JPH0645459B2 - Fine powder conductive material and manufacturing method thereof - Google Patents
Fine powder conductive material and manufacturing method thereofInfo
- Publication number
- JPH0645459B2 JPH0645459B2 JP60118542A JP11854285A JPH0645459B2 JP H0645459 B2 JPH0645459 B2 JP H0645459B2 JP 60118542 A JP60118542 A JP 60118542A JP 11854285 A JP11854285 A JP 11854285A JP H0645459 B2 JPH0645459 B2 JP H0645459B2
- Authority
- JP
- Japan
- Prior art keywords
- fine powder
- antimony
- tin oxide
- conductive material
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
【発明の詳細な説明】 技術分野 本発明は、二酸化チタン微粉末にアンチモン固溶酸化ス
ズを被覆混合して新規な微粉末導電性材料およびその製
造法に関する。TECHNICAL FIELD The present invention relates to a novel fine powder conductive material obtained by coating and mixing titanium dioxide fine powder with antimony solid solution tin oxide, and a method for producing the same.
背景技術および課題 磁気テープは、ポリエステルフィルムの如き絶縁材料が
基材になっているため、帯電防止処理を施していない場
合は、テープ送行時の回転によるスリップ等により摩擦
帯電を発生させ、テープ本来の機能を損なう。このため
従来より、テープにカーボンブラック,カーボンファイ
バー等の炭素系導電材料、酸化亜鉛,酸化スズ,酸化イ
ンジウム等の酸化物系導電材料、銀,銅,ニッケル,ア
ルミニウム等の金属系導電材料、さらには高分子電解質
および無機塩類等イオン伝導系導電材料などを混入した
り、蒸着したりした帯電防止層を設けることにより摩擦
帯電を防いでいた。BACKGROUND ART Magnetic tape has an insulating material such as polyester film as a base material, so if it is not subjected to antistatic treatment, frictional electrification occurs due to slippage caused by rotation during tape feeding, and the tape itself Impair the function of. Therefore, conventionally, tapes have been made of carbon-based conductive materials such as carbon black and carbon fiber, oxide-based conductive materials such as zinc oxide, tin oxide and indium oxide, and metal-based conductive materials such as silver, copper, nickel and aluminum. In order to prevent triboelectrification, a polymer electrolyte and an ion conductive conductive material such as an inorganic salt are mixed, or an antistatic layer is vapor-deposited.
このうち、炭素系導電材料、酸化物系導電材料で帯電防
止処理したものはテープ自体の色相を著しく害し、特に
炭素系導電材料の場合は、テープが黒色になることから
その商品価値を低下させている。Among them, the antistatic treatment with carbon-based conductive material or oxide-based conductive material significantly impairs the hue of the tape itself, and particularly in the case of carbon-based conductive material, the tape becomes black, which reduces its commercial value. ing.
また、金属系導電材料の蒸着による帯電防止処理したも
のはその薄膜の度合により、テープ自体の色相は維持さ
れるものの、目的とする色相に着色できず、色相が限定
されるという欠点を持っている。Further, the antistatic treatment by vapor deposition of a metal-based conductive material has a drawback that the hue of the tape itself can be maintained due to the degree of the thin film, but it cannot be colored in a desired hue and the hue is limited. There is.
さらにイオン伝導系導電材料で帯電防止処理したものは
大気中の水分を吸収し、湿度変化によりその帯電防止性
が大きく左右されるという欠点を持っている。Further, an antistatic-treated ion conductive conductive material has a drawback that it absorbs moisture in the atmosphere and its antistatic property is greatly affected by changes in humidity.
一方、電子写真用トナーへの添加剤は従来白黒トナー用
の電荷調節剤としてカーボンブラックが使用されていた
が、カラートナー用電荷調節剤としてカーボンブラック
を添加すると、シアン,マゼンタ,イエロー等の本来の
カラー色相を著しく損なうという欠点がある。On the other hand, carbon black has been conventionally used as a charge control agent for black and white toners as an additive to electrophotographic toners. However, when carbon black is added as a charge control agent for color toners, cyan, magenta, yellow, etc. are originally added. However, there is a drawback in that the color hue of (1) is significantly impaired.
