JPH0645702A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPH0645702A JPH0645702A JP19707592A JP19707592A JPH0645702A JP H0645702 A JPH0645702 A JP H0645702A JP 19707592 A JP19707592 A JP 19707592A JP 19707592 A JP19707592 A JP 19707592A JP H0645702 A JPH0645702 A JP H0645702A
- Authority
- JP
- Japan
- Prior art keywords
- active layer
- layer
- semiconductor laser
- refractive index
- clad
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 43
- 150000002500 ions Chemical class 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 12
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 11
- 238000005253 cladding Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 238000000137 annealing Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、活性層をエッチングす
ること無く、屈折率導波構造を得ることの出来る半導体
レーザに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser capable of obtaining a refractive index waveguide structure without etching an active layer.
【0002】[0002]
【従来技術】半導体レーザでは、なるべく狭い領域に光
電力を閉じこめて誘導放出レートを高め、レーザ発振に
有利な条件を作り出す為、レーザの励起電流を狭窄させ
る活性層の中央に細長いストライプ状の埋め込み活性層
を作り付けることが行われる。2. Description of the Related Art In a semiconductor laser, in order to confine optical power in a region as narrow as possible to increase the stimulated emission rate and create conditions advantageous for laser oscillation, in order to create an advantageous condition for laser oscillation, an elongated stripe-shaped embedding is formed in the center of the active layer for confining the excitation current of the laser. An active layer is built in.
【0003】ところで、従来はこの為に、活性層の中央
部分に、活性層よりも禁制帯幅が小さく、屈折率が大き
い半導体を埋め込むようにしており、活性層を成膜した
後、その活性層をエッチングにより中央のストライプ状
の幅数μmを残して除去し、その除去した部分にpnp
nのサイリスタ構造(またはpnp,npn)の電流ブ
ロック層を成膜して、埋め込み活性層を得ていた。By the way, conventionally, for this reason, a semiconductor having a smaller forbidden band width and a larger refractive index than the active layer is embedded in the central portion of the active layer. The layer was removed by etching, leaving a striped width of several μm in the center, and pnp was formed on the removed portion.
A current blocking layer having an n thyristor structure (or pnp, npn) is formed to obtain a buried active layer.
【0004】ところが、エッチングにより残る活性層の
中央のストライプ状の部分(埋め込み活性層)の幅は、
数μmと非常に小さいので、この幅を制御してエッチン
グを施すのは容易ではなかった。However, the width of the central striped portion (embedded active layer) of the active layer remaining after etching is
Since it is as small as several μm, it is not easy to control the width and perform etching.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記事情に鑑
みて提案されるのもので、製造工程が簡単な屈折率導波
構造を備えた半導体レーザを提供することを目的とす
る。SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances, and an object of the present invention is to provide a semiconductor laser provided with a refractive index waveguide structure which can be easily manufactured.
【0006】[0006]
【課題を解決するための手段】上記目的を達成する為に
提案される、請求項1に記載の本発明による半導体レー
ザは、半導体積層基板内に形成された上下2つのクラッ
ド層で活性層を挟んだ半導体レーザにおいて、下側クラ
ッド層の成膜後に、該クラッド層の活性層の中央部分に
対応した部分に、クラッド層よりも格子定数をやや大き
くするイオンを注入し、このクラッド層の上面に活性層
を成膜して屈折率導波構造とした構成となっている。A semiconductor laser according to the present invention, which is proposed to achieve the above object, has an active layer composed of two upper and lower clad layers formed in a semiconductor laminated substrate. In the sandwiched semiconductor laser, after forming the lower clad layer, ions that make the lattice constant slightly larger than that of the clad layer are injected into the part corresponding to the central part of the active layer of the clad layer, and the upper surface of this clad layer is injected. An active layer is formed on the substrate to form a refractive index guiding structure.
