JPH0645457B2 - Fluoride glass raw material manufacturing method - Google Patents
Fluoride glass raw material manufacturing methodInfo
- Publication number
- JPH0645457B2 JPH0645457B2 JP61062497A JP6249786A JPH0645457B2 JP H0645457 B2 JPH0645457 B2 JP H0645457B2 JP 61062497 A JP61062497 A JP 61062497A JP 6249786 A JP6249786 A JP 6249786A JP H0645457 B2 JPH0645457 B2 JP H0645457B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- glass raw
- bacl
- fluoride glass
- reaction tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002994 raw material Substances 0.000 title claims description 26
- 239000005383 fluoride glass Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000012535 impurity Substances 0.000 claims description 24
- 239000000460 chlorine Substances 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000000859 sublimation Methods 0.000 claims description 8
- 230000008022 sublimation Effects 0.000 claims description 8
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 229910001510 metal chloride Inorganic materials 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 30
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 28
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 28
- 229910052742 iron Inorganic materials 0.000 description 14
- 229910052697 platinum Inorganic materials 0.000 description 14
- 229910016036 BaF 2 Inorganic materials 0.000 description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 229910015475 FeF 2 Inorganic materials 0.000 description 6
- 229910005690 GdF 3 Inorganic materials 0.000 description 6
- 229910017768 LaF 3 Inorganic materials 0.000 description 6
- 238000009835 boiling Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005660 chlorination reaction Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003682 fluorination reaction Methods 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- -1 BaF 2 Chemical class 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 238000000516 activation analysis Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910021381 transition metal chloride Inorganic materials 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、フッ化物ファイバ原料として用いるために必
要な高純度フッ化物ガラス原料の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing a high-purity fluoride glass raw material required for use as a fluoride fiber raw material.
(従来の技術) 石英ファイバの伝送損失をしのぐ10-2〜10-3dB/Kmの最
低損失値を有する超低損失光ファイバの開発が行われて
いる。ZrF4を主成分とし、これにBaF2,GdF3,LaF3,YF
3,AlF3,LiF等を加えた多成分フッ化物ガラスがファイ
バ素材として有望視されている。(Prior Art) An ultra-low-loss optical fiber having a minimum loss value of 10 -2 to 10 -3 dB / Km that surpasses the transmission loss of quartz fiber is being developed. Zr F 4 is the main component, and BaF 2 , GdF 3 , LaF 3 , YF
Multi-component fluoride glass with addition of 3 , AlF 3 , LiF, etc. is considered as a promising fiber material.
超低損失光ファイバを実現するためには、原料の金属不
純物を減らすことが不可欠であり、特に遷移金属不純物
中において鉄不純物はその混入量を1ppb以下にまでに
低減する必要がある。このため、これまでにガラス原料
となるフッ化物の精製法が検討されており、昇華性を有
するZrF4に関しては、その蒸気圧がFeF3,FeF2の蒸気圧
より高いので、昇華精製法による鉄不純物の除去が有効
であることが知られている。In order to realize an ultra-low-loss optical fiber, it is essential to reduce the metal impurities in the raw material, and it is particularly necessary to reduce the amount of iron impurities in the transition metal impurities to 1 ppb or less. Therefore, a method for refining a fluoride as a glass raw material has been studied so far, and since ZrF 4 having a sublimation property has a higher vapor pressure than that of FeF 3 and FeF 2 , It is known that removal of iron impurities is effective.
またBaF2やLaF3,GdF3などは、FeF3,FeF2などより蒸気
圧が低いので、FeF3,FeF2の昇華除去による精製が試み
られている。Further, since BaF 2 , LaF 3 , GdF 3, etc. have a lower vapor pressure than FeF 3 , FeF 2, etc., purification by sublimation removal of FeF 3 , FeF 2 has been attempted.
しかしながら第5図に示すように、FeF3,FeF2の蒸気圧
は900℃でも10-2気圧から10-4気圧と低いので、前記昇
華除去による精製の手法においては、FeF3,FeF2をBa
F2,LaF3などから効率よく除去することが難しいという
問題があった。However, as shown in FIG. 5, the vapor pressures of FeF 3 and FeF 2 are as low as 10 −2 to 10 −4 atm even at 900 ° C. Therefore, in the purification method by sublimation removal, FeF 3 and FeF 2 are Ba
There is a problem that it is difficult to remove F 2 and LaF 3 efficiently.