従って、プラスチックへの帯電防止を付与する場合や、
染顔料の電荷調節を行う場合、適度の導電性があり、か
つ、プラスチックや染顔料それらの本来具備すべき色
相、特に透明性の保持あるいは自由な色相の選択が要求
される分野では十分満足されるものがなく、帯電防止
性、透明性および自由な色相の選択性が十分満足され、
かつ経済性に優れた微粉末導電性材料が待たれていた。Therefore, when giving antistatic to plastic,
When controlling the charge of dyes and pigments, it has sufficient conductivity and is sufficiently satisfactory in the fields where plastics and dyes and pigments should have their original hues, especially transparency retention or free hue selection. There is nothing, antistatic property, transparency and selectivity of free hue are fully satisfied,
Moreover, a fine powder conductive material excellent in economical efficiency has been awaited.
特開昭56−17748号には透明性と導電性を改良す
べく、アンチモン固溶した酸化スズと硫酸バリウムとの
複合導電性材料が提案されている。この材料は硫酸バリ
ウムと導電材であるアンチモン固溶酸化スズとの単なる
混合物であるため、導電材たるアンチモン固溶酸化スズ
の導電性が非導電材である硫酸バリウムによって阻害さ
れるおそれがあり、また、硫酸バリウムの硬度が3.0
〜3.5であるため磁気テープの送行回転時の滑材とし
ての役割をはたさないので、帯電発生を抑制する機能を
有していない。このため結果的には帯電防止効果が不足
である。Japanese Unexamined Patent Publication (Kokai) No. 56-17748 proposes a composite conductive material of tin oxide in solid solution with antimony and barium sulfate in order to improve transparency and conductivity. Since this material is simply a mixture of barium sulfate and antimony solid solution tin oxide which is a conductive material, the conductivity of antimony solid solution tin oxide which is a conductive material may be hindered by barium sulfate which is a nonconductive material, Also, the hardness of barium sulfate is 3.0.
Since it is up to 3.5, it does not play a role as a lubricant when the magnetic tape is rotated in the feeding direction, and thus does not have a function of suppressing the occurrence of electrification. Therefore, as a result, the antistatic effect is insufficient.
また、特開昭56−41603,同56−11421
5,同57−11825,同58−209002,同5
8−209003号には、二酸化チタンを核とし、これ
にアンチモン固溶酸化スズを被覆した導電性粉末が提案
されているが、これらの方法は均一な被覆を形成させる
点では優れたものと思われるが、コスト面、操作の容易
さの点でも満足できるものではない。さらに、これらの
ものは、もともと透明性を要求しない分野に使用される
導電材料として開発されたものである。Further, JP-A-56-41603, JP-A-56-11421.
5, Same 57-11825, Same 58-209002, Same 5
No. 8-209003 proposes a conductive powder in which titanium dioxide is used as a core and antimony solid solution tin oxide is coated on the core, but these methods are considered to be excellent in forming a uniform coating. However, it is not satisfactory in terms of cost and ease of operation. Furthermore, these materials were originally developed as conductive materials used in fields that do not require transparency.
そこで、本発明は、絶縁基材の色相および透明性を害し
ない、透明感を持ち、自由な色相への着色が可能であ
り、かつ、滑材特性を同時に有した摩擦帯電防止効果を
示し、経済的にも有利な新規な微粉末導電性材料および
その製造法を提供することを目的とする。Therefore, the present invention does not impair the hue and transparency of the insulating base material, has a transparent feeling, is capable of coloring in a free hue, and exhibits a frictional antistatic effect having a lubricant property at the same time, It is an object of the present invention to provide a novel finely powdered conductive material which is economically advantageous and a method for producing the same.
解決方法 本発明は50〜120m2/gの比表面積を有する酸化チ
タン微粉末にアンチモン0.1〜25重量%を含有し、
残りが実質的に酸化スズからなる0.05μm以下の平
均粒径を有する微粉末を全体割合で30〜70重量%被
覆混合してなる透明感を持った微粉末導電性材料および
その製造法を提供する。Solution The present invention comprises 0.1 to 25% by weight of antimony in titanium oxide fine powder having a specific surface area of 50 to 120 m 2 / g,
A fine powder conductive material having a transparent feeling, which is obtained by coating and mixing 30 to 70% by weight of a fine powder having an average particle size of 0.05 μm or less, the remainder being substantially tin oxide, and a method for producing the same. provide.
