[go: up one dir, main page]

JPH0644421B2 - Superconducting conductor - Google Patents

Superconducting conductor

Info

Publication number
JPH0644421B2
JPH0644421B2 JP61102555A JP10255586A JPH0644421B2 JP H0644421 B2 JPH0644421 B2 JP H0644421B2 JP 61102555 A JP61102555 A JP 61102555A JP 10255586 A JP10255586 A JP 10255586A JP H0644421 B2 JPH0644421 B2 JP H0644421B2
Authority
JP
Japan
Prior art keywords
superconducting
conductor
heat
thermal conductivity
superconducting conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61102555A
Other languages
Japanese (ja)
Other versions
JPS62259307A (en
Inventor
文雄 飯田
直文 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61102555A priority Critical patent/JPH0644421B2/en
Publication of JPS62259307A publication Critical patent/JPS62259307A/en
Publication of JPH0644421B2 publication Critical patent/JPH0644421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導導体に係り、特に密巻超電導コイルおよ
び強制冷凍型超電導コイル等に適用するに好適な超電導
導体に関する。
Description: TECHNICAL FIELD The present invention relates to a superconducting conductor, and more particularly to a superconducting conductor suitable for application to a tightly wound superconducting coil, a forced refrigeration type superconducting coil, and the like.

〔従来の技術〕[Conventional technology]

従来の超電導導体は、絶縁のためにその表面を有機絶縁
物で被覆された構造となつているが、高温で熱処理され
る化合物系超電導材を用いた線材の場合は、有機絶縁物
は適用できないという重要な問題が生じていた。そこ
で、特開昭49−57793号公報に記載されているように、
セラミツクエナメル塗装が提案された。しかし、このセ
ラミツクエナメルの欠点は、高温熱処理による焼付けの
際、分解時の収縮等により絶縁性が低下したり、あるい
は破壊したりするということが挙げられる。また、絶縁
物の熱伝導性に関して全く注意が払われていなかつた。
Conventional superconducting conductors have a structure in which the surface is covered with an organic insulator for insulation, but organic insulators cannot be applied to wire rods using compound superconducting materials that are heat-treated at high temperatures. There was an important problem. Therefore, as described in JP-A-49-57793,
Ceramic enamel coating was proposed. However, a drawback of this ceramic enamel is that, when baked by high temperature heat treatment, the insulating property is reduced or broken due to shrinkage during decomposition. Also, no attention has been paid to the thermal conductivity of the insulation.

すなわち、特開昭49−57793号公報においては、絶縁材
としてセラミツクエナメルを塗装焼付し、加熱してセラ
ミツクを溶融密着させ、コイルを一体化すると記載され
ているが、セラミックを溶融密着するためには2000
℃以上の高温にしなければならない。しかし、これでは
超電導体の融点以上となり実質的に不可能である。ま
た、エナメルを使用しているので、本質的に従来の有機
絶縁と変わらない。
That is, in JP-A-49-57793, it is described that ceramic enamel is coated and baked as an insulating material, and the ceramic is melted and adhered by heating, and the coil is integrated. Is 2000
The temperature must be higher than ℃. However, with this, the melting point of the superconductor is exceeded and it is practically impossible. Also, since enamel is used, it is essentially the same as conventional organic insulation.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

したがつて、以上のような従来技術では、次のような問
題点があつた。
Therefore, the above conventional techniques have the following problems.

1.高温で拡散熱処理される化合物系超電導導体を用い
た超電導コイルでは、コイルの寸法および製作条件によ
り、巻線後に熱処理する必要がある場合、耐熱性の低い
有機絶縁を用いることができない。また、セラミツク粉
末をエナメルに混ぜたセラミツクエナメルは、熱処理に
よりエナメルが焼損し、このためセラミツク粒は剥離
し、絶縁性が保たれないものと考えられる。
1. In a superconducting coil using a compound-based superconducting conductor that is diffusion heat-treated at a high temperature, when heat treatment is required after winding, it is not possible to use an organic insulation having low heat resistance, depending on the dimensions and manufacturing conditions of the coil. Further, in the ceramic enamel in which the ceramic powder is mixed with the enamel, it is considered that the enamel is burnt out by the heat treatment, so that the ceramic particles are peeled off and the insulating property is not maintained.