(発明が解決しようとする問題点) 本発明は、従来フッ化物ガラス原料の精製法では効率の
良い除去が困難であった鉄不純物を、効率良く除き、超
低損失のフッ化物ファイバ用原料を得る製造方法を提供
することにある。(Problems to be Solved by the Invention) The present invention efficiently removes iron impurities, which have been difficult to remove efficiently by conventional refining methods for fluoride glass raw materials, to provide ultra-low loss raw materials for fluoride fibers. It is to provide the manufacturing method to obtain.
(問題点を解決するための手段) 本発明はBaF2,LaF3,GdF3等の非昇華性のフッ化物ガラ
ス原料を合成するにあたり、BaCl2等の金属塩化物から
成る原料を用い、この中に不純物として存在する遷移金
属塩化物を、塩素雰囲気中において該雰囲気を排気しつ
つ、100℃〜1100℃の温度で加熱処理することにより、
塩化物として昇華除去を行った金属塩化物をフッ素化し
てフッ化物ガラス原料を製造する。(Means for Solving Problems) The present invention uses a raw material composed of a metal chloride such as BaCl 2 in synthesizing a non-sublimable fluoride glass raw material such as BaF 2 , LaF 3 , and GdF 3. The transition metal chloride present as an impurity therein, while exhausting the atmosphere in a chlorine atmosphere, by heat treatment at a temperature of 100 ℃ ~ 1100 ℃,
The metal chloride that has been removed by sublimation as a chloride is fluorinated to produce a fluoride glass raw material.
従来の高純度フッ化物ガラス原料の合成法は、ガラス原
料をすべてフッ化物の形にした後、遷移金属不純物を昇
華除去するものであったが、本発明は、遷移金属不純物
を除去するにあたり、遷移金属不純物をフッ化物に比べ
蒸気圧の高い塩化物として昇華除去する。Conventional high-purity fluoride glass raw material synthesis method, after all the glass raw material in the form of fluoride, was to remove sublimation transition metal impurities, the present invention, in removing the transition metal impurities, The transition metal impurities are removed by sublimation as chloride having a higher vapor pressure than fluoride.
実施例1 第1図は本発明の一実施例の反応系の断面図であって、
1は電気炉、2は白金性反応筒、3は反応筒上部キァッ
プ、4は穴付き落しぶた、5は反応筒下部キャップ、6
は原料である。Example 1 FIG. 1 is a sectional view of a reaction system according to an example of the present invention,
1 is an electric furnace, 2 is a platinum reaction tube, 3 is a reaction tube upper cap, 4 is a dropper with a hole, 5 is a reaction tube lower cap, 6
Is a raw material.
BaF2を合成する場合、原料6としてBaCl2を反応筒2の
中に入れ、反応筒下部キャップ5からArガスまたはN2ガ
スを適当量混合したCl2ガスを、0.5/minの流量で反応
筒2の中に導入しつつ、反応筒上部から反応筒内雰囲気
を排気しながら、電気炉1でBaCl2を300℃の温度で加熱
した。導入されたCl2ガスは、穴付き落しぶた4の穴を
抜けてBaCl2原料中に行きわたる。When synthesizing BaF 2 , BaCl 2 as a raw material 6 is put in the reaction tube 2 and Cl 2 gas obtained by mixing an appropriate amount of Ar gas or N 2 gas from the reaction tube lower cap 5 is reacted at a flow rate of 0.5 / min. BaCl 2 was heated at a temperature of 300 ° C. in the electric furnace 1 while being introduced into the cylinder 2 and exhausting the atmosphere inside the reaction cylinder from the upper part of the reaction cylinder. The introduced Cl 2 gas passes through the holes of the dropper 4 with holes and spreads into the BaCl 2 raw material.