一般に、粉体が透明な樹脂中に分散された状態で樹脂の
透明性が保持されるためには、粉体が光を吸収しないこ
と、並びに光の散乱が少なくなることが必要である。光
の散乱を減少するには、粉体の屈折率が樹脂の屈折率と
等しく、粉体と樹脂との界面での散乱が減少すること、
または粉体の粒径を光の波長より小さくすることが必要
となる。しかし、アンチモン固溶した酸化スズは、一般
に塩化第二スズおよび塩化アンチモンの混合塩酸溶液を
加水分解した後焼成してつくられており、すぐれた導電
性を示すが、その屈折率は2.05程度である。これは使用
されるマトリックスの屈折率1.6程度と比較して若干差
があり、透明性に難点がある。この透明性を増加するた
めには、その粒子径を小さくすればよいが、小さくした
場合、加水分解系が塩酸であるためロ過、洗浄等の製造
時作業性に難点を生ずる。Generally, in order for the transparency of a resin to be maintained in a state where the powder is dispersed in a transparent resin, it is necessary that the powder does not absorb light and that light scattering is reduced. To reduce the scattering of light, the refractive index of the powder is equal to the refractive index of the resin and the scattering at the interface between the powder and the resin is reduced,
Alternatively, it is necessary to make the particle size of the powder smaller than the wavelength of light. However, tin oxide with solid solution of antimony is generally made by hydrolyzing a mixed hydrochloric acid solution of stannic chloride and antimony chloride and then firing it, and it shows excellent conductivity, but its refractive index is about 2.05. is there. This is slightly different from the refractive index of the matrix used, which is about 1.6, and has a difficulty in transparency. In order to increase the transparency, the particle size may be reduced. However, if the particle size is reduced, the hydrolysis system is hydrochloric acid, which causes a difficulty in workability during production such as filtration and washing.
この難点を避けるためには、加水分解により微粒の酸化
スズを析出させ、微粉末の二酸化チタンに被覆混合さ
せ、適切な陰イオンの選定によって被覆混合した微粒子
を弱い凝集状態、すなわち、フロックを形成させればよ
いが、前に引用した公開特許出願における二酸化チタン
の粒径が大きい場合や、二酸化チタンの粒径が小さい微
粉末を利用しても析出する酸化スズの粒径が大きい場合
は、粉体が透明な樹脂中に分散された状態では不透明で
あり、透明感の得られる導電性材料は得られない。In order to avoid this difficulty, fine particles of tin oxide are precipitated by hydrolysis, finely powdered titanium dioxide is coated and mixed, and by selecting an anion appropriately, the finely mixed particles are formed into a weak agglomeration state, that is, flocs are formed. However, if the particle size of titanium dioxide in the published patent application cited above is large, or if the particle size of the precipitated tin oxide is large even if a fine powder having a small particle size of titanium dioxide is used, It is opaque when the powder is dispersed in a transparent resin, and a conductive material having a transparent feeling cannot be obtained.
周知のように陰イオンとしては、硫酸イオンは非常にフ
ロック形成に優れたイオンであるため、よくフロック形
成イオンとして利用されている。そこで、二酸化チタン
微粉末の分散液中に塩化アンチモンの塩酸水溶液および
硫酸第一スズの水溶液を別途同時滴下し、熱加水分解を
行ったところ、ロ過、洗浄等の製造時作業性も良好でか
つ、アンチモン固溶酸化スズの微粉末が、二酸化チタン
微粉末の表面に被覆混合された導電性材料が得られた。
このものは透明な樹脂中に分散された状態で優れた透明
感と帯電防止性を有する導電性複合粉末であった。As is well known, as anion, sulfate ion is an ion excellent in floc formation, and is therefore often used as a floc formation ion. Therefore, when an aqueous solution of antimony chloride in hydrochloric acid and an aqueous solution of stannous sulfate were separately added simultaneously to the dispersion liquid of titanium dioxide fine powder, and thermal hydrolysis was performed, workability during manufacturing such as filtration and washing was also good. In addition, a conductive material was obtained in which antimony solid solution tin oxide fine powder was coated and mixed on the surface of titanium dioxide fine powder.
