0% and mullite: 14% to generate reaction solutions with different alkali concentrations, and the primary hot water treatment was performed at 100 ° C for 2 hours.
After that, Al dross was added to each level amount and secondary hot water treatment was performed at 100 ° C. for 3 hours. Table 1 shows each processing condition.

【0023】比較例として、同一石炭灰を用い一次熱水
処理を長時間実施した例と、反応液にAlドロスを添加
して一次熱水処理した例を併記した。
As comparative examples, an example in which the primary hot water treatment was carried out for a long time using the same coal ash and an example in which the primary dross treatment was performed by adding Al dross to the reaction solution are also shown.

【0024】[0024]

【表1】 [Table 1]

【0025】上記熱水処理によって得られた反応生成物
の特性として陽イオン交換容量、反応液中残留シリカの
割合及び細孔径を表2に示した。
Table 2 shows the cation exchange capacity, the ratio of residual silica in the reaction solution and the pore size as the characteristics of the reaction product obtained by the hot water treatment.

【0026】[0026]

【表2】 [Table 2]

【0027】比較例Iは、アルカリの添加比率を石炭灰
中のシリカ1モル当たり0.56モルに設定して、大気
圧下で温度70℃にて反応したものであり、石炭灰の改
質は殆ど認められなかった。
In Comparative Example I, the alkali addition ratio was set to 0.56 mol per mol of silica in the coal ash, and the reaction was carried out at a temperature of 70 ° C. under atmospheric pressure. Was hardly recognized.

【0028】比較例IIは石炭灰にAl灰を混合し、その
後2Nの苛性ソーダを添加し、大気圧下で温度100℃
で5時間反応させた。改質終了後の反応液中には溶出シ
リカがまだ残存しており、工業規模の操業には好ましく
ない結果であった。
In Comparative Example II, coal ash was mixed with Al ash, 2N caustic soda was then added, and the temperature was 100 ° C. under atmospheric pressure.
And reacted for 5 hours. Eluted silica still remained in the reaction solution after completion of the reforming, which was not desirable for industrial scale operation.

【0029】実施例I、IIにおいて、本発明のアルカリ
濃度の制御により細孔径を調整できるいることが判る。
また、石炭灰の改質程度を示す指標の陽イオン交換容量
は苛性ソーダ濃度に比例して向上しており、本発明はア
ルカリ濃度の調整により陽イオン交換容量も制御できる
ことを示している。また、反応液に残留する溶出シリカ
分も完全に結晶化されて皆無となっている。
In Examples I and II, it is understood that the pore size can be adjusted by controlling the alkali concentration of the present invention.
Further, the cation exchange capacity, which is an index showing the degree of reforming of coal ash, is increased in proportion to the caustic soda concentration, and the present invention shows that the cation exchange capacity can also be controlled by adjusting the alkali concentration. In addition, the eluted silica content remaining in the reaction solution was completely crystallized and disappeared.

【0030】[0030]

【発明の効果】本発明の石炭灰の改質方法は、アルカリ
濃度を選択して熱水処理するので改質された多孔性結晶
物の細孔径を調整できる。また、アルカリを用いて一次
熱水反応を行った後にアルミナ源を添加して二次熱水反
応を行うことにより、結晶化度の高い石炭灰の改質が可
能となり、その用途は工業的規模のガス吸着分離材・脱
臭材・イオン交換材用途への活用を可能とした。つま
り、従来はその殆どが埋め立て処理等廃棄処分が主力を
示していた、石炭灰の有資源化への活路を見出したもの
である。
According to the method for reforming coal ash of the present invention, since the alkali concentration is selected and the treatment with hot water is carried out, the pore diameter of the modified porous crystal can be adjusted. In addition, it is possible to reform coal ash with high crystallinity by performing a secondary hydrothermal reaction by adding an alumina source after performing a primary hydrothermal reaction using an alkali, and its application is on an industrial scale. It can be used as a gas adsorption / separation material, deodorant material, and ion exchange material. In other words, most of them have hitherto been found to be waste disposal, such as landfill, as a main route to the utilization of coal ash as a resource.

【0031】また、反応液のアルカリも溶出シリカに消
費される事なく、全て結晶化できる事により資源の有効
活用も達成しうるものである。
In addition, the alkali of the reaction solution is not consumed by the eluted silica and can be completely crystallized, so that the effective utilization of resources can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルカリ反応液の苛性ソーダ濃度と溶出シリカ
率を示すグラフ。
FIG. 1 is a graph showing the caustic soda concentration and the elution silica rate of an alkaline reaction liquid.

【図2】アルカリ反応液の苛性ソーダ濃度と石炭灰改質
製品の陽イオン交換容量を示すグラフ。
FIG. 2 is a graph showing the caustic soda concentration of the alkaline reaction liquid and the cation exchange capacity of the coal ash modified product.