2.有機絶縁物の熱伝導率は、金属のそれに比べて桁違
いに低く、導体内部で発生した熱がこの絶縁物を通つて
冷媒へ伝達されていく。これにより、コイルの熱的安定
性を悪くしている。
2. The thermal conductivity of the organic insulator is significantly lower than that of metal, and the heat generated inside the conductor is transferred to the refrigerant through this insulator. This deteriorates the thermal stability of the coil.

3.化合物系超電導材を用いたバンドル型強制冷凍超電
導導体では、複数の超電導素線を撚つてコンジツトの中
に挿入し、熱処理を行う。このため、従来技術では超電
導素線の表面に絶縁処理を施すことができず、よつて交
流磁界や大きな磁界変化を伴う運転においては、素線間
の結合損失のために導体の温度が上昇し、クエンチに到
る危険性を有する。また、結合損失で発生した熱は、超
電導コイルの冷凍液化機にとつて大きな熱負荷となる。
交流変動磁界を受ける核融合炉のポロイダルコイルで
は、超電導コイルの交流損失を低減することが重要な課
題となつている。
3. In a bundle type forced refrigeration superconducting conductor using a compound superconducting material, a plurality of superconducting element wires are twisted and inserted into a conduit, and heat treatment is performed. For this reason, in the conventional technology, the surface of the superconducting wire cannot be subjected to an insulation treatment, so that in the operation involving an alternating magnetic field or a large magnetic field change, the temperature of the conductor rises due to the coupling loss between the wires. , There is a risk of reaching a quench. Further, the heat generated by the coupling loss becomes a large heat load on the freeze liquefaction machine of the superconducting coil.
In the poloidal coil of a fusion reactor that receives an AC fluctuating magnetic field, reducing the AC loss of the superconducting coil is an important issue.

なお、無機絶縁の従来例として、化合物系超電導導体表
面にCuOの層を形成することが考えられるが、熱処理
時にCuO層が消失する等の問題がある。また、アルミ
ナを形成する場合もあるが、本発明はアルミナより優れ
た性能を持つ無機絶縁層を超電導導体の表面に形成する
ことが目的である。
As a conventional example of inorganic insulation, it is conceivable to form a CuO layer on the surface of a compound superconducting conductor, but there is a problem that the CuO layer disappears during heat treatment. Although alumina may be formed in some cases, the purpose of the present invention is to form an inorganic insulating layer having a performance superior to that of alumina on the surface of the superconducting conductor.

本発明の目的は、上述した各問題点に鑑みなされたもの
で、熱的に安定でかつ交流損失の低い高性能な超電導導
体を提供するにある。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a high-performance superconducting conductor that is thermally stable and has a low AC loss.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明は、超電導材を安定
化材中に埋設し、その超電導材を埋設した安定化材の表
面を無機絶縁層で囲むよう構成した超電導導体におい
て、前記絶縁層はBeO,SiC,TiC,Si
,AlNのセラミックス材料から成り、極低温に
おける熱伝導率が1×10-2W/cm/Kから2×10
1W/cm/Kの範囲内にある高熱伝導性かつ耐熱性を
有する無機絶縁層であることを特徴とする超電導導体で
ある。
In order to achieve the above object, the present invention is a superconducting material in which a superconducting material is embedded in a stabilizing material, and the surface of the stabilizing material in which the superconducting material is embedded is surrounded by an inorganic insulating layer. Is BeO, SiC, TiC, Si
It is made of a ceramic material of 3 N 4 and AlN and has a thermal conductivity of 1 × 10 −2 W / cm / K to 2 × 10 at extremely low temperatures.
A superconducting conductor, which is an inorganic insulating layer having high thermal conductivity and heat resistance within a range of 1 W / cm / K.

〔作用〕[Action]

上記本発明によれば、従来の有機絶縁物の代わりに高熱
伝導,耐熱性無機絶縁材を超電導導体にコーテイングす
ることにより、導体内で発生する熱の拡散がはやまり、
熱的安定性が増大する。
According to the present invention described above, by coating a superconducting conductor with a highly heat-conductive and heat-resistant inorganic insulating material instead of the conventional organic insulator, diffusion of heat generated in the conductor is stopped,
Thermal stability is increased.