This was a conductive composite powder having excellent transparency and antistatic properties when dispersed in a transparent resin.
硫酸イオンは、前述のように優れたフロック形成能を有
するので、スズ化合物として硫酸第一スズを利用し、熱
加水分解時に硫酸イオンを生成することによりロ過、洗
浄等の製造時作業性を容易にする効果があった。Sulfate ion has excellent floc-forming ability as described above, so stannous sulfate is used as a tin compound, and sulfate ion is generated during thermal hydrolysis to improve workability during production such as filtration and washing. It had the effect of facilitating.
また、塩化アンチモンは、水中では加水分解を起こすた
め、比較的安定である塩酸溶液にせざるを得ない。この
ため硫酸第一スズ水溶液と塩化アンチモン塩酸溶液を各
々に調整し、別途同時滴下することにより、アンチモン
が均一に固溶された酸化スズ微粉末が形成された。Further, since antimony chloride causes hydrolysis in water, it is unavoidable to use a relatively stable hydrochloric acid solution. Therefore, a stannous sulfate aqueous solution and an antimony chloride / hydrochloric acid solution were adjusted to the respective solutions, and by separately dropping simultaneously, fine tin oxide powder in which antimony was uniformly dissolved was formed.
このように、本発明の複合導電性微粉末は、公知のアン
チモン固溶酸化スズ被覆酸化チタン系導電材料に比べて
透明感に優れ、かつ、製造時作業性にも優れ経済的であ
った。As described above, the composite conductive fine powder of the present invention was excellent in transparency and was excellent in workability during production, and economical, as compared with known antimony solid solution tin oxide-coated titanium oxide-based conductive materials.
一例として、本発明の導電性複合微粉末は、比抵抗1k
〜10kΩ・cmの導電性を有し、バインダーに分散した
塗料を絶縁性透明フィルムに塗布した塗工フィルムは表
面抵抗率107〜1011オームであり、光透過率70%
以上の透明感を有し、かつ、湿度変化に対しても極めて
安定であった。また、酸化チタンのモース硬度が5〜7
と高いため、導電性複合微粉末中の酸化チタン微粉末が
滑材的な役割をはたし、フィルムのスベリ性を向上させ
る効果があった。As an example, the conductive composite fine powder of the present invention has a specific resistance of 1 k.
Has conductivity of ~10 k Ω · cm, the coating films dispersed paint was applied to the insulating transparent film in the binder is a surface resistivity of 107 to 11 ohms, the light transmittance of 70%
It had the above-mentioned transparency and was extremely stable against changes in humidity. Also, the Mohs hardness of titanium oxide is 5 to 7
Since it is high, the titanium oxide fine powder in the conductive composite fine powder plays a role as a lubricant and has an effect of improving the slip property of the film.
本発明に用いる二酸化チタンは、ルチル型,アナターゼ
型,無定形のいずれでもよく、その製造法に特に限定さ
れないが、微粉末であることが必要である。樹脂に分散
させた時、透明感を得るためには好ましくは比表面積が
50〜120m2/gの微粉末である。例えば、20m2/
gの比表面積を有する酸化チタンを使用した場合は光透
過率が30%以下となり、透明感のある塗布膜を得ると
いう目的には適さない。The titanium dioxide used in the present invention may be any of rutile type, anatase type, and amorphous type, and the production method thereof is not particularly limited, but it is required to be fine powder. In order to obtain a transparent feeling when dispersed in a resin, it is preferably a fine powder having a specific surface area of 50 to 120 m 2 / g. For example, 20m 2 /
When titanium oxide having a specific surface area of g is used, the light transmittance is 30% or less, which is not suitable for the purpose of obtaining a transparent coating film.
