JPH0645948A - Orthogonal converter and reverse orthogonal converter - Google Patents
Orthogonal converter and reverse orthogonal converterInfo
- Publication number
- JPH0645948A JPH0645948A JP4219705A JP21970592A JPH0645948A JP H0645948 A JPH0645948 A JP H0645948A JP 4219705 A JP4219705 A JP 4219705A JP 21970592 A JP21970592 A JP 21970592A JP H0645948 A JPH0645948 A JP H0645948A
- Authority
- JP
- Japan
- Prior art keywords
- data
- multiplication
- orthogonal transform
- orthogonal
- dct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Complex Calculations (AREA)
- Image Processing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は画像や音声の高能率符号
化に用いる直交変換装置及び逆直交変換装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an orthogonal transform device and an inverse orthogonal transform device used for high-efficiency coding of images and sounds.
【0002】[0002]
【従来の技術】画像や音声のデジタル化に伴って、高能
率符号化技術が重要になってきている。高能率符号化の
有効な手段として、直交変換符号化がある。よく用いら
れる直交変換としてアダマール変換、DCT(ディスク
リート・コサイン・トランスフォーメーション)等があ
る。2. Description of the Related Art With the digitization of images and sounds, high efficiency coding techniques have become important. Orthogonal transform coding is an effective means of high efficiency coding. Commonly used orthogonal transforms include Hadamard transform, DCT (discrete cosine transformation) and the like.
【0003】次式は4次のDCTに用いる変換行列[d
ij](i、j=1、2、3、4)である。The following equation is the transformation matrix [d
ij] (i, j = 1, 2, 3, 4).
【0004】[0004]
【数1】 [Equation 1]
【0005】ここで、Cp(p=1、2、3)はHere, Cp (p = 1, 2, 3) is
【数2】 を表している。[Equation 2] Is represented.
【0006】また、逆変換行列[vij]はThe inverse transformation matrix [vij] is
【0007】[0007]
【数3】 ここでTは転置行列であることを示す。[Equation 3] Here, T indicates that it is a transposed matrix.
【0008】4次のDCTは4の入力データからなる列
ベクトル[xj ]に対して4ケの出力データからなる列
ベクトル[yi ]を次式によって求めるものである
(i、j=1、2、3、4)。 [yi ]=[dij]・[xj ] −−−(1) ところが、(1)式の演算では4ケの出力データを求め
るために16個の多数の乗算が必要となる。このため乗
算回数を減少させる高速アルゴリズムが発表されてい
る。The fourth-order DCT is to obtain a column vector [yi] consisting of four output data from a column vector [xj] consisting of four input data by the following equation (i, j = 1, 2). 3, 4). [Yi] = [dij] [xj] --- (1) However, in the calculation of the expression (1), a large number of 16 multiplications are required to obtain four output data. For this reason, high-speed algorithms have been published that reduce the number of multiplications.
【0009】図3は4次の高速DCT変換装置の構成図
であり、上記した(1)式の演算を具現化したものであ
る。FIG. 3 is a block diagram of a fourth-order high-speed DCT converter, which embodies the operation of the equation (1).
【0010】同図中に示す破線は正負の反転を示してお
り、Ci、The broken line in the figure indicates positive and negative inversion, and Ci,
【数4】 、1/2はCi倍[Equation 4] , 1/2 is Ci times
【0011】、[0011]
【数4】倍、1/2倍する乗算を示しており、矢印の交
点は加算を示している。1/2倍については右方向への
1ビット・シフトで結果が得られるため除いて考える
と、この場合3回の乗算が必要である。[Mathematical formula-see original document] This shows multiplication by multiplying by 1/2, and the intersection of the arrows indicates addition. With respect to ½ times, a result can be obtained by a 1-bit shift to the right, and therefore, excepting this, three multiplications are required in this case.
【0012】一方、アダマール変換は入力データの加算
と減算のみで変換を行うことができるためにDCTに比
べて変換装置に必要となるハード・ウエアの量が小さく
てすむが、高能率符号化に利用する場合、入力データの
持つ情報を特定の出力データに集中させる効率がDCT
に比べて劣ることが知られている。On the other hand, the Hadamard transform requires only a small amount of hardware required for the conversion device as compared with the DCT because the conversion can be performed only by adding and subtracting the input data, but for high efficiency encoding. When using it, the efficiency of concentrating the information of input data on specific output data is DCT.
