[go: up one dir, main page]

JPH0648275Y2 - heat pump - Google Patents

heat pump

Info

Publication number
JPH0648275Y2
JPH0648275Y2 JP1988078143U JP7814388U JPH0648275Y2 JP H0648275 Y2 JPH0648275 Y2 JP H0648275Y2 JP 1988078143 U JP1988078143 U JP 1988078143U JP 7814388 U JP7814388 U JP 7814388U JP H0648275 Y2 JPH0648275 Y2 JP H0648275Y2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
flow rate
compressor
electronic expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988078143U
Other languages
Japanese (ja)
Other versions
JPH02561U (en
Inventor
豊隆 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1988078143U priority Critical patent/JPH0648275Y2/en
Publication of JPH02561U publication Critical patent/JPH02561U/ja
Application granted granted Critical
Publication of JPH0648275Y2 publication Critical patent/JPH0648275Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)
  • Air Conditioning Control Device (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は空気調和機、除湿機、冷凍機、温水機等のヒー
トポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a heat pump for an air conditioner, a dehumidifier, a refrigerator, a water heater, and the like.

(従来の技術) 従来の空気調和機の冷媒回路の1例が第3図に示されて
いる。
(Prior Art) An example of a refrigerant circuit of a conventional air conditioner is shown in FIG.

圧縮機1から吐出された冷媒は矢印で示すように凝縮器
2で冷却されることにより凝縮液化し、温度式膨張弁3
で絞られることにより断熱膨張し、蒸発器4で放熱する
ことにより蒸発気化した後圧縮機1に戻る。
The refrigerant discharged from the compressor 1 is condensed and liquefied by being cooled by the condenser 2 as shown by an arrow, and the temperature type expansion valve 3
It is adiabatically expanded by being squeezed by and is vaporized by being radiated by the evaporator 4, and then returned to the compressor 1.

5は蒸発器4の出口配管6に取り付けられた感温筒、7
は感温筒5と温度式膨張弁3とを接続する導圧管であ
る。
5 is a temperature sensitive tube attached to the outlet pipe 6 of the evaporator 4, 7
Is a pressure guiding pipe that connects the temperature sensing cylinder 5 and the thermal expansion valve 3.

温度式膨張弁3の詳細が第4図に示されている。Details of the thermal expansion valve 3 are shown in FIG.

弁12はロッド8を介してダイヤフラム9に連結されてい
る。
The valve 12 is connected to the diaphragm 9 via the rod 8.

このダイヤフラム9の上部に形成された室10は導圧管7
を介して感温筒5に連通され、これら室10、導圧管7及
び感温筒5の内部には冷媒回路内を循環する冷媒と同じ
冷媒が封入されている。
The chamber 10 formed above the diaphragm 9 has a pressure guiding tube 7
The same refrigerant as the refrigerant circulating in the refrigerant circuit is sealed inside the chamber 10, the pressure guiding tube 7 and the temperature sensing cylinder 5 which are communicated with the temperature sensing cylinder 5 via.

ダイヤフラム9の下部に形成された室11は出口配管6に
均圧管13を介して連通されている。そして、この室11内
にはダイヤフラム9を上方に押推するコイルスプリング
14がロッド8を巻回するように配設されている。
A chamber 11 formed in the lower portion of the diaphragm 9 is connected to the outlet pipe 6 via a pressure equalizing pipe 13. A coil spring for pushing the diaphragm 9 upward is provided in the chamber 11.
14 is arranged to wind the rod 8.

冷媒は白抜矢印で示すように入口15から流入して弁12と
弁座16との隙間を通ることにより絞られて断熱膨張し、
しかる後、出口17から流出する。
The refrigerant flows in through the inlet 15 as shown by the white arrow and passes through the gap between the valve 12 and the valve seat 16 to be throttled and adiabatically expanded,
Then, it flows out from the exit 17.