また、用いるアンチモン化合物は水溶液の状態で安定で
あり、熱加水分解することにより酸化スズに固溶される
ものであればよい。塩化アンチモンを使用する場合は、
加水分解を防ぐに足りる塩酸含有水溶液で溶解する必要
がある。The antimony compound to be used may be one that is stable in the state of an aqueous solution and can be solid-dissolved in tin oxide by thermal hydrolysis. When using antimony chloride,
It is necessary to dissolve in a hydrochloric acid-containing aqueous solution that is sufficient to prevent hydrolysis.
さらに、スズ化合物は水溶液の状態で安定であり、熱加
水分解することにより酸化スズと硫酸イオンを生成する
ものであればよいが、硫酸イオンを生成しないスズ化合
物ではスズ化合物が熱加水分解された後、硫酸を添加す
ることにより同様なフロック形成がなされる。熱加水分
解により、酸化スズと硫酸イオンを同時に生成するとい
う面より、スズ化合物としては硫酸第一スズが適当であ
る。硫酸イオンによるフロック形成のためには、反応系
中の硫酸イオン濃度を15g/以上にするのが適当で
ある。Further, the tin compound is stable in the state of an aqueous solution and may be one that forms tin oxide and sulfate ions by thermal hydrolysis, but in the tin compound that does not produce sulfate ions, the tin compound was thermally hydrolyzed. Later, similar floc formation is achieved by adding sulfuric acid. Stannous sulphate is suitable as the tin compound from the viewpoint of simultaneously producing tin oxide and sulfate ions by thermal hydrolysis. For the formation of flocs by sulfate ions, it is appropriate that the sulfate ion concentration in the reaction system be 15 g / or more.
被覆混合されるアンチモン固溶酸化スズのアンチモン含
有量はあまり少ないと良好な導電性を確保することがで
きず、あまり多いとプラスチック等に混入した時透明感
を損なうので、0.1〜25重量%の範囲が適当である。If the antimony content of the antimony solid solution tin oxide to be mixed with the coating is too low, good electrical conductivity cannot be ensured, and if it is too high, the transparency will be impaired when it is mixed with plastics. The range is appropriate.
被覆混合量は比表面積との関係から、あまり少ないと良
好な導電性が得られず、あまり多いと経済的でなく、ま
た、酸化チタンの滑材効果が発揮されないため、全体の
割合で30〜70重量%が適当である。In view of the relationship with the specific surface area, if the coating mixture amount is too small, good conductivity cannot be obtained, and if it is too large, it is uneconomical, and the lubricating effect of titanium oxide is not exhibited. 70% by weight is suitable.
生成されたアンチモン固溶酸化スズの平均粒径は0.1μ
m以上であると透明感を損なうため、加水分解を熱加水
分解で行い、好ましくは、0.05μm以下の平均粒径を有
するアンチモン固溶酸化スズ微粉末で酸化チタン微粉末
を被覆混合することが適当である。The average particle size of the produced antimony solid solution tin oxide is 0.1μ.
If it is more than m, transparency is impaired, so hydrolysis is carried out by thermal hydrolysis, and preferably titanium oxide fine powder is coated and mixed with antimony solid solution tin oxide fine powder having an average particle diameter of 0.05 μm or less. Appropriate.
以下実施例を挙げて本発明をさらに詳細に説明するが本
発明は勿論これらに限定されるものではない。Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
実施例1 比表面積101.5m2/gのTiO2100gを純水1500ml
に撹拌分散させ、温度90℃に加熱保持する。次いで別
途用意した純水600mlに、SnSO4142.5gを溶解した溶
液および3N HCl水溶液40mlにSbCl323.9gを溶解した
溶液を2時間かけて別途滴下した。滴下終了後2時間沸
騰させた後、生成物をロ過、洗浄し、500℃で2時間
加熱処理し粉砕し、本発明の導電性複合微粉末を製造し
た。この結果得られた粉末は比抵抗3.5KΩ・cmを有し
た。得られた粉末を塗料の固型分中50重量%含有する
アクリル系塗料(バインダー,大日本インキ社製,商品
名ボンコートAW-7216C)をポリエステルフィルムに3m2
/g塗布した塗工フィルムの表面抵抗率は7.8×107
Ω/□であり、かつ、光透過率は78%であった。Example 1 100 g of TiO 2 having a specific surface area of 101.5 m 2 / g was added to 1500 ml of pure water.