It is known to be inferior to.
【0013】[0013]
【発明が解決しようとする課題】以上のように、DCT
では変換装置のハード・ウエア量が大きくなり、また、
アダマール変換では符号化効率が劣るという問題があっ
た。本発明はこのような従来技術の問題点を解決するこ
とを目的とする。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Then, the amount of hardware of the conversion device becomes large, and
The Hadamard transform has a problem of poor coding efficiency. The present invention aims to solve the above-mentioned problems of the prior art.
【0014】[0014]
【課題を解決するための手段】上述した課題を解決する
ために、本発明は下記の構成になる直交変換装置及び逆
直交変換装置を提供する。In order to solve the above problems, the present invention provides an orthogonal transform device and an inverse orthogonal transform device having the following configurations.
【0015】4次の直交変換を、[yi ]=[tij]・
[xj ] 但し、[yi ]:4出力データからなる列ベクトル [tij]:4行4列の変換行列 [xj ]:4入力データからなる列ベクトル i,j:1、2、3、4 の演算により行う直交変換装置であって、前記変換行列
[tij]を構成する4行の内、2行分の各行の要素をa
1 ,a2(実数)によって、 a1 ,a2 ,−a2 ,−a1 、 a2 ,−a1 ,a1 ,−a2 、 と配列し、かつ、前記a1 :a2 を、m:1またはm:
2(mは自然数)に設定したことを特徴とする直交変換
装置。The fourth-order orthogonal transformation is [yi] = [tij] .multidot.
[Xj] where [yi]: a column vector consisting of 4 output data [tij]: a transformation matrix of 4 rows and 4 columns [xj]: a column vector consisting of 4 input data i, j: 1, 2, 3, 4 It is an orthogonal transformation device that performs calculation, and among the four rows forming the transformation matrix [tij], the element of each row for two rows is a
1, a2 (real numbers) are arranged as a1, a2, -a2, -a1, a2, -a1, a1, -a2, and said a1: a2 is m: 1 or m:
An orthogonal transform device characterized by being set to 2 (m is a natural number).
【0016】上記した直交変換装置に対する逆直交変換
装置であって、4次の逆直交変換を、[yi ]=z・
[uij]・[xj ] 但し、[yi ]:4出力データからなる列ベクトル z:実数値 [uij]:4行4列の変換行列[tij]の転置行列 [xj ]:4入力データからなる列ベクトル i,j:1、2、3、4 の演算により行うことを特徴とする逆直交変換装置。An inverse orthogonal transform device for the above-mentioned orthogonal transform device, wherein a fourth-order inverse orthogonal transform is [yi] = z.
[Uij] · [xj] where [yi]: column vector consisting of 4 output data z: real value [uij]: transposed matrix [xj] of 4 × 4 conversion matrix [tij]: consisting of 4 input data An inverse orthogonal transform device characterized by performing calculation of column vectors i, j: 1, 2, 3, 4.
【0017】[0017]
【実施例】本発明は前記した構成により比較的、所要ハ
ード・ウエア量が少なく、かつDCTの符号化効率に近
い効率の直交変換装置を可能にするものである。さらに
各直交成分に対する最後の乗算を除いた乗算の乗数とし
て、簡単な自然数を乗数とした乗算と加減算を行なう構
成とすることでさらにハード・ウエア量を小さくするこ
とができる。 [実施例 1]本発明の直交変換装置の一実施例になる
4次の直交変換の変換行列[tij]を次式に示す。BEST MODE FOR CARRYING OUT THE INVENTION The present invention enables an orthogonal transform apparatus having a relatively small amount of hardware and having an efficiency close to the coding efficiency of DCT by the above-mentioned configuration. Further, the hardware amount can be further reduced by adopting a configuration in which multiplication and addition / subtraction using a simple natural number as a multiplier are performed as multipliers of multiplications excluding the final multiplication for each orthogonal component. [Embodiment 1] A transformation matrix [tij] of a fourth-order orthogonal transformation which is an embodiment of the orthogonal transformation device of the present invention is shown in the following equation.