しかして、感温筒5内に封入されている冷媒の温度は蒸
発器4の出口における冷媒の温度とほぼ等しくなるの
で、その温度に対応する飽和圧力が導圧管7、室10を経
てダイヤフラム9の上面に作用する。一方、ダイヤフラ
ム9の下面には蒸発器4内の冷媒の蒸発圧力が作用す
る。そして、これら2つの圧力の圧力差とコイルスプリ
ング14による押推力とが釣り合って弁12と弁座16との隙
間、即ち、温度式膨張弁3の開度が定まる。従って、こ
の温度式膨張弁3は上記圧力差の変化に応じて蒸発器4
に流入する冷媒の流量を変化させて蒸発器4の出口にお
ける冷媒の過熱度を一定に制御している。
Since the temperature of the refrigerant sealed in the temperature sensitive cylinder 5 becomes substantially equal to the temperature of the refrigerant at the outlet of the evaporator 4, the saturation pressure corresponding to that temperature passes through the pressure guiding tube 7 and the chamber 10 and the diaphragm 9 Acts on the upper surface of. On the other hand, the evaporation pressure of the refrigerant in the evaporator 4 acts on the lower surface of the diaphragm 9. Then, the pressure difference between these two pressures and the pushing force by the coil spring 14 balance each other to determine the gap between the valve 12 and the valve seat 16, that is, the opening degree of the thermal expansion valve 3. Therefore, the temperature type expansion valve 3 is provided in the evaporator 4 according to the change in the pressure difference.
The superheat degree of the refrigerant at the outlet of the evaporator 4 is controlled to be constant by changing the flow rate of the refrigerant flowing into the.

(考案が解決しようとする課題) 上記従来の温度式膨張弁3においては、ダイヤフラム9
の上面に作用する圧力は蒸発器4の出口の冷媒温度の変
化に対して遅れを持って応答するのに対し、ダイヤフラ
ム9の下面に作用する圧力は蒸発器4内の蒸発圧力の変
化に遅れることなく瞬時に応答する。
(Problems to be Solved by the Invention) In the conventional thermal expansion valve 3 described above, the diaphragm 9 is used.
The pressure acting on the upper surface of the diaphragm 4 responds to the change in the refrigerant temperature at the outlet of the evaporator 4 with a delay, whereas the pressure acting on the lower surface of the diaphragm 9 delays the change in the evaporation pressure in the evaporator 4. Respond instantly without.

この二つの応答の速さの差異により、温度式膨張弁3を
通る冷媒の流量は圧縮機1を流れる冷媒の流量より過渡
的に多くなったり、少なくなったりする。このため、蒸
発器4に流入する冷媒流量と流出する冷媒流量との間に
差が生じ、この結果、蒸発器4の出口の冷媒の過熱度が
過大となったり、圧縮機1に冷媒が液状のまま戻る所謂
液バック現象が発生するという不具合があった。
Due to the difference in the two response speeds, the flow rate of the refrigerant passing through the thermal expansion valve 3 may transiently increase or decrease compared to the flow rate of the refrigerant flowing through the compressor 1. For this reason, a difference occurs between the flow rate of the refrigerant flowing into the evaporator 4 and the flow rate of the refrigerant flowing out, and as a result, the superheat degree of the refrigerant at the outlet of the evaporator 4 becomes excessive, or the refrigerant is liquefied in the compressor 1. There was a problem that a so-called liquid back phenomenon occurred that returned as it was.