The mixture is stirred and dispersed in and heated at 90 ° C. Next, a solution prepared by dissolving 142.5 g of SnSO 4 and a solution prepared by dissolving 23.9 g of SbCl 3 in 40 ml of a 3N HCl aqueous solution were separately added dropwise to 600 ml of separately prepared pure water over 2 hours. After boiling for 2 hours after the completion of dropping, the product was filtered, washed, heat-treated at 500 ° C. for 2 hours and pulverized to produce the conductive composite fine powder of the present invention. The resulting powder had a specific resistance 3.5 K Ω · cm. Acrylic paint (binder, manufactured by Dainippon Ink and Co., trade name Boncoat AW-7216C) containing 50% by weight of the obtained powder in the solid content of the paint is applied to a polyester film of 3 m 2
The surface resistivity of the coated film applied / g is 7.8 × 10 7.
Ω / □, and the light transmittance was 78%.
比較例1 比表面積101.5m2/gのTiO2100gを純水1000ml
に撹拌分散させ、温度70℃に加熱保持する。次いで別
途用意した3.7N HCl溶液150mlにSnCl4・5H2O232.6
gおよびSbCl323.9gを溶解した溶液とNH3水溶液とを懸
濁液のpHが8を維持するように1時間かけて滴下し
た。生成物をロ過、洗浄後500℃2時間加熱処理し、
白色導電性粉末を製造した。この結果得られた粉末は、
比抵抗90Ω・cmを有した。以下実施例1と同様に塗布
した結果、表面抵抗率は9×106Ω/□であり、か
つ、光透過率は28%であった。Comparative Example 1 100 g of TiO 2 having a specific surface area of 101.5 m 2 / g and 1000 ml of pure water
The mixture is stirred and dispersed in, and the temperature is maintained at 70 ° C by heating. Then, 150 ml of 3.7N HCl solution prepared separately was added to SnCl 4 · 5H 2 O 232.6
and a solution of 23.9 g of SbCl 3 and an aqueous NH 3 solution were added dropwise over 1 hour so that the pH of the suspension was maintained at 8. The product was filtered and washed, and then heat-treated at 500 ° C. for 2 hours,
A white conductive powder was produced. The resulting powder is
It had a specific resistance of 90 Ω · cm. As a result of coating in the same manner as in Example 1, the surface resistivity was 9 × 10 6 Ω / □ and the light transmittance was 28%.
実施例2 比表面積58.5m2/gのTiO2100gを純水1500mlに
撹拌分散させ、温度90℃に加熱保持する。以下実施例
1と同様に処理し、本発明の導電性複合微粉末を製造し
た。この結果得られた粉末は比抵抗3.1KΩ・cmを有し
た。さらに実施例1と同様に塗布した結果、表面抵抗率
は3.1×107Ω/□であり、かつ、光透過率は72%で
あった。The TiO 2 100 g of Example 2 specific surface area 58.5m 2 / g was stirred dispersed in pure water 1500 ml, heated maintained at a temperature 90 ° C.. Thereafter, the same treatment as in Example 1 was carried out to produce the conductive composite fine powder of the present invention. The resulting powder had a specific resistance 3.1 K Ω · cm. As a result of coating in the same manner as in Example 1, the surface resistivity was 3.1 × 10 7 Ω / □ and the light transmittance was 72%.
比較例2 比表面積20m2/gのTiO2100gを純水1500mlに
撹拌分散させ、温度90℃に加熱保持する。以下実施例
1と同様に処理し、白色導電性粉末を製造した。この結
果得られた粉末は比抵抗450Ω・cmを有した。The TiO 2 100 g of Comparative Example 2 specific surface area of 20 m 2 / g was stirred dispersed in pure water 1500 ml, heated maintained at a temperature 90 ° C.. Then, the same treatment as in Example 1 was carried out to produce a white conductive powder. The resulting powder had a specific resistance of 450 Ω · cm.