【0007】請求項2に記載の本発明による半導体レー
ザは、半導体積層基板内に形成された上下2つのクラッ
ド層で活性層を挟んだ半導体レーザにおいて、活性層の
成膜後に、活性層の中央部分に、活性層よりも禁制帯幅
を小さくするイオンを注入して屈折率導波構造とした構
成となっている。A semiconductor laser according to a second aspect of the present invention is a semiconductor laser in which an active layer is sandwiched between two upper and lower clad layers formed in a semiconductor laminated substrate, and after the active layer is formed, the center of the active layer is formed. Ions are implanted into the portion to make the band gap smaller than that of the active layer, so that a refractive index guiding structure is formed.
【0008】[0008]
【作用】請求項1に記載の本発明による半導体レーザで
は、下側クラッド層の成膜後に、該クラッド層の活性層
の中央部分の下部に相当する部分に、クラッド層よりも
格子定数をやや大きくするイオンを注入した後、このク
ラッド層の上面に活性層を成膜しているので、活性層の
中央のストライプ状部分は、下側クラッド層の格子定数
のやや大きい部分に影響されて引張歪が生じて禁制帯幅
が小さく、屈折率が大きくなり屈折率導波構造が形成出
来る。In the semiconductor laser according to the present invention as set forth in claim 1, after the formation of the lower clad layer, the portion of the clad layer corresponding to the lower part of the central portion of the active layer has a lattice constant slightly higher than that of the clad layer. Since the active layer is formed on the upper surface of this clad layer after implanting ions to increase the size, the stripe-shaped part in the center of the active layer is affected by the part of the lower clad layer that has a slightly larger lattice constant and is stretched. Distortion occurs, the forbidden band width is small, the refractive index is large, and a refractive index waveguide structure can be formed.
【0009】請求項2に記載の本発明による半導体レー
ザでは、活性層の成膜後に、活性層の中央部分に、活性
層よりも禁制帯幅を小さくするイオンを注入しているの
で、活性層の中央部分は、禁制帯幅が小さく、屈折率が
大きくなり屈折率導波構造が形成出来る。In the semiconductor laser according to the present invention as set forth in claim 2, after the active layer is formed, ions for making the band gap smaller than that of the active layer are implanted into the central portion of the active layer. In the central portion of, the forbidden band width is small, the refractive index is large, and a refractive index waveguide structure can be formed.
【0010】[0010]
【実施例】以下に、添付図を参照して本発明の実施例を
説明する。図1は、請求項1に記載の本発明による半導
体レーザの一例として、AlGaAs系半導体レーザの
構造を正面から示したもので、ダブルヘテロ型の構造に
形成した例を示している。n−GaAs基板1の上面に
は、n−AlGaAs層2とp−AlGaAs層4より
なるクラッド層によって上下から挟み込むようにして、
GaAs層で形成された活性層3が形成され、その上に
p−GaAs層よりなるキャップ層5が形成されてお
り、活性層3の中央のストライプ状部分Cの下部に対応
するクラッド層の部分Bは格子定数がやや大きくされ
て、そのすぐ上の活性層3の中央のストライプ状部分C
には、活性層3の他の部分よりも禁制帯幅が小さく、屈
折率が大きい屈折率導波構造が形成された構造となって
いる。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows the structure of an AlGaAs semiconductor laser from the front as an example of the semiconductor laser according to the first aspect of the present invention, and shows an example in which a double hetero structure is formed. On the upper surface of the n-GaAs substrate 1, a clad layer composed of an n-AlGaAs layer 2 and a p-AlGaAs layer 4 is sandwiched from above and below,
An active layer 3 made of a GaAs layer is formed, and a cap layer 5 made of a p-GaAs layer is formed on the active layer 3, and a portion of the clad layer corresponding to a lower portion of the stripe-shaped portion C at the center of the active layer 3. The lattice constant of B is made slightly larger, and the stripe-shaped portion C in the center of the active layer 3 immediately above is shown.
Has a structure in which a refractive index waveguide structure having a smaller forbidden band width and a larger refractive index than the other portions of the active layer 3 is formed.