また、熱処理の関係上、有機絶縁が不可能であつた化合
物系超電導材を用いたバンドル型強制冷凍導体の交流損
失を低減することができる。
Further, due to heat treatment, it is possible to reduce the AC loss of the bundle type forced refrigeration conductor using the compound-based superconducting material, which cannot be organically insulated.

第4図に高熱電導、耐熱性無機絶縁材(BeO,Si
C)の低温における熱伝導測定結果を示す。第4図を参
考にして、低温におけるこれらの無機絶縁材の熱伝導率
の範囲は1×10-2/cm/Kから2×101W/cm
/Kになる。比較のため金属(銅,SUS304)、有
機絶縁材(ポリエステル)、及び無機絶縁材(Al
)の熱伝導度を示す。10K以上の極低温において、
これらの高熱伝導、耐熱性無機絶縁材の熱伝導度は、有
機絶縁材の約2桁以上、またSUS304のそれと同等
またはそれ以上となつている。更に、第4図からは、B
eO及びSiCからなる本発明の無機絶縁材はAl
よりも優れた熱伝導度を持っていることが判る。
Fig. 4 shows high thermal conductivity and heat resistant inorganic insulating materials (BeO, Si
The heat conduction measurement result in the low temperature of C) is shown. Referring to FIG. 4, the range of the thermal conductivity of these inorganic insulating materials at low temperature is from 1 × 10 −2 / cm / K to 2 × 10 1 W / cm.
/ K. For comparison, metal (copper, SUS304), organic insulating material (polyester), and inorganic insulating material (Al 2 O)
3 ) shows the thermal conductivity. At extremely low temperatures above 10K,
The thermal conductivity of these highly heat-conductive and heat-resistant inorganic insulating materials is about two orders of magnitude higher than that of organic insulating materials, and equal to or higher than that of SUS304. Furthermore, from FIG. 4, B
The inorganic insulating material of the present invention composed of eO and SiC is Al 2 O.
It can be seen that it has better thermal conductivity than 3 .

ここで、絶縁材の熱伝導度が導体の安定性にどのように
寄与するか、単純なモデル(第5図参照)を用いて示
す。導体1の半径r、絶縁材2の厚さro−riとし、
導体1の内部の温度をTiとし、冷媒の温度T∞とした
とき、絶縁材2の熱伝導率k、冷媒への熱伝導率をhと
すると、この超電導体の長さL当りに導体1から絶縁材
2を通り、冷媒に移動する熱量は、 となる。
Here, a simple model (see FIG. 5) is used to show how the thermal conductivity of the insulating material contributes to the stability of the conductor. With the radius r i of the conductor 1 and the thickness r o −r i of the insulating material 2,
Assuming that the temperature inside the conductor 1 is T i and the temperature of the refrigerant is T ∞, the thermal conductivity k of the insulating material 2 and the thermal conductivity of the refrigerant to h are conductors per length L of this superconductor. The amount of heat transferred from 1 to the refrigerant through the insulating material 2 is Becomes

ここで、幾何学的形状は同一とし、絶縁層の材質を有機
絶縁(ポリエステル)と高熱伝導性無機絶縁(SiCセ
ラミツク)とした場合、それぞれの4.2Kにおける熱
伝導率は、k1=7×10-4W/cm・K,k2=1.5×10
-2W/cm・Kとなる。
Here, when the geometric shapes are the same and the insulating layers are made of organic insulation (polyester) and high thermal conductivity inorganic insulation (SiC ceramic), the thermal conductivity at 4.2K is k 1 = 7. × 10 -4 W / cm · K, k 2 = 1.5 × 10
-2 W / cm · K.

ここで、同一エネルギーqが導体から冷媒に流れ出ると
考えれば、導体の温度をTi1,Ti2としたとき、 となる。
Here, assuming that the same energy q flows out from the conductor to the refrigerant, when the temperatures of the conductors are T i1 and T i2 , Becomes

ΔT1=Ti1−T∞,ΔT2=Ti2−T∞とすれば、一般
設計では、 であるので、 となり、導体の温度上昇は絶縁物の熱伝導率に逆比例す
ることがわかる。
If ΔT 1 = T i1 −T ∞ and ΔT 2 = T i2 −T ∞, then in the general design, Therefore, It can be seen that the temperature rise of the conductor is inversely proportional to the thermal conductivity of the insulator.