【0018】[0018]
【数5】 ここで、a1 :a2 =m:n として、m=2、n=1
である。[Equation 5] Here, if a1: a2 = m: n, then m = 2, n = 1
Is.
【0019】本実施例の直交変換は、4つの入力データ
x1 、x2 、x3 、x4 よりなる列ベクトル[xj ]The orthogonal transform of this embodiment uses a column vector [xj] consisting of four input data x1, x2, x3, x4.
【0020】[0020]
【数6】 と、4つの出力データy1 、y2 、y3 、y4 よりなる
列ベクトル[yi ][Equation 6] And a column vector [yi] consisting of four output data y1, y2, y3, y4
【0021】[0021]
【数7】 ただし、Tは転置を表わす。と変換行列[tij]によっ
て、 [yi ]=[tij]・[xj ] −−−(2) で表わされる。[Equation 7] However, T represents transposition. And the conversion matrix [tij], [yi] = [tij]. [Xj] --- (2).
【0022】また、逆変換を表わす行列[uij]をFurther, the matrix [uij] representing the inverse transformation is
【0023】[0023]
【数8】 とする。[Equation 8] And
【0024】図1は本発明の直交変換装置の一実施例構
成図であり、また、図3と同様の描き方であるので説明
は省く。FIG. 1 is a block diagram of an embodiment of the orthogonal transformation apparatus of the present invention, and the drawing is similar to that of FIG.
【0025】さて、入力データや出力データ、及び、演
算途中のデータ等をすべて2の補数Now, input data, output data, data in the middle of calculation, etc. are all two's complements.
【0026】表示の2進デジタル値で表わす場合を考え
る。この時、データに乗ずる乗数がConsider the case where the display is represented by a binary digital value. At this time, the multiplier to multiply the data
【数9】 であるときには、データの符号ビットを拡張しながらn
ビットだけ左(nが正の時)あるいは右(nが負の時)
方向にデータをシフトすれば良いことが知られている。[Equation 9] , The sign bit of the data is expanded to n
Bits left (when n is positive) or right (when n is negative)
It is known that the data may be shifted in the direction.
【0027】例として、乗数2とデータ5の乗算を考え
る。データ5を8ビットの2の補数表示の2進デジタル
値で表わすと、As an example, consider multiplication of multiplier 2 and data 5. When the data 5 is represented by an 8-bit binary digital value in 2's complement notation,
【0028】[0028]
【数10】 である。2×5は符号ビットを残して、他のビットを
1ビット左方向にシフトし、空いたビットに0を入れる
ことで得られる。すなわち[Equation 10] Is. 2 × 5 is obtained by leaving the sign bit, shifting the other bits left by 1 bit, and inserting 0s in the vacant bits. Ie
【0029】[0029]
【数11】 である。が空いたビットに入れた0である。[Equation 11] Is. Is 0 in the empty bit.
【0030】同様に、乗数Similarly, the multiplier
【数12】 とデータ(−5)の乗算は、データ(−5)が[Equation 12] And the data (-5) are multiplied, the data (-5) is
【0031】[0031]
【数13】 であり、4×(−5)は符号ビットを残して、他のビ
ットを2ビット左方向にシフトすることで得られる。す
なわち[Equation 13] 4 × (−5) is obtained by leaving the sign bit and shifting the other bits leftward by 2 bits. Ie
【0032】[0032]
【数14】 である。が空いたビットに入れた0である。[Equation 14] Is. Is 0 in the empty bit.
【0033】以上のことから、データに乗ずる乗数がFrom the above, the multiplier for multiplying the data is
【数9】であるときには、そうでない場合(特に乗数を
2進デジタル値で表した時に値が1のビットの数が多い
場合)に比べ、乗算のためのハード・ウエアが小さくな
るというのは自明である。図1の構成はこのことを利用
したものである。When ## EQU9 ## the hardware for multiplication is smaller than that otherwise (especially when the multiplier is represented by a binary digital value and the number of bits having a value of 1 is large). It is self-explanatory. The configuration of FIG. 1 utilizes this fact.