(課題を解決するための手段) 本考案は上記課題を解決するために提案されたものであ
って、その要旨とすることろは、圧縮機、凝縮器、電子
式膨張弁及び蒸発器をこの順に冷媒が循環するヒートポ
ンプにおいて、 冷媒蒸発温度と圧縮機入口の冷媒温度と冷媒凝縮温度と
電子式膨張弁入口の冷媒温度に基づいて冷媒蒸発圧力、
圧縮機入口の冷媒密度、冷媒凝縮圧力及び電子式膨張弁
入口の冷媒密度を演算する手段と、 冷媒蒸発圧力と圧縮機入口の冷媒密度と冷媒凝縮圧力と
圧縮機の回転数に基づいて上記圧縮機を流過する冷媒の
流量を算出する圧縮機冷媒流量算出手段と、この算出手
段で算出された圧縮機冷媒流量及び後記膨張弁冷媒流量
算出手段からフィードバックされた膨張弁冷媒流量に基
づいて上記電子式膨張弁の開度を算出する弁開度算出手
段と、この算出手段で算出された弁開度と冷媒蒸発圧力
と冷媒凝縮圧力と電子式膨張弁入口の冷媒密度に基づい
て上記電子式膨張弁を流過する冷媒の流量を算出する膨
張弁冷媒流量算出手段を具備する制御手段と、この制御
手段からの指令を受けて上記電子式膨張弁を駆動するこ
とによりその開度を上記膨張弁冷媒流量算出手段で算出
された膨張弁冷媒流量を流過させる開度とする駆動手段
を設けたことを特徴とするヒートポンプにある。
(Means for Solving the Problems) The present invention has been proposed to solve the above problems, and its gist is to provide a compressor, a condenser, an electronic expansion valve, and an evaporator. In a heat pump in which the refrigerant circulates in order, the refrigerant evaporating pressure based on the refrigerant evaporating temperature, the refrigerant temperature at the compressor inlet, the refrigerant condensing temperature, and the refrigerant temperature at the electronic expansion valve inlet,
A means for calculating the refrigerant density at the compressor inlet, the refrigerant condensing pressure, and the refrigerant density at the electronic expansion valve inlet, and the above compression based on the refrigerant evaporating pressure, the refrigerant density at the compressor inlet, the refrigerant condensing pressure, and the rotation speed of the compressor. Compressor refrigerant flow rate calculation means for calculating the flow rate of the refrigerant flowing through the machine, the compressor refrigerant flow rate calculated by this calculation means and the expansion valve refrigerant flow rate fed back from the expansion valve refrigerant flow rate calculation means described later based on the above A valve opening calculation means for calculating the opening of the electronic expansion valve, and the electronic expression based on the valve opening, the refrigerant evaporation pressure, the refrigerant condensation pressure, and the refrigerant density at the electronic expansion valve inlet calculated by the calculation means. A control unit having an expansion valve refrigerant flow rate calculation unit for calculating the flow rate of the refrigerant flowing through the expansion valve, and the electronic expansion valve being driven in response to a command from the control unit to expand the opening degree thereof. Valve refrigerant flow A heat pump is characterized in that a drive means is provided for setting an opening for allowing the expansion valve refrigerant flow rate calculated by the amount calculation means to flow through.

(作用) 本考案においては、冷媒蒸発圧力と圧縮機入口の冷媒密
度と冷媒凝縮圧力と圧縮機の回転数に基づいて圧縮機を
流過する冷媒の流量を算出する。算出された圧縮機冷媒
流量及びフィードバックされた膨張弁冷媒流量に基づい
て電子式膨張弁の開度を算出する。
(Operation) In the present invention, the flow rate of the refrigerant flowing through the compressor is calculated based on the refrigerant evaporation pressure, the refrigerant density at the compressor inlet, the refrigerant condensing pressure, and the rotation speed of the compressor. The opening degree of the electronic expansion valve is calculated based on the calculated compressor refrigerant flow rate and the fed-back expansion valve refrigerant flow rate.

そして、算出された電子式膨張弁の開度と冷媒蒸発圧力
と冷媒凝縮圧力と電子式膨張弁入口の冷媒密度に基づい
て電子式膨張弁を流過する冷媒の流量を算出し、電子式
膨張弁の開度を算出された膨張弁冷媒流量を流過させる
ことができる開度とする。
Then, the flow rate of the refrigerant flowing through the electronic expansion valve is calculated based on the calculated opening of the electronic expansion valve, the refrigerant evaporation pressure, the refrigerant condensation pressure, and the refrigerant density at the electronic expansion valve inlet, and the electronic expansion The opening of the valve is set so that the calculated refrigerant flow rate of the expansion valve can flow through.