【0011】このような構造の半導体レーザは以下のよ
うな方法で形成される。n−GaAs基板1の上面に、
n−AlGaAsクラッド層2を成膜した後、図2に示
すように、活性層3の中央のストライプ状部分Cの下部
に対応するクラッド層の部分Bに、InイオンAを打ち
込む。その結果、InイオンAを打ち込まれたクラッド
層の部分Bは、格子定数がやや大きくなる(Inは分子
量が大きく、従って、原子が大きいので、半導体に占め
る組成比が大きくなるほど、その半導体の格子定数も大
きくなる)。図3は、n−AlGaAsクラッド層2を
上から見た図である。The semiconductor laser having such a structure is formed by the following method. On the upper surface of the n-GaAs substrate 1,
After forming the n-AlGaAs cladding layer 2, as shown in FIG. 2, In ions A are implanted into the portion B of the cladding layer corresponding to the lower portion of the stripe-shaped portion C in the center of the active layer 3. As a result, the lattice constant of the portion B of the clad layer into which the In ions A are implanted is slightly large (In has a large molecular weight and therefore has a large number of atoms. Therefore, the larger the composition ratio of the semiconductor, the lattice of the semiconductor. The constant will also increase). FIG. 3 is a view of the n-AlGaAs cladding layer 2 seen from above.
【0012】次に、アニール処理(熱処理)をして格子
構造を整えた後、GaAS活性層3を成膜すると、Ga
As活性層3の膜厚が薄い為、下地のクラッド層2及び
Bの格子定数に影響されて、InイオンAが打ち込まれ
た部分Bの上のGaAs活性層3のC部分は引張歪を受
ける。ここで、図4(a)は圧縮歪を受けた時、(b)
は自然状態、(c)は引張歪を受けた時、の禁制帯幅E
gの変化を表わしたもので、引張歪を受けた時には、
(c)に示されるように、禁制帯幅Egが、(b)の自
然状態の時よりも小さくなる。また、III−V族混晶半
導体の屈折率は、禁制帯幅Egが小さいほど大きくなる
傾向がある。Next, after the annealing process (heat treatment) is performed to adjust the lattice structure, the GaAS active layer 3 is formed.
Since the thickness of the As active layer 3 is thin, the C portion of the GaAs active layer 3 on the portion B where the In ions A are implanted is subjected to tensile strain due to the influence of the lattice constants of the underlying cladding layers 2 and B. . Here, FIG. 4 (a) shows that when it is subjected to compressive strain, (b)
Is the natural state, (c) is the forbidden band width E when subjected to tensile strain
It represents the change of g. When tensile strain is applied,
As shown in (c), the forbidden band width Eg is smaller than that in the natural state of (b). Further, the refractive index of the III-V mixed crystal semiconductor tends to increase as the forbidden band width Eg decreases.
【0013】従って、引張歪を受けるGaAs活性層3
のC部分は、禁制帯幅Egが小さくなり、屈折率が大き
くなる。よって、活性層3は、横方向に禁制帯幅Egが
大−小−大、屈折率が小−大−小の分布となり、屈折率
導波構造が形成される。次いで、p−AlGaAsクラ
ッド層4、p−GaAsキャップ層5の順に成膜した
後、p電極6とn電極7を付加して、屈折率導波構造を
備えた半導体レーザを得る。Therefore, the GaAs active layer 3 which is subjected to tensile strain
In part C, the forbidden band width Eg becomes small and the refractive index becomes large. Therefore, the active layer 3 has a distribution in which the forbidden band width Eg is large-small-large and the refractive index is small-large-small in the lateral direction, and a refractive index waveguide structure is formed. Next, after p-AlGaAs cladding layer 4 and p-GaAs cap layer 5 are formed in this order, p-electrode 6 and n-electrode 7 are added to obtain a semiconductor laser having a refractive index waveguide structure.