【0034】すなわち、直交成分y1 、y2 、y3 、y
4 を得るための最後の乗算を除けば、残りの乗算である
2倍は上記のビット・シフトで結果を得ることができ
る。また1/2倍については図3と同様に除いて考え
る。That is, the orthogonal components y1, y2, y3, y
With the exception of the last multiplication to get 4, the remaining multiplications, double, can be obtained with the above bit shifts. In addition, the case of ½ times is excluded as in the case of FIG.
【0035】従って、図1ではハード・ウエア規模の大
きい乗算器の数を2ケにすることができ、4次のDCT
に比べよりハード・ウエア量の小さい直交変換装置を提
供できる。さらに図1では直交成分y2 、y4 を得るた
めの最後の乗算の乗数としてTherefore, in FIG. 1, the number of multipliers having a large hardware scale can be two, and the fourth-order DCT can be used.
It is possible to provide an orthogonal transform device having a smaller amount of hardware than that of the above. Further, in FIG. 1, as the multiplier of the last multiplication to obtain the orthogonal components y2 and y4,
【0036】、,
【数15】 の無理数を示しているが、これを81/256等で近似
しても良い。 また入力データを画像データとして、垂
直4画素、水平4画素の入力データからなるブロック
[xij]に対して、本発明の変換を2次元に拡張して行
った結果を垂直4データ、水平4データからなるブロッ
ク[yij]とすると[Equation 15] However, this may be approximated by 81/256 or the like. Further, the result obtained by two-dimensionally extending the conversion of the present invention with respect to the block [xij] composed of input data of vertical 4 pixels and horizontal 4 pixels using the input data as image data is vertical 4 data, horizontal 4 data. If the block [yij] consists of
【0037】[0037]
【数16】 である。従って、図1の変換を2回行なえばよいが、そ
の場合、変換全体で2×4×2=16ケの乗算器が必要
となる。これに対して、図1の各出力yj に対する最後
の乗算を省いた演算に等価な変換の変換行列を[t’i
j]とすると[Equation 16] Is. Therefore, the conversion of FIG. 1 may be performed twice, but in that case, 2 × 4 × 2 = 16 multipliers are required for the entire conversion. On the other hand, the conversion matrix of the conversion equivalent to the operation excluding the final multiplication for each output yj in FIG. 1 is [t'i
j]
【0038】[0038]
【数17】 この[t’ij]によって[Equation 17] By this [t'ij]
【0039】[0039]
【数18】 を求め、その結果の垂直4データ、水平4データからな
るブロック[y’ij]に対して、各y’ij毎にy’ij=
yijにするための乗算を行なう構成にすることで、全体
の乗算器の数を12ケに減らすことができる。[Equation 18] For each block [y'ij] consisting of vertical 4 data and horizontal 4 data as a result, y'ij =
By adopting a configuration for performing multiplication for yij, it is possible to reduce the total number of multipliers to 12.
【0040】次に、前記逆変換行列[uij]を用いた逆
変換の場合は、上記の直交成分y1Next, in the case of the inverse transformation using the inverse transformation matrix [uij], the above orthogonal component y1
【0041】、y2 、y3 、y4 を得るために乗じた最
後の乗数, Y2, y3, y4 The last multiplier multiplied to obtain
【数15】、1/2をまず入力データに対して乗じ、そ
れらの乗算結果に対して前記[t’ij]の行列の転置行
列で表される演算を行なうことで、以上で述べた変換の
場合と同様に乗算器の数を減らすことができる。[Mathematical formula-see original document] By multiplying the input data by [1/2], 1/2 and performing the operation represented by the transposed matrix of the matrix of [t'ij] on the multiplication results, the conversion described above is performed. The number of multipliers can be reduced as in the case of.
【0042】図2は本発明の逆直交変換装置の一実施例
構成図である。FIG. 2 is a block diagram of an embodiment of the inverse orthogonal transform device of the present invention.