したがつて、以上の検討から、絶縁物に有機絶縁を使用
する場合と、高熱伝導性無機絶縁を使用する場合とを比
較した場合、導体の温度上昇の割合は、k2/k1=21
倍違うことがわかる。すなわち、高熱伝導性無機絶縁を
施した超電導体は、同一発熱量を除去するとき、その温
度上昇は1/21と熱的に非常に安定である。
Therefore, from the above examination, when comparing the case of using the organic insulation as the insulator and the case of using the high thermal conductivity inorganic insulation, the rate of temperature rise of the conductor is k 2 / k 1 = 21.
You can see that it is different. That is, the superconductor provided with the high thermal conductivity inorganic insulation is thermally stable with a temperature rise of 1/21 when removing the same amount of heat generation.

〔実施例〕〔Example〕

以下、図に示す実施例を用いて本発明の詳細を説明す
る。
The present invention will be described in detail below with reference to the embodiments shown in the drawings.

第1図は、超電導材(フイラメント+バリア)3および
安定化材4から構成される代表的超電導導体5の表面
に、高熱伝導,耐熱性無機絶縁物(例、BeO,Si
C,TiC,Si,AlNのセラミツク材)6を
コーテイングしたものである。このコーテイング層は1
μm〜50μmの厚さとする。すなわち、1μm以下で
は絶縁性が低下し、かつ50μm以上では熱応力のひず
みでクラツクが発生するおそれがあるからである。
FIG. 1 shows a typical superconducting conductor 5 composed of a superconducting material (filament + barrier) 3 and a stabilizing material 4 on the surface of which has a high thermal conductivity and a heat resistant inorganic insulator (eg, BeO, Si).
C, TiC, Si 3 N 4 , AlN ceramic material) 6 is coated. This coating layer is 1
The thickness is set to μm to 50 μm. That is, when the thickness is 1 μm or less, the insulating property is deteriorated, and when the thickness is 50 μm or more, cracks may occur due to strain of thermal stress.

第2図は、第1図に示した本発明による超電導導体を用
いて作成される密巻き超電導コイルの巻線ボビン7の一
部を示す。従来の有機絶縁と違い、高熱導伝であつて、
かつ耐熱性の無機絶縁物6を超電導導体5の表面にコー
テイングしているので、超電導導体5内で発生した熱
は、導体長手方向はもちろん、上下左右に隣接する超電
導導体5に伝播する。これにより、発熱導体部分の温度
が分流開始温度以下に急速に下がり、常電導領域の伝播
が阻止されることにより、従来の有機絶縁を用いた超電
導コイルに比べ、熱的に安定性の高い超電導コイルを得
ることができる。また、従来の超電導コイルと違い、例
えコイルがクエンチしたとしても、熱が一箇所にこも
り、その部分が熱暴走し、溶解したりあるいは温度が上
がることにより、安定化材4の抵抗が増加し、高電圧が
発生することによる超電導導体5間の絶縁破壊という事
故を防止することができる。
FIG. 2 shows a part of the winding bobbin 7 of the tightly wound superconducting coil made by using the superconducting conductor according to the present invention shown in FIG. Unlike conventional organic insulation, it has high heat conduction,
Moreover, since the heat-resistant inorganic insulator 6 is coated on the surface of the superconducting conductor 5, the heat generated in the superconducting conductor 5 propagates not only in the conductor longitudinal direction but also to the superconducting conductors 5 adjacent to each other vertically and horizontally. As a result, the temperature of the heat-generating conductor portion rapidly drops below the shunt start temperature, and the propagation of the normal-conducting region is blocked, so that the superconducting coil has higher thermal stability than the conventional superconducting coil using organic insulation. A coil can be obtained. In addition, unlike the conventional superconducting coil, even if the coil is quenched, the heat stays in one place, and that part runs thermal runaway, melts or the temperature rises, and the resistance of the stabilizing material 4 increases. Therefore, it is possible to prevent an accident of dielectric breakdown between the superconducting conductors 5 due to the generation of high voltage.