さらに実施例1と同様に塗布した結果、表面抵抗率は1.
0×107Ω/□であり、かつ、光透過率は26%であ
った。Further, as a result of coating in the same manner as in Example 1, the surface resistivity was 1.
It was 0 × 10 7 Ω / □ and the light transmittance was 26%.
実施例3 比表面積101.5m2/gのTiO2100gを純水1500ml
に撹拌分散させ、温度90℃に加熱保持する。ついで別
途用意した純水900mlにSnSO4213.7gを溶解した溶液
および3N HCl水溶液60mlにSbCl335.8g溶解した溶液
を2時間かけて別途滴下した。以下実施例1と同様に処
理し、本発明の導電性複合微粉末を製造した。この結
果、得られた粉末は、比抵抗1.2KΩ・cmを有した。さら
に実施例1と同様に塗布した結果、表面抵抗率は、4.3
×107Ω/□であり、かつ、光透過率は72%であっ
た。Example 3 1500 g of pure water was added with 100 g of TiO 2 having a specific surface area of 101.5 m 2 / g.
The mixture is stirred and dispersed in and heated at 90 ° C. Then, a solution of 213.7 g of SnSO 4 dissolved in 900 ml of separately prepared pure water and a solution of 35.8 g of SbCl 3 dissolved in 60 ml of a 3N HCl aqueous solution were separately added dropwise over 2 hours. Thereafter, the same treatment as in Example 1 was carried out to produce the conductive composite fine powder of the present invention. As a result, the obtained powder had a specific resistance 1.2 K Ω · cm. As a result of coating in the same manner as in Example 1, the surface resistivity was 4.3
It was × 10 7 Ω / □ and the light transmittance was 72%.
アンチモン固溶酸化スズ微粉末の粒径 測定装置:日立製作所社製 走査型電子顕微鏡(型式:
H−800) 測定方法:上記装置を用いて拡大写真を撮影し、各例の
アンチモン固溶酸化スズ微粉末の粒子径を100個ずつ
測定してその平均値を平均粒子径とした。Particle size measuring device of antimony solid solution tin oxide fine powder: Hitachi scanning electron microscope (model:
H-800) Measuring method: A magnified photograph was taken using the above-mentioned apparatus, 100 particles of antimony solid solution tin oxide fine powder of each example were measured, and the average value was taken as the average particle diameter.
アンチモン含量および被覆割合 測定装置:理学電機社製 蛍光X線分析装置(型式:3
3064M) 測定方法:上記装置を用いて、予め作成した検量線に基
づき、各例のアンチモン固溶酸化スズ微粉末金属成分を
定量し、そのデータから下記の式によりアンチモン含量
および被覆割合を算出した。Antimony content and coverage ratio measuring device: Rigaku Denki KK fluorescent X-ray analyzer (model: 3
3064M) Measuring method: Using the above-mentioned apparatus, the antimony solid solution tin oxide fine powder metal component of each example was quantified based on the calibration curve prepared in advance, and the antimony content and the coating ratio were calculated from the data by the following formulas. .
結果を下表に示す。 The results are shown in the table below.
Claims (2)
酸化チタン微粉末にアンチモン0.1〜25重量%を含
有し、残りが実質的に酸化スズからなる0.05μm以
下の平均粒径を有するアンチモン固溶酸化スズ微粉末を
全体割合で30〜70重量%被覆混合してなる透明感を
持った微粉末導電性材料。1. A titanium dioxide fine powder having a specific surface area of 50 to 120 m 2 / g, containing 0.1 to 25% by weight of antimony, and the balance being substantially tin oxide, having an average particle diameter of 0.05 μm or less. A fine powder conductive material having a transparent feeling, which is obtained by coating and mixing 30 to 70% by weight of antimony solid solution tin oxide fine powder having a total content of 30% to 70% by weight.