BaCl2内にFeCl3またはFeCl2の形で存在する鉄不純物の
うち、FeCl3は第2図に示すように、300℃で0.6気圧
という蒸気圧を有するので、300℃ではほとんど気化し
ないBaCl2から昇華除去される。またFeCl2は、Cl2存在
下では 2FeCl2+Cl2→2FeCl3 (1) のように反応して、FeCl3となる。Of the iron impurities present in the form of FeCl 3 or FeCl 2 in BaCl within 2, FeCl 3, as shown in FIG. 2, because it has a vapor pressure of 0.6 atm at 300 ° C., is negligible Evaporation at 300 ° C. Sublimated and removed from BaCl 2 . The FeCl 2, in the 2 presence Cl reacts as 2FeCl 2 + Cl 2 → 2FeCl 3 (1), the FeCl 3.
(1)式の反応平衡定数Kpは、次式で示される。The reaction equilibrium constant K p of the equation (1) is shown by the following equation.
ここで〔 〕は濃度を示す。 Here, [] indicates the concentration.
この平衡定数Kpと温度の関係を第3図に示す。The relationship between this equilibrium constant Kp and temperature is shown in FIG.
従ってFeCl2として存在する鉄不純物も、Cl2雰囲気中で
処理すれば、FeCl3の形で容易に除くことができる。こ
のCl2雰囲気中で処理を十分行った後、ArガスまたはN2
ガスを適当量混合したHFガスを、反応筒内に0.5/min
の流量で導入して600℃で加熱すことにより、BaF2を得
ることができた。Therefore, iron impurities existing as FeCl 2 can be easily removed in the form of FeCl 3 by treating in an atmosphere of Cl 2 . After sufficient treatment in this Cl 2 atmosphere, Ar gas or N 2
HF gas mixed with an appropriate amount of gas, 0.5 / min in the reaction tube
It was possible to obtain BaF 2 by introducing at a flow rate of and heating at 600 ° C.
なお上記塩素化処理プロセスは、反応筒を石英ガラス等
で作製して気密性を良くし、BaCl2原料をCl2雰囲気中で
焼成した後、反応筒下部キャップ5のガス導入孔を閉
め、反応筒内を真空排気するというプロセスをとっても
よい。In the above chlorination process, the reaction tube is made of quartz glass or the like to improve airtightness, the BaCl 2 raw material is fired in a Cl 2 atmosphere, and then the gas introduction hole of the reaction tube lower cap 5 is closed. A process of evacuating the inside of the cylinder may be adopted.
原料6としてLaCl3,GdCl3を用いた場合についても、白
金製反応筒中で300℃の温度で塩素雰囲気中で加熱処理
をした後、200℃〜900℃の温度でHFによるフッ素化処理
を行い、LaF3,GdF3を得ることができた。Also when using LaCl 3 and GdCl 3 as the raw material 6, after heat treatment in a platinum atmosphere in a chlorine atmosphere at a temperature of 300 ° C., fluorination treatment with HF is performed at a temperature of 200 ° C. to 900 ° C. , LaF 3 and GdF 3 were obtained.
BaCl2,LaCl3,GdCl3中の鉄不純物量を放射化分析によ
り分析した結果、鉄不純物は1ppm〜10ppm程度含まれて
いたが、上記手法により得られたフッ化物中の鉄不純物
は1ppb以下にまで除去されていた。As a result of analysis of the amount of iron impurities in BaCl 2 , LaCl 3 , and GdCl 3 by activation analysis, the amount of iron impurities was about 1 ppm to 10 ppm, but the amount of iron impurities in the fluoride obtained by the above method was 1 ppb or less. Had been removed until.
なお塩化物をフッ素化するために用いるガスは、HFガス
だけに限らず、F2ガス等を用いてもよい。The gas used for fluorinating the chloride is not limited to HF gas, and F 2 gas or the like may be used.
また塩素化処理する温度は、平衡定数Kpが10-6以下とい
う小さな値になり、かつFeCl3の蒸気圧も10-7気圧以下
となる100℃以下にならない方が、処理効率は良い。Further, the chlorination temperature has a low equilibrium constant Kp of 10 −6 or less, and the vapor pressure of FeCl 3 does not reach 100 ° C. or less, which is 10 −7 atm or less, so that the treatment efficiency is better.