第3図は、第1図に示した本発明による超電導導体5を
複数用いて撚線とし、コンジツト8内に納めたバンドル
型強制冷凍超電導導体の一例を示す。なお、符号9は冷
媒流路を示す。NbSn等の化合物系超電導材料を用
いた導体は、撚線後、コンジツト8内に挿入され、高温
で熱処理されるようになつている。このため、従来の有
機絶縁では、超電導撚線を絶縁して、撚線間の結合損失
を抑えることは不可能あつたが、本発明による超電導導
体5を複数本用いて超電導撚線とした場合にあつては、
交流損失の低い熱的に安定した高性能強制冷凍型の超電
導導体の製作が可能となる。
FIG. 3 shows an example of a bundle-type forced refrigeration superconducting conductor housed in a conduit 8 using a plurality of superconducting conductors 5 according to the present invention shown in FIG. 1 as a stranded wire. Note that reference numeral 9 indicates a refrigerant flow path. A conductor using a compound-based superconducting material such as Nb 3 Sn is designed to be inserted into the conduit 8 after being twisted and heat-treated at a high temperature. For this reason, in the conventional organic insulation, it is impossible to insulate the superconducting stranded wires and suppress the coupling loss between the stranded wires. However, when a plurality of superconducting conductors 5 according to the present invention are used to form the superconducting stranded wires. For that,
It is possible to manufacture a thermally stable high performance forced refrigeration type superconducting conductor with low AC loss.

なお、超電導導体の表面に高熱伝導,耐熱性無機絶縁物
(BeO,SiC,TiC,Si,AlNのセラ
ミツク材)をコーテイングする方法としては、スパツタ
リング,CVD(気相反応法),加圧焼結,ダイナミツ
クレンジ法等が考えられる。
As a method for coating the surface of the superconducting conductor with a highly heat-conductive and heat-resistant inorganic insulating material (BeO, SiC, TiC, Si 3 N 4 , AlN ceramic material), sputtering, CVD (gas phase reaction method), Pressure sintering, dynamic range method, etc. can be considered.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明に係る超電導導体によれ
ば、高熱伝導であつて、かつ耐熱性無機絶縁層を超電導
導体表面に形成することにより、超電導導体内に発生す
る熱をすみやかに、隣接する導体や冷媒に拡散すること
ができるようになつたので、常電導領域の発生や伝播を
阻止する効果を有する。また、本発明によれば、バンド
ル型強制冷凍導体(NbSn等の化合物系超電導材料
使用)の超電導撚線の絶縁に高熱伝導,耐熱性の無機絶
縁を使用することにより、熱処理における絶縁の損傷を
防止でき、かつ交流損失の低減に大きな効果が得られ
る。
As described above, according to the superconducting conductor of the present invention, the heat generated in the superconducting conductor is promptly and adjacently formed by forming the heat-resistant inorganic insulating layer on the superconducting conductor surface with high heat conduction. Since it can be diffused into the conductor and the coolant, it has an effect of preventing the generation and propagation of the normal conducting region. Further, according to the present invention, by using a high thermal conductive and heat resistant inorganic insulation for the insulation of the superconducting stranded wire of the bundle type forced refrigeration conductor (using a compound superconducting material such as Nb 3 Sn), the insulation during heat treatment can be improved. Damage can be prevented, and a great effect can be obtained in reducing AC loss.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る超電導導体の一実施例を示す一部
破断平面図、第2図は本発明の超電導導体を用いた超電
導コイルの要部断面図、第3図は本発明の超電導撚線を
用いたバンドル型強制冷凍超電導導体の一部破断平面
図、第4図は本発明の無機絶縁物(SiC,BeO)と
Cu,SUS304Lおよび有機絶縁物(ポリエステル)の低
温における熱伝導特性を示すグラフ、第5図は本発明の
原理説明図である。 3……超電導材、4……安定化材、5……超電導導体、
6……無機絶縁物。
FIG. 1 is a partially cutaway plan view showing an embodiment of a superconducting conductor according to the present invention, FIG. 2 is a sectional view of a main part of a superconducting coil using the superconducting conductor of the present invention, and FIG. 3 is a superconducting conductor of the present invention. Partially cutaway plan view of a bundle-type forced refrigeration superconducting conductor using a stranded wire, FIG. 4 is a heat conduction characteristic at low temperature of an inorganic insulator (SiC, BeO), Cu, SUS304L and an organic insulator (polyester) of the present invention. 5 is a graph showing the principle of the present invention. 3 ... Superconducting material, 4 ... Stabilizing material, 5 ... Superconducting conductor,
6 ... Inorganic insulator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超電導材(3)を安定化材(4)中に埋設
し、その超電導材(3)を埋設した安定化材(4)の表
面を無機絶縁層(6)で囲むよう構成した超電導導体
(5)において、 前記絶縁層(6)はBeO,SiC,TiC,Si3N4,AlNのセラ
ミックス材料から成り、極低温における熱伝導率が1×
10-2W/cm/Kから2×101W/cm/Kの範囲
内にある高熱伝導性かつ耐熱性を有する無機絶縁層であ
ることを特徴とする超電導導体。
1. A structure in which a superconducting material (3) is embedded in a stabilizing material (4), and the surface of the stabilizing material (4) in which the superconducting material (3) is embedded is surrounded by an inorganic insulating layer (6). In the superconducting conductor (5), the insulating layer (6) is made of a ceramic material such as BeO, SiC, TiC, Si 3 N 4 and AlN and has a thermal conductivity of 1 × at extremely low temperature.
A superconducting conductor, which is an inorganic insulating layer having a high thermal conductivity and a heat resistance in the range of 10 -2 W / cm / K to 2 × 10 1 W / cm / K.
JP61102555A 1986-05-02 1986-05-02 Superconducting conductor Expired - Lifetime JPH0644421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61102555A JPH0644421B2 (en) 1986-05-02 1986-05-02 Superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61102555A JPH0644421B2 (en) 1986-05-02 1986-05-02 Superconducting conductor