【図3】熱水反応時間と溶出シリカの溶出割合を示すグ
ラフ。
FIG. 3 is a graph showing a hot water reaction time and an elution ratio of eluted silica.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石炭灰に苛性ソーダ等のアルカリを添加
し、熱水処理して多孔質結晶物に改質するに際して、上
記アルカリ性反応液のアルカリ濃度を1〜7規定の範囲
で制御して、析出する多孔質結晶物の細孔径の大きさを
調節することを特徴とする石炭灰の改質方法。
1. When adding an alkali such as caustic soda to coal ash and treating it with hot water to reform it into a porous crystalline material, the alkali concentration of the alkaline reaction liquid is controlled within a range of 1 to 7 N, A method for reforming coal ash, which comprises controlling the size of the pore diameter of the precipitated porous crystalline material.
【請求項2】 アルカリ性反応液の熱水処理を二段で行
い、二段目の熱水処理前に該反応液中の溶出シリカ量に
当量のアルミナ源を添加し、熱水処理することを特徴と
する請求項1記載の石炭灰の改質方法。
2. The hot water treatment of the alkaline reaction liquid is carried out in two steps, and the hot water treatment is carried out by adding an equivalent amount of an alumina source to the amount of silica eluted in the reaction liquid before the second hot water treatment. The method for reforming coal ash according to claim 1, which is characterized in that.
【請求項3】 二段目の熱水処理反応液の〔(アルカリ
性液量)/(石炭灰重量+アルミナ源重量)〕の比が2
倍以上となるように配合調整することを特徴とする請求
項1乃至2記載の石炭灰の改質方法。
3. The ratio of [(alkaline liquid amount) / (coal ash weight + alumina source weight)] of the second stage hot water treatment reaction liquid is 2.
The method for reforming coal ash according to claim 1 or 2, characterized in that the composition is adjusted so as to be double or more.
JP4199721A 1992-07-27 1992-07-27 Coal ash reforming method Expired - Lifetime JP2577166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4199721A JP2577166B2 (en) 1992-07-27 1992-07-27 Coal ash reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4199721A JP2577166B2 (en) 1992-07-27 1992-07-27 Coal ash reforming method

Publications (2)

Publication Number Publication Date
JPH0648727A true JPH0648727A (en) 1994-02-22
JP2577166B2 JP2577166B2 (en) 1997-01-29

Family

ID=16412512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4199721A Expired - Lifetime JP2577166B2 (en) 1992-07-27 1992-07-27 Coal ash reforming method

Country Status (1)

Country Link
JP (1) JP2577166B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178416A (en) * 1985-01-30 1986-08-11 Kikukiyuushiyuu Kogai Gijutsu Center:Kk Production of p-type zeolite
JPS6424014A (en) * 1987-07-21 1989-01-26 Nippon Steel Corp Production of zeolite composition from fly ash

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178416A (en) * 1985-01-30 1986-08-11 Kikukiyuushiyuu Kogai Gijutsu Center:Kk Production of p-type zeolite
JPS6424014A (en) * 1987-07-21 1989-01-26 Nippon Steel Corp Production of zeolite composition from fly ash

Also Published As

Publication number Publication date
JP2577166B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
Rozhkovskaya et al. Synthesis of high-quality zeolite LTA from alum sludge generated in drinking water treatment plants
JP3293636B2 (en) Method for producing crystalline layered sodium silicate
JP5778342B2 (en) Method for producing zeolite A using aluminoborosilicate glass as a raw material
CN107162010B (en) The hydrated calcium silicate for synthesizing the method for hydrated calcium silicate and being synthesized by this method
Majdinasab et al. Microwave synthesis of zeolites from waste glass cullet using landfill leachate as a novel alternative solvent
JP3246722B2 (en) Process for producing synthetic silicate and its use in glass production
JP3666031B2 (en) Method for producing type A zeolite
CN112758955B (en) Method for preparing cancrinite molecular sieve by gasified coarse slag under anhydrous template-free condition
Gross-Lorgouilloux et al. Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions: Influence of additional silica
Prihastuti et al. Conversion of Indonesian coal fly ash into zeolites for ammonium adsorption
JP2577166B2 (en) Coal ash reforming method
JP2538743B2 (en) Method of reforming coal ash
US4330518A (en) Removal of contaminants from zeolite mother liquors
CN103771452A (en) Square beta molecular sieve and preparing method thereof
CN113149046B (en) Preparation method of high-purity superfine alumina
JP2010111561A (en) Method for producing artificial zeolite using waste glass as raw material
US5160718A (en) Method of producing kenyaite-type phyllosilicate
JP3940801B2 (en) Method for synthesizing zeolite
Kong et al. Sludge‐based geopolymer materials: A review
WO2022010425A1 (en) A novel supplementary cementitious material and production method thereof
JP3942588B2 (en) Method for producing surface zeolitic glass
CN111943213B (en) Method for separating out silicon-containing hydrate from sodium silicate solution
JP3456662B2 (en) Method for producing tobermorite
JPH07196315A (en) Method for synthesizing zeolite
CN103121693A (en) Method for preparing 4A zeolite by using fluorine-containing white residues through single-step crystallization

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960827

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 16