実施例2 第4図は本発明の他の実施例の反応系の部分断面部であ
って、7は白金製反応筒であり、8は圧粉体原料を支持
する白金棒であり、9は白金棒8を通し、白金製反応筒
7を閉じる白金反応筒上部シールである。Example 2 FIG. 4 is a partial sectional view of a reaction system of another example of the present invention, 7 is a platinum reaction tube, 8 is a platinum rod for supporting a green compact raw material, and 9 is This is a platinum reaction tube upper part seal through which the platinum rod 8 is passed and the platinum reaction tube 7 is closed.
BaF2を合成する場合、まず白金棒8で支持したBaCl2の
圧粉体を作製して、反応筒7に設置し、電気炉1で300
℃の温度で加熱しながら反応筒下部からArガスまたはN2
を適当量混合したCl2ガスを、0.5/minの流量で導入し
た。実施例1と同様に、Cl2が圧粉体中に浸入し、FeCl2
不純物はFeCl3となり、BaCl2中の鉄不純物はFeCl3の形
で除去することができる。この塩素化処理を十分行った
後、Cl2ガスの代わりに、ArまたはN2ガスを適当量混合
したHFガスを、反応筒下部から導入して、600℃で加熱
することによりBaF2を得ることができた。When synthesizing BaF 2 , first, a compressed powder of BaCl 2 supported by a platinum rod 8 is prepared, placed in a reaction cylinder 7, and then heated in an electric furnace 1 to 300 ° C.
Ar gas or N 2 from the bottom of the reaction tube while heating at a temperature of ℃
Cl 2 gas mixed with an appropriate amount was introduced at a flow rate of 0.5 / min. As in Example 1, Cl 2 penetrated into the green compact and FeCl 2
The impurities become FeCl 3 and the iron impurities in BaCl 2 can be removed in the form of FeCl 3 . After sufficiently performing this chlorination treatment, instead of Cl 2 gas, HF gas in which an appropriate amount of Ar or N 2 gas is mixed is introduced from the lower part of the reaction tube and heated at 600 ° C. to obtain BaF 2 . I was able to.
LaCl3,GdCl3についても、BaCl2と同様に圧粉体を作製
し、300℃の温度で塩素雰囲気中で加熱処理した後、100
℃〜900℃の温度でHFガスのフッ素化処理を行い、La
F3,GdF3を得ることができた。For LaCl 3 and GdCl 3 as well as BaCl 2 , a green compact was prepared and heat-treated at a temperature of 300 ° C in a chlorine atmosphere.
Perform fluorination of HF gas at a temperature of ℃ ~ 900 ℃, La
We were able to obtain F 3 and GdF 3 .
これらの得られたフッ化物中の鉄不純物量は、1ppb以
下までに低減されていた。The amount of iron impurities in these obtained fluorides was reduced to 1 ppb or less.
なおフッ化物ガラス原料用のフッ化物焼結体となるよう
秤量混合された、たとえばBaCl2−LaCl3とBaCl2−GdCl3
の混合物を300℃の温度で塩素化処理した後、フッ素化
して鉄不純物量1ppb以下のフッ化物ガラス原料用焼結
体を得ることができた。Note that, for example, BaCl 2 -LaCl 3 and BaCl 2 -GdCl 3 were weighed and mixed to form a fluoride sintered body for a fluoride glass raw material.
The mixture was chlorinated at a temperature of 300 ° C., and then fluorinated to obtain a sintered body for a fluoride glass raw material having an iron impurity content of 1 ppb or less.
実施例3 BaCl2石英るつぼに入れ、これを、塩素ガスを導入して
塩素雰囲気とした石英反応管の中に置き、1100℃で加熱
し、反応管内部を排気した。Example 3 A BaCl 2 quartz crucible was placed, placed in a quartz reaction tube in which chlorine gas was introduced to create a chlorine atmosphere, heated at 1100 ° C., and the inside of the reaction tube was evacuated.