(実施例) 本考案の1実施例が第1図及び第2図に示されている。(Embodiment) One embodiment of the present invention is shown in FIGS. 1 and 2.

第1図において、21は圧縮機、22は凝縮器、23は電子式
膨張弁、24は蒸発器、25はコンピュータを内蔵する制御
手段、26は蒸発器24の中央の管壁温度T1を検知するサー
ミスタ、27は蒸発器24の出口配管30の管壁温度T2を検知
するサーミスタ、28は凝縮器22の中央の管壁温度T3を検
知するサーミスタ、29は凝縮器22の出口配管31の管壁温
度T4を検知するサーミスタ、32は電子式膨張弁23を駆動
してその弁開度を変更するパルスモータである。
In FIG. 1, 21 is a compressor, 22 is a condenser, 23 is an electronic expansion valve, 24 is an evaporator, 25 is a control means having a built-in computer, and 26 is the temperature T 1 of the central wall of the evaporator 24. The thermistor for detecting 27, the thermistor for detecting the tube wall temperature T 2 of the outlet pipe 30 of the evaporator 24, 28 the thermistor for detecting the tube wall temperature T 3 at the center of the condenser 22, and 29 the outlet pipe of the condenser 22 Reference numeral 31 is a thermistor that detects the tube wall temperature T 4, and reference numeral 32 is a pulse motor that drives the electronic expansion valve 23 to change the valve opening thereof.

圧縮機21から吐出された冷媒は矢印で示すように凝縮器
22で冷却されることにより凝縮液化し、電子式膨張弁23
で絞られることにより断熱膨張し、蒸発器24で放熱する
ことにより蒸発気化した後圧縮機21に戻る。
The refrigerant discharged from the compressor 21 is a condenser as shown by the arrow.
It is condensed and liquefied by being cooled by 22, and the electronic expansion valve 23
It is adiabatically expanded by being squeezed by and is vaporized by being radiated by the evaporator 24 and then returned to the compressor 21.

サーミスタ26、27、28、29で検出された温度T1、T2、T3、T
4は制御手段25に入力され、制御手段25からの指令によ
りパルスモータ32が駆動され、このパルスモータ32によ
り電子式膨張弁23の弁開度が変更される。
Temperatures detected by thermistors 26, 27, 28, 29 T 1 , T 2 , T 3 , T
4 is input to the control means 25, the pulse motor 32 is driven by a command from the control means 25, and the valve opening degree of the electronic expansion valve 23 is changed by the pulse motor 32.

第2図には制御ブロック図が示されている。A control block diagram is shown in FIG.

サーミスタ26、27、28、29で検出された温度T1、T2、T3、T
4は制御手段25の冷媒物性値演算手段33に入力され、こ
こで冷媒蒸発圧力Pe、冷媒凝縮圧力Pc、圧縮機21の入口
における冷媒密度ρc、電子式膨張弁23の入口における
冷媒密度ρvが算出される。そして、これら算出値Pe
Pc、ρc及び圧縮機21の回転数nが圧縮機冷媒流量算出
手段34に入力され、これら入力信号により圧縮機21を流
れる冷媒流量Gcが算出される。この冷媒流量Gcは比較手
段36を経てPID機能等を有する補償手段37に入力され
て、ここで応答性が改善される。補償手段37の出力は出
力手段38に入力されて、ここで電子式膨張弁23の弁開度
xが算出される。この弁開度xは膨張弁冷媒流量算出手
段35に入力され、ここで弁開度xと冷媒物性値演算手段
33から入力される算出値Pe、Pc、ρvにより電子式膨張弁
23を流れる冷媒流量Gvが算出される。そして、この冷媒
流量Gvは比較手段36にフィードバックされる。
Temperatures detected by thermistors 26, 27, 28, 29 T 1 , T 2 , T 3 , T
4 is input to the refrigerant property value calculation means 33 of the control means 25, where the refrigerant evaporation pressure P e , the refrigerant condensing pressure P c , the refrigerant density ρ c at the inlet of the compressor 21, the refrigerant at the inlet of the electronic expansion valve 23. The density ρ v is calculated. Then, these calculated values P e ,
P c , ρ c and the rotation speed n of the compressor 21 are input to the compressor refrigerant flow rate calculation means 34, and the refrigerant flow rate G c flowing through the compressor 21 is calculated by these input signals. This refrigerant flow rate G c is inputted to the compensating means 37 having a PID function or the like via the comparing means 36, and the responsiveness is improved here. The output of the compensating means 37 is input to the output means 38, where the valve opening x of the electronic expansion valve 23 is calculated. This valve opening x is input to the expansion valve refrigerant flow rate calculation means 35, where the valve opening x and the refrigerant physical value calculation means are provided.
Based on the calculated values P e , P c and ρ v input from 33, the electronic expansion valve
The refrigerant flow rate G v flowing through 23 is calculated. Then, the refrigerant flow rate G v is fed back to the comparison means 36.