【0043】ところで、一般的に人間の視覚や聴覚は高
域の歪に対してより鈍感である。このため高能率符号化
では低域を表わす直交成分に対して大きな重みづけを行
い、高域を表わす直交成分については小さな重みづけを
することが多い。そのための重みづけの乗算を前記直交
変換の出力データに対して行なっても良いが、図1の直
交成分y1 、y2 、y3 、y4 を得るための最後の乗算
と共用することも可能である。By the way, human vision and hearing are generally less sensitive to high-frequency distortion. Therefore, in high-efficiency coding, a large weight is often given to the orthogonal component representing the low band, and a small weight is often given to the orthogonal component representing the high band. The weighting multiplication for that purpose may be performed on the output data of the orthogonal transformation, but it is also possible to use it as the final multiplication for obtaining the orthogonal components y1, y2, y3, y4 in FIG.
【0044】この時、図1のy1 、y2 、y3 、y4 を
得るための最後の乗算の乗数をAt this time, the multipliers of the last multiplication to obtain y1, y2, y3 and y4 in FIG.
【数15】、1/2と重みづけのための乗数を乗じた値
とすれば良い。このようにすることで、高能率符号化全
体の演算量をさらに少なくし、符号化装置のハード・ウ
エア量を減らすことが可能である。[Mathematical formula-see original document] A value obtained by multiplying 1/2 with a multiplier for weighting may be used. By doing so, it is possible to further reduce the calculation amount of the entire high-efficiency encoding and reduce the hardware amount of the encoding device.
【0045】また、本実施例の直交変換を2次元に拡張
し、画像の高能率符号化に適用したところ、その効率は
2次元の4次DCTに比べ若干劣るものの、2次元の4
次アダマール変換に比べると良い結果が得られた。 [実施例 2]本発明の第2の実施例の、4次の疑似直
交変換の変換行列[tij]を次式に示す。When the orthogonal transform of this embodiment is extended to two dimensions and applied to high-efficiency image coding, its efficiency is slightly inferior to that of the two-dimensional fourth-order DCT, but two-dimensional four-dimensional DCT is used.
Good results were obtained compared to the Hadamard transform. [Embodiment 2] The transformation matrix [tij] of the fourth-order pseudo-orthogonal transformation of the second embodiment of the present invention is shown in the following equation.
【0046】[0046]
【数19】 ここで、a1 :a2 =m:nとして、m=5、n=2で
ある。本実施例の場合も、図1と同様に変換装置の構成
を直交成分y1 、y2 、y3 、y4 を得るための最後の
乗算を除いて、他の乗算を5倍と2倍にする。5倍=4
倍+1倍であるから、前記のビット・シフトと1回の加
算で乗算結果を得ることができる。従って、実施例1と
同様にハード・ウエア規模の大きい乗算器の数を2ケに
することができ、4次のDCTに比べ、よりハード・ウ
エア量の小さい直交変換装置を提供できる。[Formula 19] Here, assuming that a1: a2 = m: n, m = 5 and n = 2. Also in the case of the present embodiment, as in the case of FIG. 1, the configuration of the conversion device is made 5 times and 2 times other multiplications except for the last multiplication for obtaining the orthogonal components y1, y2, y3, y4. 5 times = 4
Since the multiplication is +1, the multiplication result can be obtained by the above bit shift and one addition. Therefore, as in the first embodiment, the number of multipliers having a large hardware scale can be two, and an orthogonal transform device having a smaller amount of hardware can be provided as compared with the fourth-order DCT.