【0014】尚、上述の実施例では、AlGaAs系半
導体レーザについて述べたが、他の半導体レーザ、例え
ばAlGaInP系半導体レーザ等についても同様に実
施出来る。図5は、請求項2に記載の本発明による半導
体レーザの一例として、AlGaInP系半導体レーザ
の構造を正面から示したもので、ダブルヘテロ型の構造
に形成した例を示している。n−GaAs基板8の上面
には、n−AlGaInP層9とp−AlGaInP層
11よりなるクラッド層によって上下から挟み込むよう
にして、GaInP層で形成された活性層10が形成さ
れ、その上にp−GaInP層よりなるキャップ層12
が形成されており、AlGaInP活性層10の中央の
ストライプ状部分Eは、Gaの組成比がやや大きく、活
性層10の他の部分より禁制帯幅が小さく、屈折率が大
きい屈折率導波構造が形成された構造となっている。In the above embodiment, the AlGaAs semiconductor laser has been described, but other semiconductor lasers such as AlGaInP semiconductor laser can be similarly implemented. FIG. 5 shows, as an example of the semiconductor laser according to the second aspect of the present invention, the structure of an AlGaInP-based semiconductor laser from the front side, and shows an example in which the structure is a double hetero type. An active layer 10 formed of a GaInP layer is formed on the upper surface of the n-GaAs substrate 8 so as to be sandwiched by a clad layer composed of an n-AlGaInP layer 9 and a p-AlGaInP layer 11 from above and below, and p is formed thereon. —Cap layer 12 made of GaInP layer
In the stripe-shaped portion E at the center of the AlGaInP active layer 10, the composition ratio of Ga is slightly large, the forbidden band width is smaller than the other portions of the active layer 10, and the refractive index guiding structure is large. Is formed.
【0015】このような構造の半導体レーザは以下のよ
うな方法で形成される。n−GaAs基板8の上面に、
n−AlGaInPクラッド層9とAlGaInP活性
層10を成膜した後、図6に示すように、AlGaIn
P活性層10の中央のストライプ状部分Eに、Gaイオ
ンDを打ち込む。図7は、AlGaInP活性層10を
上から見た図である。The semiconductor laser having such a structure is formed by the following method. On the upper surface of the n-GaAs substrate 8,
After forming the n-AlGaInP clad layer 9 and the AlGaInP active layer 10, as shown in FIG.
Ga ions D are implanted in the central stripe portion E of the P active layer 10. FIG. 7 is a view of the AlGaInP active layer 10 viewed from above.
【0016】ここで、AlGaInP活性層10にGa
イオンDが打ち込まれると、少量の場合は、格子構造に
十分取り込まれ、Gaの組成比がAlの組成比に対して
大きくなる。ここにGaとAlの組成比と禁制帯幅の関
係から、Gaの組成比がAlの組成比に対して大きくな
るほど、禁制帯幅が小さくなることが知られている。ま
た、III−V族混晶半導体の屈折率は、禁制帯幅が小さ
いほど大きくなる傾向がある。Here, Ga is formed in the AlGaInP active layer 10.
When the amount of ion D is small, it is sufficiently incorporated into the lattice structure when the amount is small, and the Ga composition ratio becomes larger than the Al composition ratio. From the relationship between the composition ratio of Ga and Al and the forbidden band width, it is known that the forbidden band width becomes smaller as the Ga composition ratio becomes larger than the Al composition ratio. Further, the refractive index of the III-V group mixed crystal semiconductor tends to increase as the forbidden band width decreases.
【0017】従って、GaイオンDを打ち込まれたAl
GaInP活性層10の中央のストライプ状部分Eは、
禁制帯幅が小さくなり、屈折率が大きくなる。よって、
活性層10は、横方向に禁制帯幅が大−小−大、屈折率
が小−大−小の分布となり、屈折率導波構造が形成され
る。次いで、アニール処理(熱処理)をして格子構造を
整えた後、p−AlGaInPクラッド層11、p−G
aInPキャップ層12の順に成膜して、p電極13と
n電極14を付加し、屈折率導波構造を備えた半導体レ
ーザを得る。Therefore, Al implanted with Ga ions D
The stripe-shaped portion E at the center of the GaInP active layer 10 is
The forbidden band becomes smaller and the refractive index becomes larger. Therefore,
The active layer 10 has a distribution in which the forbidden band width is large-small-large and the refractive index is small-large-small in the lateral direction, and a refractive index waveguide structure is formed. Then, after annealing (heat treatment) to adjust the lattice structure, the p-AlGaInP cladding layer 11 and the p-G are formed.