しかして、圧縮機を流れる冷媒流量Gc等は次の式
(1)、(2)、(3)で表せる。
Therefore, the flow rate G c of the refrigerant flowing through the compressor can be expressed by the following equations (1), (2) and (3).

Gc=Vp・ηs・ρc ……(1) Vp=V・n ……(2) ηs=102+0.192×(n−60)−4(Pc/Pe)……(3) 但し、Vp ;圧縮機の押し除け容積(m3/sec) ηs ;圧縮機の体積効率 V ;圧縮機の1回転当りの押し除け容積(m3/r
ev) n ;圧縮機の回転数(rev/sec) 上記(1)、(2)、(3)式より、圧縮機を流れる冷
媒流量Gcは圧縮機の回転数n、冷媒蒸発圧力Pe、冷媒凝
縮圧力Pc、圧縮機の入口における冷媒密度ρcの関数と
して式(4)に示すように表される。
G c = V p · η s · ρ c …… (1) Vp = V ・ n …… (2) η s = 102 + 0.192 × (n−60) −4 (Pc / Pe) …… (3) Where V p is the displacement volume of the compressor (m 3 / sec) η s is the volumetric efficiency of the compressor V is the displacement volume per revolution of the compressor (m 3 / r
ev) n; rotation speed of the compressor (rev / sec) From the above formulas (1), (2) and (3), the flow rate G c of the refrigerant flowing through the compressor is the rotation speed n of the compressor and the refrigerant evaporation pressure P e. , The refrigerant condensing pressure P c , and the refrigerant density ρ c at the inlet of the compressor as a function of equation (4).

Gc=f(n、Pe、Pc、ρc) ……(4) この計算式(4)を圧縮機冷媒流量算出手段34内のROM
に記憶させておけば、これに入力される冷媒蒸発圧力
Pe、冷媒凝縮圧力Pc、圧縮機の入口における冷媒密度ρ
c並びに圧縮機の回転数nを(4)式に代入することに
より圧縮機を流れる冷媒流量Gcを求めることができる。
G c = f (n, Pe , P c , ρ c ) (4) This calculation formula (4) is stored in the ROM in the compressor refrigerant flow rate calculating means 34.
If it is stored in the
P e , refrigerant condensing pressure P c , refrigerant density ρ at the compressor inlet
The rotational speed n of the c and the compressor (4) by substituting the expression can be determined refrigerant flow rate G c through the compressor.