【0047】上述したように、本発明は、特に、次の
(1) 〜(3) に特徴がある。 (1) 上記した変換行列[tij]の各行各列における要素
比a1 :a2 が簡単な自然数比m:nにおけるnが1ま
たは2であること (2) [yi ]=[tij]・[xj ]による直交変換にお
ける変換行列[tij]の第2,4行と列ベクトル[xj
]との演算の最後の乗算を除いた演算が、 m・(x1 −x4 )+n・(x2 −x3 ) n・(x1 −x4 )+m・(x2 −x3 ) を求めるための演算であることAs mentioned above, the present invention particularly provides the following:
It is characterized by (1) to (3). (1) The element ratio a1: a2 in each row and each column of the transformation matrix [tij] is n or 1 in a simple natural number ratio m: n (2) [yi] = [tij] · [xj ], The second and fourth rows of the transformation matrix [tij] and the column vector [xj
] The operation excluding the final multiplication of the operation with] is an operation for obtaining m · (x1−x4) + n · (x2−x3) n · (x1−x4) + m · (x2−x3)
【0048】[0048]
【発明の効果】本発明の直交変換装置は、上記したよう
に、4次の直交変換に係わる4行4列の変換行列[ti
j]のa1 ,a2 の値を4次のDCTにおける変換行列
[dij]の各要素の値と異ならしめたから、4次の直交
変換における高能率符号化に利用した時の効率が4次の
DCTとほぼ同程度で得られ、また、直交変換装置のハ
ードウェア量をDCTのそれに比べて小さくすることが
できる効果がある。As described above, the orthogonal transform device of the present invention has a 4 × 4 transformation matrix [ti] relating to the fourth-order orthogonal transformation.
Since the values of a1 and a2 of j] are made different from the values of the elements of the transformation matrix [dij] in the fourth-order DCT, the efficiency when used for high-efficiency coding in the fourth-order orthogonal transformation is the fourth-order DCT. The effect is that it can be obtained at about the same level as, and the hardware amount of the orthogonal transform device can be made smaller than that of the DCT.
【0049】また、本発明の逆直交変換装置は、上記し
たように、4次の逆直交変換に係わる4行4列の変換行
列[tij]の転置行列を[uij]としたから、4次の逆
直交変換における高能率符号復号化に利用した時の効率
が4次の逆DCTとほぼ同程度で得られ、また、逆直交
変換装置のハードウェア量を逆DCTのそれに比べて小
さくすることができる効果がある。As described above, the inverse orthogonal transform device of the present invention uses the transpose matrix of the transformation matrix [tij] of 4 rows and 4 columns relating to the inverse orthogonal transform of the 4th order as [uij]. The efficiency when used for high-efficiency coding / decoding in the inverse orthogonal transform is almost the same as that of the fourth-order inverse DCT, and the hardware amount of the inverse orthogonal transform device is smaller than that of the inverse DCT. There is an effect that can be.
【図1】本発明の直交変換装置の一実施例構成図であ
る。FIG. 1 is a block diagram of an embodiment of an orthogonal transform device of the present invention.
【図2】本発明の逆直交変換装置の一実施例構成図であ
る。FIG. 2 is a configuration diagram of an embodiment of an inverse orthogonal transform device of the present invention.
【図3】4次の高速DCT変換装置の構成図である。FIG. 3 is a configuration diagram of a fourth-order high-speed DCT conversion device.
a0 ,a2 行列要素 [dij] DCTにおける4行4列の変換行列 [tij] 4行4列の変換行列 [uij] 4行4列の変換行列[tij]の転置行列 [xj ] 4入力データからなる列ベクトル [yi ] 4出力データからなる列ベクトル z 実数値 a0, a2 matrix element [dij] 4 × 4 transformation matrix in DCT [tij] 4 × 4 transformation matrix [uij] 4 × 4 transformation matrix [tij] transpose matrix [xj] 4 From input data Column vector [yi] Column vector consisting of 4 output data z Real value
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年9月7日[Submission date] September 7, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0036[Correction target item name] 0036
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0036】[0036]
【数15】の無理数を示しているが、これを81/25
6等で近似しても良い。また、最後の乗算の乗数の大き
さを所定の範囲内の値とするために、最後の乗算の乗数
を2B倍(Bは整数)し、最後の乗算を除いた乗算の乗
数を2−B倍した値としても良く、その場合でも、最後
の乗算を除いた乗算をビット・シフトと加算によって行
なうことができるのは当然である。さらに、入力データ
を画像データとして、垂直4画素、水平4画素の入力デ
ータからなるブロック[xij]に対して、本発明の変
換を2次元に拡張して行った結果を垂直4データ、水平
4データからなるブロック[yij]とするとThis is an irrational number of
You may approximate by 6 grade. Further, in order to set the magnitude of the multiplier of the last multiplication to a value within a predetermined range, the multiplier of the last multiplication is multiplied by 2 B (B is an integer), and the multiplier of the multiplication excluding the last multiplication is 2 −. It may be a value multiplied by B , and even in that case, it is natural that the multiplication except the last multiplication can be performed by bit shift and addition. Further, using the input data as image data, a block [xij] composed of input data of 4 pixels in the vertical direction and 4 pixels in the horizontal direction is subjected to the conversion of the present invention two-dimensionally, and the result is vertical 4 data, horizontal 4 If it is a block [yij] consisting of data,
Claims (2)
[xj ] 但し、[yi ]:4出力データからなる列ベクトル [tij]:4行4列の変換行列 [xj ]:4入力データからなる列ベクトル i,j:1、2、3、4 の演算により行う直交変換装置であって、 前記変換行列[tij]を構成する4行の内、2行分の各
行の要素をa1 ,a2(実数)によって、 a1 ,a2 ,−a2 ,−a1 、 a2 ,−a1 ,a1 ,−a2 、 と配列し、かつ、 前記a1 :a2 を、m:1またはm:2(mは自然数)
に設定したことを特徴とする直交変換装置。1. A fourth-order orthogonal transform is [yi] = [tij] .multidot.