Publications (2)

Publication Number Publication Date
JPS62259307A JPS62259307A (en) 1987-11-11
JPH0644421B2 true JPH0644421B2 (en) 1994-06-08

Family

ID=14330486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61102555A Expired - Lifetime JPH0644421B2 (en) 1986-05-02 1986-05-02 Superconducting conductor

Country Status (1)

Country Link
JP (1) JPH0644421B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381707A (en) * 1986-09-26 1988-04-12 日本原子力研究所 Superconductor
JPS63250015A (en) * 1987-04-04 1988-10-17 Sumitomo Electric Ind Ltd Wire material for superconducting magnets
JP2653451B2 (en) * 1988-01-11 1997-09-17 日本原子力研究所 Method for determining insulation thickness of superconducting conductor
JPH1143610A (en) * 1997-07-28 1999-02-16 Fujikura Ltd High thermal conductive insulating material for super low temperature and superconducting cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844608A (en) * 1981-09-09 1983-03-15 住友電気工業株式会社 Method for manufacturing inorganic insulated superconducting conductor

Also Published As

Publication number Publication date
JPS62259307A (en) 1987-11-11

Similar Documents

Publication Publication Date Title
KR101782177B1 (en) Multifilament conductor and method for producing same
Vase et al. Current status of high-Tc wire
KR101213775B1 (en) superconductor cable
JP3984303B2 (en) High temperature superconductor and method of using the high temperature superconductor
US6393690B1 (en) Structure and method of manufacture for minimizing filament coupling losses in superconducting oxide composite articles
JPH07142245A (en) High temperature superconducting magnet, design method and operating method thereof, and method of manufacturing high temperature superconducting tape material
JP4844458B2 (en) Superconducting coil and superconducting conductor used therefor
JP3076418B2 (en) Multifilament superconducting cable and manufacturing method thereof
JPH0713888B2 (en) Superconducting wire
JP2923988B2 (en) Superconducting conductor
JP2960481B2 (en) Method for reducing eddy current in superconductor tape and superconductor device
JPH0644421B2 (en) Superconducting conductor
JP2929622B2 (en) How to use oxide superconductor
JP2004200178A (en) Oxide superconductor and method of manufacturing the same
JP4638983B2 (en) Superconductor and manufacturing method thereof
US3393386A (en) Semiconducting shunts for stabilizing superconducting magnet coils
JP4039049B2 (en) Multi-core oxide superconducting wire manufacturing method
KR20120092077A (en) Composite with coated conductor
JPH10247428A (en) Oxide superconductive wire
JP3363164B2 (en) Superconducting conductor
US20070191232A1 (en) Superconductor Wire Material Having Structure For Inhibiting Crack, Superconductor Power Cable Using The Same And Manufacturing Method Thereof
JPH05109323A (en) Superconducting collective conductor
KR20170040481A (en) A superconducting wire comprising an anchor
JPH01286729A (en) superconducting equipment
EP2672536B1 (en) Superconductive device with bridge contacts