次に、電子式膨張弁23を流れる冷媒流量Gvは次式(5)
で表せる。
Next, the refrigerant flow rate G v flowing through the electronic expansion valve 23 is calculated by the following equation (5).
Can be expressed as

但し、CR;弁の流量係数 AR;弁の冷媒通路面積 g ;重力の加速度 そして、CR及びARはいずれも弁開度xの関数として表す
ことができ、gは一定であるので、電子式膨張弁を流れ
る冷媒流量Gvは膨張弁開度x、冷媒蒸発圧力Pe、冷媒凝
縮圧力Pc、電子式膨張弁の入口における冷媒密度ρv
関数として式(8)に示すように表される。
Where C R is the flow rate coefficient of the valve A R is the area of the refrigerant passage of the valve g is the acceleration of gravity, and C R and A R can both be expressed as a function of the valve opening x, and g is constant. , The refrigerant flow rate G v flowing through the electronic expansion valve is shown in equation (8) as a function of the expansion valve opening x, the refrigerant evaporation pressure P e , the refrigerant condensing pressure P c , and the refrigerant density ρ v at the inlet of the electronic expansion valve. Is represented as

Gv=f(x、Pe、Pc、ρv) ……(6) この計算式(6)を膨張弁冷媒流量算出手段35のROMに
記憶させておけば、冷媒蒸発圧力Pe、冷媒凝縮圧力Pc
電子式膨張弁の入口における冷媒密度ρvと弁開度xを
式(6)に代入することにより、電子式膨張弁を流れる
冷媒流量Gvを求めることができる。
G v = f (x, P e , P c , ρ v ) (6) If this calculation formula (6) is stored in the ROM of the expansion valve refrigerant flow rate calculating means 35, the refrigerant evaporating pressure P e , Refrigerant condensing pressure P c ,
The refrigerant flow rate G v flowing through the electronic expansion valve can be obtained by substituting the refrigerant density ρ v and the valve opening x at the inlet of the electronic expansion valve into the equation (6).

なお、上記実施例においては、圧縮機を流れる冷媒流量
Gc及び電子式膨張弁23を流れる冷媒流量GvはROMに記憶
された式(4)、(6)により計算して求めているが、
テーブルから求めることもできる。
In the above embodiment, the flow rate of the refrigerant flowing through the compressor
G c and the flow rate G v of the refrigerant flowing through the electronic expansion valve 23 are calculated by the equations (4) and (6) stored in the ROM.
You can also ask from the table.

(考案の効果) 本考案においては、冷媒蒸発圧力と圧縮機入口の冷媒密
度と冷媒凝縮圧力と圧縮機の回転数に基づいて算出され
た圧縮機冷媒流量及びフィードバックされた膨張弁冷媒
流量に基づいて電子式膨張弁の開度を算出し、算出され
た電子式膨張弁開度と冷媒蒸発圧力と冷媒凝縮圧力と電
子式膨張弁入口の冷媒密度に基づいて電子式膨張弁を流
過する冷媒の流量を算出しているため、電子式膨張弁の
応答特性を向上させることができるとともに電子式膨張
弁を流れる冷媒流量と圧縮機を流れる冷媒流量との間の
過度的なアンバランスを防止できる。
(Effect of the Invention) In the present invention, based on the refrigerant evaporating pressure, the refrigerant density at the compressor inlet, the refrigerant condensing pressure, and the rotation speed of the compressor, the compressor refrigerant flow rate and the fed-back expansion valve refrigerant flow rate are used. The opening degree of the electronic expansion valve is calculated according to the calculated electronic expansion valve opening degree, the refrigerant evaporation pressure, the refrigerant condensation pressure, and the refrigerant density at the electronic expansion valve inlet based on the calculated refrigerant density. Since the flow rate is calculated, it is possible to improve the response characteristics of the electronic expansion valve and prevent an excessive imbalance between the refrigerant flow rate flowing through the electronic expansion valve and the refrigerant flow rate flowing through the compressor. .