[Xj] where [yi]: a column vector consisting of 4 output data [tij]: a transformation matrix of 4 rows and 4 columns [xj]: a column vector consisting of 4 input data i, j: 1, 2, 3, 4 An orthogonal transformation device that performs arithmetic operations, wherein among the four rows forming the transformation matrix [tij], the elements of each row for two rows are a1, a2, -a2, -a1, by a1, a2 (real numbers), a2, -a1, a1, and -a2, and a1: a2 is m: 1 or m: 2 (m is a natural number).
An orthogonal transform device characterized in that
交変換装置であって、 4次の逆直交変換を、[yi ]=z・[uij]・[xj
] 但し、[yi ]:4出力データからなる列ベクトル z:実数値 [uij]:4行4列の変換行列[tij]の転置行列 [xj ]:4入力データからなる列ベクトル i,j:1、2、3、4 の演算により行うことを特徴とする逆直交変換装置。2. An inverse orthogonal transform device for the orthogonal transform device according to claim 1, wherein a fourth-order inverse orthogonal transform is [yi] = z. [Uij]. [Xj
] [Yi]: column vector consisting of 4 output data z: real number [uij]: transposed matrix of transformation matrix [tij] of 4 rows and 4 columns [xj]: column vector consisting of 4 input data i, j: An inverse orthogonal transform device, characterized in that the calculation is performed by 1, 2, 3, 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4219705A JPH0645948A (en) | 1992-07-27 | 1992-07-27 | Orthogonal converter and reverse orthogonal converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4219705A JPH0645948A (en) | 1992-07-27 | 1992-07-27 | Orthogonal converter and reverse orthogonal converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0645948A true JPH0645948A (en) | 1994-02-18 |
Family
ID=16739677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4219705A Pending JPH0645948A (en) | 1992-07-27 | 1992-07-27 | Orthogonal converter and reverse orthogonal converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645948A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH098665A (en) * | 1995-06-16 | 1997-01-10 | Nec Corp | Transforming and encoding system for digital signal for enabling reversible transformation |
JP2007122710A (en) * | 2001-09-18 | 2007-05-17 | Microsoft Corp | Image and video coding method |
US7242713B2 (en) | 2002-05-02 | 2007-07-10 | Microsoft Corporation | 2-D transforms for image and video coding |
US7487193B2 (en) | 2004-05-14 | 2009-02-03 | Microsoft Corporation | Fast video codec transform implementations |
US7689052B2 (en) | 2005-10-07 | 2010-03-30 | Microsoft Corporation | Multimedia signal processing using fixed-point approximations of linear transforms |
JP2012105186A (en) * | 2010-11-12 | 2012-05-31 | Oki Electric Ind Co Ltd | Encoding support device, encoding device, decoding support device, decoding device, encoding support program, and decoding support program |
US8942289B2 (en) | 2007-02-21 | 2015-01-27 | Microsoft Corporation | Computational complexity and precision control in transform-based digital media codec |
-
1992
- 1992-07-27 JP JP4219705A patent/JPH0645948A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH098665A (en) * | 1995-06-16 | 1997-01-10 | Nec Corp | Transforming and encoding system for digital signal for enabling reversible transformation |
JP4560027B2 (en) * | 2001-09-18 | 2010-10-13 | マイクロソフト コーポレーション | Image and video coding methods |
US7839928B2 (en) | 2001-09-18 | 2010-11-23 | Microsoft Corporation | Block transform and quantization for image and video coding |
JP2007151131A (en) * | 2001-09-18 | 2007-06-14 | Microsoft Corp | Method for decoding data or video or image |