面積を有する二酸化チタン微粉末にスズ化合物およびア
ンチモン化合物の熱加水分解によってアンチモン0.1
〜25重量%を含有し残りが実質的に酸化スズからなる
0.05μm以下のアンチモン固溶酸化スズ微粉末を全
体割合で30〜70重量%被覆混合することよりなる微
粉末導電性材料の製造方法において、二酸化チタン微粉
末水性懸濁液へ塩化アンチモンの塩酸水溶液および硫酸
第一スズの水溶液を別々に同時添加し、熱加水分解する
ことを特徴とする前記微粉末導電性材料の製造方法。2. Antimony 0.1 in a titanium dioxide fine powder having a specific surface area of 50 to 120 m 2 / g in an aqueous suspension by thermal hydrolysis of a tin compound and an antimony compound.
A fine powder conductive material, which is obtained by coating and mixing 30 to 70% by weight of antimony solid solution tin oxide fine powder having a thickness of 0.05 to 25% by weight and the balance being substantially tin oxide and having a thickness of 0.05 μm or less. In the method, the method for producing a fine powder conductive material, characterized in that an aqueous solution of antimony chloride in hydrochloric acid and an aqueous solution of stannous sulfate are separately and simultaneously added to an aqueous suspension of fine powder of titanium dioxide, followed by thermal hydrolysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60118542A JPH0645459B2 (en) | 1985-05-30 | 1985-05-30 | Fine powder conductive material and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60118542A JPH0645459B2 (en) | 1985-05-30 | 1985-05-30 | Fine powder conductive material and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61277103A JPS61277103A (en) | 1986-12-08 |
JPH0645459B2 true JPH0645459B2 (en) | 1994-06-15 |
Family
ID=14739165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60118542A Expired - Lifetime JPH0645459B2 (en) | 1985-05-30 | 1985-05-30 | Fine powder conductive material and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645459B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021553B2 (en) * | 1979-09-14 | 1985-05-28 | 三菱マテリアル株式会社 | White conductive coated powder and its manufacturing method |
JPS5849307A (en) * | 1981-09-16 | 1983-03-23 | Pola Chem Ind Inc | Cosmetic |
JPS58209003A (en) * | 1982-05-28 | 1983-12-05 | チタン工業株式会社 | White conductive fine powder and method of producing same |
-
1985
- 1985-05-30 JP JP60118542A patent/JPH0645459B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61277103A (en) | 1986-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4373013A (en) | Electroconductive powder and process for production thereof | |
JP2999491B2 (en) | Conductive lamellar pigment | |
US4880703A (en) | Acicular electroconductive titanium oxide and process for producing same | |
JP2959928B2 (en) | White conductive resin composition | |
JP3357107B2 (en) | White conductive titanium dioxide powder and method for producing the same | |
EP0719730B1 (en) | Acicular electroconductive tin oxide fine particles and process for producing same | |
US5997775A (en) | Electrically conductive barium sulfate-containing composition and process of producing | |
JP2959927B2 (en) | White conductive powder and method for producing the same | |
JP3305405B2 (en) | Rod-shaped fine particle conductive titanium oxide and method for producing the same | |
US5534193A (en) | White electroconductive powders with antimony and tin oxides | |
JP3609159B2 (en) | Acicular conductive antimony-containing tin oxide fine powder and method for producing the same | |
JP2009199775A (en) | White conductive powder, its manufacturing method, and usage | |
JPS6021553B2 (en) | White conductive coated powder and its manufacturing method | |
JPH0645459B2 (en) | Fine powder conductive material and manufacturing method thereof | |
JP3195072B2 (en) | Fibrous conductive filler and method for producing the same | |
JP3875282B2 (en) | Conductive thin plate barium sulfate filler and method for producing the same | |
JP4078660B2 (en) | Conductive titanium oxide, process for producing the same, and plastic composition containing the same | |
JP3515625B2 (en) | Needle-like conductive tin oxide fine powder and method for producing the same | |
JPS6111254B2 (en) | ||
JPH06192592A (en) | Conductive filler and its preparation | |
JP3394556B2 (en) | Conductive barium sulfate filler and method for producing the same | |
JP3437667B2 (en) | White conductive powder and conductive resin composition using the same | |
JPH08217446A (en) | Strip-shaped conductive powder, its manufacturing method and use | |
JPS6021554B2 (en) | Manufacturing method of white conductive composite powder | |
JPH08143785A (en) | White conductive powder and its preparation |