従って、蒸発器出口における冷媒過熱度が過大となった
り、液バック現象が発生するのを防止できるとともにヒ
ートポンプの能力を十分に発揮することが可能となる。
Therefore, it is possible to prevent the refrigerant superheat degree at the outlet of the evaporator from becoming excessive and prevent the liquid back phenomenon from occurring, and it is possible to fully exhibit the capability of the heat pump.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本考案の1実施例を示し、第1図は
ヒートポンプの系統図、第2図は制御ブロック図であ
る。第3図及び第4図は従来のヒートポンプの1例を示
し、第3図はヒートポンプの系統図、第4図は温度式膨
張弁の略示的断面図である。 圧縮機……21、凝縮器……22、電子式膨張弁……23、蒸
発器……24、圧縮機流量検出手段……34、膨張弁流量検
出手段……35、制御手段……25
1 and 2 show one embodiment of the present invention, FIG. 1 is a system diagram of a heat pump, and FIG. 2 is a control block diagram. 3 and 4 show an example of a conventional heat pump, FIG. 3 is a system diagram of the heat pump, and FIG. 4 is a schematic sectional view of a thermal expansion valve. Compressor ... 21, condenser ... 22, electronic expansion valve ... 23, evaporator ... 24, compressor flow rate detection means ... 34, expansion valve flow rate detection means ... 35, control means ... 25

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】圧縮機、凝縮器、電子式膨張弁及び蒸発器
をこの順に冷媒が循環するヒートポンプにおいて、 冷媒蒸発温度と圧縮機入口の冷媒温度と冷媒凝縮温度と
電子式膨張弁入口の冷媒温度に基づいて冷媒蒸発圧力、
圧縮機入口の冷媒密度、冷媒凝縮圧力及び電子式膨張弁
入口の冷媒密度を演算する手段と、 冷媒蒸発圧力と圧縮機入口の冷媒密度と冷媒凝縮圧力と
圧縮機の回転数に基づいて上記圧縮機を流過する冷媒の
流量を算出する圧縮機冷媒流量算出手段と、この算出手
段で算出された圧縮機冷媒流量及び後記膨張弁冷媒流量
算出手段からフィードバックされた膨張弁冷媒流量に基
づいて上記電子式膨張弁の開度を算出する弁開度算出手
段と、この算出手段で算出された弁開度と冷媒蒸発圧力
と冷媒凝縮圧力と電子式膨張弁入口の冷媒密度に基づい
て上記電子式膨張弁を流過する冷媒の流量を算出する膨
張弁冷媒流量算出手段を具備する制御手段と、この制御
手段からの指令を受けて上記電子式膨張弁を駆動するこ
とによりその開度を上記膨張弁冷媒流量算出手段で算出
された膨張弁冷媒流量を流過させる開度とする駆動手段
を設けたことを特徴とするヒートポンプ。
1. A heat pump in which a refrigerant circulates through a compressor, a condenser, an electronic expansion valve, and an evaporator in this order, a refrigerant evaporation temperature, a refrigerant temperature at a compressor inlet, a refrigerant condensation temperature, and a refrigerant at an electronic expansion valve inlet. Refrigerant evaporation pressure based on temperature,
A means for calculating the refrigerant density at the compressor inlet, the refrigerant condensing pressure, and the refrigerant density at the electronic expansion valve inlet, and the above compression based on the refrigerant evaporating pressure, the refrigerant density at the compressor inlet, the refrigerant condensing pressure, and the rotation speed of the compressor. Compressor refrigerant flow rate calculation means for calculating the flow rate of the refrigerant flowing through the machine, the compressor refrigerant flow rate calculated by this calculation means and the expansion valve refrigerant flow rate fed back from the expansion valve refrigerant flow rate calculation means described later based on the above A valve opening calculation means for calculating the opening of the electronic expansion valve, and the electronic expression based on the valve opening, the refrigerant evaporation pressure, the refrigerant condensation pressure, and the refrigerant density at the electronic expansion valve inlet calculated by the calculation means. A control unit having an expansion valve refrigerant flow rate calculation unit for calculating the flow rate of the refrigerant flowing through the expansion valve, and the electronic expansion valve being driven in response to a command from the control unit to expand the opening degree thereof. Valve refrigerant flow A heat pump, comprising: a drive unit having an opening degree that allows the flow rate of the expansion valve refrigerant calculated by the amount calculation unit to flow through.
JP1988078143U 1988-06-13 1988-06-13 heat pump Expired - Lifetime JPH0648275Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988078143U JPH0648275Y2 (en) 1988-06-13 1988-06-13 heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988078143U JPH0648275Y2 (en) 1988-06-13 1988-06-13 heat pump