US7881371B2 (en) | 2001-09-18 | 2011-02-01 | Microsoft Corporation | Block transform and quantization for image and video coding |
JP2007122711A (en) * | 2001-09-18 | 2007-05-17 | Microsoft Corp | Image and video coding method |
JP4560033B2 (en) * | 2001-09-18 | 2010-10-13 | マイクロソフト コーポレーション | Method for decoding video or image data |
US7773671B2 (en) | 2001-09-18 | 2010-08-10 | Microsoft Corporation | Block transform and quantization for image and video coding |
JP4560028B2 (en) * | 2001-09-18 | 2010-10-13 | マイクロソフト コーポレーション | Image and video coding methods |
JP2007122710A (en) * | 2001-09-18 | 2007-05-17 | Microsoft Corp | Image and video coding method |
US7242713B2 (en) | 2002-05-02 | 2007-07-10 | Microsoft Corporation | 2-D transforms for image and video coding |
US7487193B2 (en) | 2004-05-14 | 2009-02-03 | Microsoft Corporation | Fast video codec transform implementations |
US7689052B2 (en) | 2005-10-07 | 2010-03-30 | Microsoft Corporation | Multimedia signal processing using fixed-point approximations of linear transforms |
US8942289B2 (en) | 2007-02-21 | 2015-01-27 | Microsoft Corporation | Computational complexity and precision control in transform-based digital media codec |
JP2012105186A (en) * | 2010-11-12 | 2012-05-31 | Oki Electric Ind Co Ltd | Encoding support device, encoding device, decoding support device, decoding device, encoding support program, and decoding support program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0353223B1 (en) | Two-dimensional discrete cosine transform processor | |
Shams et al. | NEDA: A low-power high-performance DCT architecture | |
EP0736205B1 (en) | Method and apparatus for performing a fast hadamard transform | |
JP2821489B2 (en) | Still image compression processing apparatus and method | |
JPH0613914A (en) | Method and apparatus for discrete cosine conversion which does not require multiplication | |
JPS60229140A (en) | Double precision multiplier | |
US7188132B2 (en) | Hadamard transformation method and apparatus | |
US6052703A (en) | Method and apparatus for determining discrete cosine transforms using matrix multiplication and modified booth encoding | |
Ulichney et al. | Pixel bit-depth increase by bit replication | |
EP1018082A1 (en) | Variable block size 2-dimensional inverse discrete cosine transform engine | |
JPH0645948A (en) | Orthogonal converter and reverse orthogonal converter | |
JP3577325B2 (en) | Data processing method by discrete cosine transform (DCT), DCT method, and DCT data processing circuit | |
US6934411B2 (en) | Method and apparatus for RGB color conversion that can be used in conjunction with lossless and lossy image compression | |
JPH01269183A (en) | Spatial filter picture processor | |
Hung et al. | Compact inverse discrete cosine transform circuit for MPEG video decoding | |
JPH0645947A (en) | Orthogonal converter and reverse orthogonal converter | |
WO2005122590A1 (en) | Image encoding device, image decoding device, and integrated circuit used therein | |
JPH0645949A (en) | Orthogonal converter and reverse orthogonal converter | |
JP3046115B2 (en) | Discrete cosine transformer | |
JP3684314B2 (en) | Complex multiplier and complex correlator | |
JP3046116B2 (en) | Discrete cosine transformer | |
JP2003224740A (en) | Nonlinear signal processing apparatus and image signal processing apparatus | |
JPH1083388A (en) | Orthogonal transformer | |
JP3895031B2 (en) | Matrix vector multiplier | |
JPH10505445A (en) | Image processing circuit and method |