The aInP cap layer 12 is formed in this order, a p-electrode 13 and an n-electrode 14 are added, and a semiconductor laser having a refractive index waveguide structure is obtained.
【0018】[0018]
【発明の効果】請求項1に記載の本発明による半導体レ
ーザによれば、下側クラッド層の成膜後に、該クラッド
層の活性層の中央部分の下部に相当する部分に、クラッ
ド層よりも格子定数をやや大きくするイオンを注入した
後、このクラッド層の上面に活性層を成膜しているの
で、活性層の中央のストライプ状部分は、下側クラッド
層の格子定数のやや大きい部分に影響されて引張歪が生
じて禁制帯幅が小さく、屈折率が大きくなり屈折率導波
構造が形成出来る。従って、制御の難しい活性層のエッ
チング工程を経ること無く、屈折率導波構造を備えるこ
とが出来る。According to the semiconductor laser of the present invention as set forth in claim 1, after the lower clad layer is formed, a portion of the clad layer corresponding to a lower part of the central portion of the active layer is formed more than the clad layer. After implanting ions that make the lattice constant a little larger, the active layer is formed on the upper surface of this clad layer. It is affected by the tensile strain, the forbidden band width is small, the refractive index is large, and the refractive index waveguide structure can be formed. Therefore, the refractive index waveguide structure can be provided without going through the etching process of the active layer, which is difficult to control.
【0019】請求項2に記載の本発明による半導体レー
ザによれば、活性層の成膜後に、活性層の中央部分に、
活性層よりも禁制帯幅を小さくするイオンを注入してい
るので、活性層の中央部分は、禁制帯幅が小さく、屈折
率が大きくなり屈折率導波構造が形成出来る。従って、
制御の難しい活性層のエッチング工程を経ること無く、
屈折率導波構造を備えることが出来る。According to another aspect of the semiconductor laser of the present invention, after the active layer is formed, the central portion of the active layer is
Since the ions for making the forbidden band width smaller than that of the active layer are implanted, the forbidden band width is small and the refractive index is large in the central portion of the active layer, so that a refractive index waveguide structure can be formed. Therefore,
Without going through the etching process of the active layer, which is difficult to control,
A refractive index guiding structure can be provided.
【図1】請求項1に記載の本発明による半導体レーザの
一実施例を正面から示した構造図である。FIG. 1 is a structural diagram showing from the front an embodiment of a semiconductor laser according to the present invention according to claim 1.
【図2】請求項1に記載の本発明による半導体レーザの
製造工程を説明する為の図である。FIG. 2 is a diagram for explaining a manufacturing process of the semiconductor laser according to the present invention as set forth in claim 1;
【図3】n−AlGaAsクラッド層を上から見た図で
ある。FIG. 3 is a view of the n-AlGaAs cladding layer viewed from above.
【図4】(a)は、圧縮歪を受けた時の禁制帯幅Egの
変化を表わした図である。(b)は、自然状態の時の禁
制帯幅Egを表わした図である。(c)は、引張歪を受
けた時の禁制帯幅Egの変化を表わした図である。FIG. 4A is a diagram showing a change in the forbidden band width Eg when subjected to compressive strain. (B) is a diagram showing a forbidden band width Eg in a natural state. (C) is a diagram showing a change in the forbidden band width Eg when subjected to tensile strain.
【図5】請求項2に記載の本発明による半導体レーザの
一実施例を正面から示した構造図である。FIG. 5 is a structural diagram showing from the front an embodiment of the semiconductor laser according to the present invention as defined in claim 2;
【図6】請求項2に記載の本発明による半導体レーザの
製造工程を説明する為の図である。FIG. 6 is a drawing for explaining the manufacturing process of the semiconductor laser according to the present invention as defined in claim 2;
【図7】AlGaInP活性層を上から見た図である。FIG. 7 is a view of the AlGaInP active layer viewed from above.