その後白金るつぼ中にBaCl2を移し、白金反応管中でHF
雰囲気で600℃で加熱フッ素化し、BaF2を得た。1100℃
でBaCl2を加熱することによりBaCl2中のNiCl2(沸点:9
73℃)、CoCl2(沸点:1050℃)等の損失要因となる不
純物、およびFeCl3と一部がFeCl2の状態を取っている鉄
不純物も除くことができ、得られたBaF2を放射化分析に
より分析したところ、鉄、ニッケル、コバルト不純物と
も1ppb以下であった。After that, transfer BaCl 2 into a platinum crucible, and put HF in the platinum reaction tube.
By heating and fluorinating at 600 ° C. in an atmosphere, BaF 2 was obtained. 1100 ° C
In NiCl 2 (boiling point of BaCl 2 by heating the BaCl 2: 9
73C), CoCl 2 (boiling point: 1050 ℃), and other impurities that cause loss, and FeCl 3 and iron impurities that are partly in the state of FeCl 2 can also be removed, and the resulting BaF 2 is radiated. When analyzed by chemical analysis, iron, nickel, and cobalt impurities were all less than 1 ppb.
この場合、BaCl2の塩素雰囲気での加熱温度は、NiCl2や
CoCl2の沸点以上であることが精製効率上好ましいが、
温度を上げ過ぎるとBaCl2の気化量も多くなるので、110
0℃以上である必要はない。In this case, the heating temperature of BaCl 2 in the chlorine atmosphere is NiCl 2 or
It is preferable that the boiling point is higher than the boiling point of CoCl 2 in terms of purification efficiency,
If the temperature is raised too high , the amount of BaCl 2 vaporized will increase, so 110
It does not need to be 0 ° C or higher.
以上の実施例は、原料としてBaCl2,LaCl3,GdCl3を用
いた例について述べたが、Ia族、IIa族、IIb族、II
Ia族、またはIVb族の金属塩化物を用いても、同様に
フッ化物ガラス原料を製造できる。Above embodiment has been described example using BaCl 2, LaCl 3, GdCl 3 as a starting material, I a group, II a group, II b group, II
Be used I a group, or IV b group metal chlorides, it can be produced fluoride glass raw materials as well.
(発明の効果) 以上説明したように、本発明によれば、従来の昇華精製
法では困難であった非昇華性のBaF2,LaF3,GdF3等のフ
ッ化物より、鉄不純物を除くことができるので、従来得
られなかった遷移金属不純物量の極めて少ない超低損失
フッ化物ファイバ用原料を作製することができる。(Effects of the Invention) As described above, according to the present invention, it is possible to remove iron impurities from non-sublimable fluorides such as BaF 2 , LaF 3 and GdF 3 which have been difficult by the conventional sublimation purification method. Therefore, it is possible to produce a raw material for an ultra-low-loss fluoride fiber that has an extremely small amount of transition metal impurities, which has not been obtained conventionally.
第1図は本発明の一実施例の反応系の断面図、 第2図はFeCl3の蒸気圧曲線を示す図、 第3図は2FeCl2+Cl2→2FeCl3反応の平衡定数(log K
p)と温度の関係を示す図、 第4図は本発明の他の実施例の反応系の部分断面図 第5図はFeF3,FeF2の蒸気圧曲線を示す図である。 1……電気炉、2……白金製反応筒 3……反応筒上部キャップ 4……穴付き落しぶた、5……反応筒下部キャップ 6……原料、7……白金製反応筒 8……白金棒、9……白金反応筒上部シールFIG. 1 is a sectional view of a reaction system according to an embodiment of the present invention, FIG. 2 is a diagram showing a vapor pressure curve of FeCl 3 , and FIG. 3 is an equilibrium constant (log K of 2FeCl 2 + Cl 2 → 2FeCl 3 reaction).