Publications (2)

Publication Number Publication Date
JPH02561U JPH02561U (en) 1990-01-05
JPH0648275Y2 true JPH0648275Y2 (en) 1994-12-12

Family

ID=31303092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988078143U Expired - Lifetime JPH0648275Y2 (en) 1988-06-13 1988-06-13 heat pump

Country Status (1)

Country Link
JP (1) JPH0648275Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078371A1 (en) * 2006-12-25 2008-07-03 Orion Machinery Company Limited Refrigerant flow rate detector for refrigeration cycle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797344B2 (en) * 2004-03-31 2011-10-19 株式会社富士通ゼネラル Refrigerant thermophysical value calculation method, thermophysical property value calculation program, computer-readable recording medium storing the calculation program, and refrigerant thermophysical property value calculation apparatus
JP2010121831A (en) * 2008-11-18 2010-06-03 Fuji Koki Corp Refrigerating cycle
JP5183618B2 (en) * 2009-12-18 2013-04-17 三菱電機株式会社 Heat pump equipment
JP5625610B2 (en) * 2010-08-18 2014-11-19 株式会社デンソー TECHNICAL FIELD The present invention relates to an ejector refrigeration cycle including an ejector.
JP5674490B2 (en) * 2011-01-24 2015-02-25 三菱電機株式会社 Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115057A (en) * 1984-07-02 1986-01-23 株式会社日立製作所 Measuring device for flow rate of refrigerant of refrigeration cycle
JPS6373059A (en) * 1986-09-13 1988-04-02 ダイキン工業株式会社 Refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078371A1 (en) * 2006-12-25 2008-07-03 Orion Machinery Company Limited Refrigerant flow rate detector for refrigeration cycle
JPWO2008078371A1 (en) * 2006-12-25 2010-04-15 オリオン機械株式会社 Refrigerant flow detection device for refrigeration cycle
JP5119419B2 (en) * 2006-12-25 2013-01-16 オリオン機械株式会社 Refrigerant flow detection device for refrigeration cycle

Also Published As

Publication number Publication date
JPH02561U (en) 1990-01-05

Similar Documents

Publication Publication Date Title
US5214918A (en) Refrigerator and method for indicating refrigerant amount
US4596122A (en) Sorption heat pump
JPH08510048A (en) Refrigerant flow control based on evaporator dryness
US20100121495A1 (en) Variable evaporator water flow compensation for leaving water temperature control
US4471622A (en) Rankine cycle apparatus
EP1075631A1 (en) Electronic controlled expansion valve
JP2004218879A (en) Air conditioner and its control method
JPH0648275Y2 (en) heat pump
JP3955361B2 (en) Air conditioner
JP2002081769A (en) Air conditioner
CN206398850U (en) Determine frequency machine regulating system and fixed frequency air conditioner machine
JP2660485B2 (en) Heat pump type crystal product manufacturing method and apparatus
JP2506377B2 (en) Air conditioner and its control method
JPH03221760A (en) Refrigerant flow rate control method in heat pump air conditioner and heat pump air conditioner
JP2504997Y2 (en) Air conditioner
JPH0828975A (en) Turbo refrigerator
JPH06241592A (en) Multi-room air conditioning type heat pump system and receiver for the same system
JPH0252955A (en) Cooling device and control method thereof
CN219199544U (en) Heat pump system
JPH0665940B2 (en) Refrigerant control method for heat pump type air conditioner
JPH05322323A (en) Freezer device
JP2600713B2 (en) Expansion valve control device for air conditioner
KR950033308A (en) Refrigerant Heating Air Conditioning Unit
JP2867792B2 (en) Heating and cooling machine
CN119268096A (en) Air conditioning system and pressure detection method, device and storage medium thereof