2・・・n−AlGaAsクラッド層 3・・・GaAs活性層 4・・・p−AlGaAsクラッド層 9・・・n−AlGaInPクラッド層 10・・・AlGaInP活性層 11・・・p−AlGaInPクラッド層 B・・・GaAs活性層の中央のストライプ状部分の下
部に相当するn−AlGaAsクラッド層の部分 C・・・GaAs活性層の中央のストライプ状部分 E・・・AlGaInP活性層の中央のストライプ状部
分2 ... n-AlGaAs clad layer 3 ... GaAs active layer 4 ... p-AlGaAs clad layer 9 ... n-AlGaInP clad layer 10 ... AlGaInP active layer 11 ... p-AlGaInP clad layer B ... A portion of the n-AlGaAs cladding layer corresponding to the lower part of the central striped portion of the GaAs active layer C ... Central striped portion of the GaAs active layer E ... Central striped portion of the AlGaInP active layer part
Claims (2)
クラッド層で活性層を挟んだ半導体レーザにおいて、 下側クラッド層の成膜後に、該クラッド層の活性層の中
央部分に対応した部分に、クラッド層よりも格子定数を
やや大きくするイオンを注入し、このクラッド層の上面
に活性層を成膜して屈折率導波構造としたことを特徴と
する半導体レーザ。1. A semiconductor laser in which an active layer is sandwiched between two upper and lower clad layers formed in a semiconductor laminated substrate, and a portion of the clad layer corresponding to a central portion of the active layer after the lower clad layer is formed. A semiconductor laser having a refractive index guiding structure in which an ion having a lattice constant slightly larger than that of the clad layer is implanted, and an active layer is formed on the upper surface of the clad layer.
クラッド層で活性層を挟んだ半導体レーザにおいて、 活性層の成膜後に、活性層の中央部分に、活性層よりも
禁制帯幅を小さくするイオンを注入して屈折率導波構造
としたことを特徴とする半導体レーザ。2. A semiconductor laser in which an active layer is sandwiched between two upper and lower clad layers formed in a semiconductor laminated substrate, and after the formation of the active layer, a forbidden band width is provided in the central portion of the active layer as compared with the active layer. A semiconductor laser characterized in that a refractive index guiding structure is formed by implanting ions for reducing the size.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19707592A JPH0645702A (en) | 1992-07-23 | 1992-07-23 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19707592A JPH0645702A (en) | 1992-07-23 | 1992-07-23 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0645702A true JPH0645702A (en) | 1994-02-18 |
Family
ID=16368305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19707592A Withdrawn JPH0645702A (en) | 1992-07-23 | 1992-07-23 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645702A (en) |
-
1992
- 1992-07-23 JP JP19707592A patent/JPH0645702A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3387076B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH07162086A (en) | Manufacture of semiconductor laser | |
JPH09139550A (en) | Manufacture of semiconductor laser device, and semiconductor laser device | |
JP2960926B2 (en) | Manufacturing method of laser diode | |
JPH07162093A (en) | Semiconductor laser and its manufacture | |
JPH0645702A (en) | Semiconductor laser | |
US6671301B1 (en) | Semiconductor device and method for producing the same | |
JPH0846283A (en) | Manufacture of semiconductor laser | |
JPH05211372A (en) | Manufacture of semiconductor laser | |
JPS6214488A (en) | Semiconductor laser and manufacture thereof | |
JPS63179590A (en) | Algainp semiconductor light emitting element | |
JP3472739B2 (en) | Manufacturing method of semiconductor laser | |
US6717186B2 (en) | Semiconductor laser device | |
JPH0283992A (en) | Distributed feedback type semiconductor laser and distributed reflection type semiconductor laser | |
JP2751699B2 (en) | Semiconductor laser | |
JPS6129183A (en) | Semiconductor laser | |
JP2911087B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
JPH0645688A (en) | Semiconductor laser | |
JPH06151881A (en) | Manufacture of quantum effect device | |
JP2003078205A (en) | Semiconductor laser device | |
JP2000124553A (en) | Semiconductor laser device and method of manufacturing the same | |
JPH0766992B2 (en) | AlGaInP semiconductor laser and manufacturing method thereof | |
JPH0666525B2 (en) | Semiconductor laser | |
JPH11145556A (en) | Semiconductor laser and manufacture thereof | |
JP2000101189A (en) | Manufacture of semiconductor laser element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991005 |