FIG. 4 is a partial sectional view of a reaction system according to another embodiment of the present invention. FIG. 5 is a diagram showing vapor pressure curves of FeF 3 and FeF 2 . 1 ... Electric furnace, 2 ... Platinum reaction tube 3 ... Reaction tube upper cap 4 ... Hole with dropper 5 ... Reaction tube lower cap 6 ... Raw material, 7 ... Platinum reaction tube 8 ... Platinum Rod, 9 ... Platinum reaction cylinder top seal
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C03C 1/02 3/32 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C03C 1/02 3/32
Claims (1)
はIVb族の金属塩化物を、塩素雰囲気中において該雰囲
気を排気しつつ、100℃〜1100℃の温度で加熱処
理することにより、遷移金属不純物を塩化物として昇華
除去を行った金属塩化物と、フッ素含有ガスとを反応さ
せて、フッ化物ガラス原料を得ることを特徴とするフッ
化物ガラス原料の製造方法。1. A I a group, II a group, II b, Group III a group, or a IV b group metal chlorides, while exhausting the atmosphere in a chlorine atmosphere at a temperature of 100 ° C. C. to 1100 ° C. A method for producing a fluoride glass raw material, characterized in that a fluoride glass raw material is obtained by reacting a metal chloride that has undergone sublimation removal with a transition metal impurity as a chloride by heat treatment, and a fluorine-containing gas to obtain a fluoride glass raw material. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61062497A JPH0645457B2 (en) | 1986-03-20 | 1986-03-20 | Fluoride glass raw material manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61062497A JPH0645457B2 (en) | 1986-03-20 | 1986-03-20 | Fluoride glass raw material manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62223017A JPS62223017A (en) | 1987-10-01 |
JPH0645457B2 true JPH0645457B2 (en) | 1994-06-15 |
Family
ID=13201860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61062497A Expired - Lifetime JPH0645457B2 (en) | 1986-03-20 | 1986-03-20 | Fluoride glass raw material manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645457B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2646415B1 (en) * | 1989-04-28 | 1992-04-03 | Rhone Poulenc Chimie | DEHYDRATED RARE EARTH HALIDES AND PROCESS FOR PRODUCING THE SAME |
FR2648802B1 (en) * | 1989-06-22 | 1991-09-20 | Rhone Poulenc Chimie | DEHYDRATE MIXTURES OF RARE EARTH HALIDE AND ALKALINE EARTH OR ALKALINE |
-
1986
- 1986-03-20 JP JP61062497A patent/JPH0645457B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62223017A (en) | 1987-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6319550B1 (en) | Method and apparatus for treating silica granules using porous graphite crucible | |
JPH04119939A (en) | Manufacturing method of optical fiber base material | |
Cunningham et al. | Terbium Tetrafluoride: Preparation and Properties1 | |
Robinson | Processing and purification techniques of heavy metal fluoride glass (HMFG) | |
Reisman | Heterogeneous equilibria in the system K2CO3-Na2CO3 | |
EP0370480B1 (en) | Process for the production of high purity zirconium tetrafluoride and other fluorides | |
US20040089223A1 (en) | Preparation of crystals | |
JPH0645457B2 (en) | Fluoride glass raw material manufacturing method | |
US4652438A (en) | Chemical vapor purification of fluorides | |
Pastor et al. | Crystal growth of alkaline earth fluorides in a reactive atmosphere | |
Robinson | Preparation and purification of fluoride glass starting materials | |
US4182744A (en) | Extracting columbium-tantalum values from pyrochlore ores | |
JP2772302B2 (en) | Method for producing high-purity metal fluoride | |
EP0190140A1 (en) | Process for the removal of impurities from optical component materials. | |
FR2646415A1 (en) | HALIDES OF RARE EARTHS DEHYDRATES AND PROCESS FOR PRODUCTION THEREOF | |
JP2559040B2 (en) | Method for producing metal fluoride | |
US2535572A (en) | Preparation of uf6 | |
JPH0442802A (en) | Production of high-purity metal fluoride | |
JP2001064015A (en) | Production method of rare earth fluoride | |
US3007772A (en) | Preparation of metallic fluorides | |
RU2186744C1 (en) | METHOD OF PRODUCTION OF GLASSES GexS1-x (X=0,1-0,5) | |
USRE32777E (en) | Chemical vapor purification of fluorides | |
JPH0672017B2 (en) | Method for producing high-purity hafnium fluoride | |
Walker et al. | The determination of carbon in sodium | |
JPS60239339A (en) | Preparation of parent material for optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |