JPH0644082B2 - Flat lens - Google Patents
Flat lensInfo
- Publication number
- JPH0644082B2 JPH0644082B2 JP60125896A JP12589685A JPH0644082B2 JP H0644082 B2 JPH0644082 B2 JP H0644082B2 JP 60125896 A JP60125896 A JP 60125896A JP 12589685 A JP12589685 A JP 12589685A JP H0644082 B2 JPH0644082 B2 JP H0644082B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- substrate
- refractive index
- mask
- diffusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 49
- 238000009792 diffusion process Methods 0.000 claims description 34
- 239000011521 glass Substances 0.000 claims description 25
- 230000003287 optical effect Effects 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 7
- 150000002500 ions Chemical class 0.000 description 32
- 230000004075 alteration Effects 0.000 description 17
- 229910052716 thallium Inorganic materials 0.000 description 15
- -1 thallium (Tl) ions Chemical class 0.000 description 15
- 238000009826 distribution Methods 0.000 description 13
- 238000011282 treatment Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000003449 preventive effect Effects 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000011276 addition treatment Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- MSHXTAQSSIEBQS-UHFFFAOYSA-N s-[3-carbamoylsulfanyl-2-(dimethylamino)propyl] carbamothioate;hydron;chloride Chemical compound [Cl-].NC(=O)SCC([NH+](C)C)CSC(N)=O MSHXTAQSSIEBQS-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、透明基板内に屈折率勾配レンズを一体形成し
た平板状レンズ(以下、平板マイクロレンズと記す)に
関する。The present invention relates to a flat plate lens (hereinafter, referred to as a flat plate microlens) in which a gradient index lens is integrally formed in a transparent substrate.
第9図に示すように、平板マイクロレンズ1はガラス・
プラスチック等の表面平坦な透明基板2の内部に、屈折
率勾配レンズ3を一体に埋め込み形成したものであり、
レンズ3は一方の屈折面が基板2の面と一致する平面
で、基板面の法線方向に光軸をもち、その屈折率分布
は、光軸方向に表面で最大で深部に向けて次第に減少
し、且つ光軸に直交する方向にも中心で最大で側縁に向
けて次第に減少する分布形状になっている。As shown in FIG. 9, the flat microlens 1 is made of glass.
A transparent substrate 2 having a flat surface, such as plastic, has a refractive index gradient lens 3 integrally embedded therein.
The lens 3 is a plane whose one refraction surface coincides with the surface of the substrate 2, has an optical axis in the normal direction of the substrate surface, and its refractive index distribution gradually decreases at the maximum in the optical axis direction toward the surface and toward the deep part. In addition, the distribution shape has a maximum at the center in the direction orthogonal to the optical axis and gradually decreases toward the side edge.
また平面形状としては第10図に示すように円形のも
の、第11図に示すようにライン状のものなどがある。Further, the planar shape includes a circular shape as shown in FIG. 10 and a line shape as shown in FIG.
上記のような平板マイクロレンズをつくる典型的な方法
について説明すると、第12図に示すようにまずガラス
基板2の表面を金属薄膜等から成るイオン透過防止マス
ク5で覆うとともに、このマスク5に、得ようとするレ
ンズの平面形状に相似の例えば円形の微小開口6を設け
ておく。そして上記の基板マスク面を、基板ガラスの屈
折率増大に寄与する陽イオン例えばタリウム(Tl)イオ
ンを含む溶融塩7に浸漬する。これにより、溶融塩7中
の陽イオンがマスク5の開口6を通して基板内に拡散
し、一定時間のイオン拡散処理の後基板内には、上記開
口近傍で最も濃度が高く深部および周辺に向けて次第に
減少するイオン濃度分布が形成され、このイオン濃度分
布によって前述した屈折率勾配部分すなわちレンズ3が
形成される。この平板マイクロレンズは、基板中に拡散
した物質が作る屈折率分布によって、レンズとして作用
する。したがって、屈折率分布領域の寸法を一般的なレ
ンズと同等に取り扱うことができる。Explaining a typical method of producing the above-mentioned flat plate microlens, as shown in FIG. 12, first, the surface of the glass substrate 2 is covered with an ion permeation preventive mask 5 made of a metal thin film or the like, and For example, a circular minute opening 6 similar to the planar shape of the lens to be obtained is provided. Then, the substrate mask surface is dipped in a molten salt 7 containing cations, such as thallium (Tl) ions, which contribute to increasing the refractive index of the substrate glass. As a result, the cations in the molten salt 7 diffuse into the substrate through the opening 6 of the mask 5, and after the ion diffusion process for a certain time, the concentration of the cation is highest near the opening toward the deep and peripheral portions. A gradually decreasing ion concentration distribution is formed, and this refractive index gradient portion, that is, the lens 3 is formed by this ion concentration distribution. This flat plate microlens functions as a lens due to the refractive index distribution created by the substance diffused in the substrate. Therefore, the size of the refractive index distribution region can be treated in the same manner as a general lens.
従来の平板マイクロレンズでは、第13図に示すように
基板面上における屈折率増大に寄与する物質の基板面上
の拡散領域をレンズ径2a、前記物質の光軸方向での拡
散領域をレンズ厚みdとしてd/a=1.0すなわち断
面形状がほぼ完全な半円形につくられており、また完全
な半円形である場合が最良の光学特性を発揮すると信じ
られ、製法の研究もレンズ断面形状をいかに完全半円形
に近づけるかに注力されていた。(例えば、M.Oikawa,
K.Iga and T.Sanada, ;“Distributed-index planer m
icrolens arrey prepared from deep electronigratio
n”,Electron.Lett.,17(13) 452-454 (1981)) しかるに本発明者らが実験検討を重ねた結果、イオン拡
散で形成したなだらかな屈折率勾配をもつ平板マイクロ
レンズにおいては、その断面形状を完全な半円形に近づ
けた場合、レンズに入射する光線のうち光軸近傍部入射
光線8の焦点8Aと周縁近傍入射光線9の焦点9Aとで位置
ずれを生じ、収差が大きくなってレンズとして有効に使
える開口数が小さくなる傾向と、レンズ断面形状を一定
の範囲内の偏平率(以下、d/aを偏平率とよぶ)にす
ると上記収差が極小になってレンズとしての有効開口数
を大きくできることを見い出した。In the conventional flat plate microlens, as shown in FIG. 13, the diffusion area of the substance that contributes to the increase of the refractive index on the substrate surface is the lens diameter 2a, and the diffusion region of the substance in the optical axis direction is the lens thickness. It is believed that d / a = 1.0, that is, the cross-sectional shape is a nearly perfect semi-circle, and that the best optical characteristics are exhibited when the shape is a perfect semi-circle. Was focused on how close to a perfect semicircle. (For example, M. Oikawa,
K. Iga and T. Sanada, ; “Distributed-index planer m
icrolens arrey prepared from deep electronigratio
n ”, Electron. Lett., 17 (13) 452-454 (1981)) However, as a result of the experiments conducted by the present inventors, in a flat plate microlens having a gentle refractive index gradient formed by ion diffusion, When the cross-sectional shape is approximated to a perfect semi-circle, a misalignment occurs between the focal point 8A of the incident ray 8 near the optical axis and the focal point 9A of the incident ray 9 near the peripheral edge of the ray incident on the lens, and the aberration increases. The number of apertures that can be effectively used as a lens is small, and when the lens cross-sectional shape has a flatness within a certain range (hereinafter, d / a is referred to as a flatness), the above aberration is minimized and the lens is effective. We have found that the numerical aperture can be increased.
なお、第2図,第3図,第2図,第4図および第13図
において、光線は表記の便宜上、イオン拡散によるレン
ズ部分の輪郭面(詳しくは後述)で屈折したように記述
されている。しかしながら、本質的に光線は屈折率差に
よって屈折しており、具体的には、屈折率勾配の部分で
連続的に屈折していることになる。It should be noted that, in FIGS. 2, 3, 2, 4, and 13, the light rays are described as being refracted at the contour surface of the lens portion (described later in detail) due to ion diffusion for convenience of notation. There is. However, the light rays are essentially refracted by the difference in the refractive index, and specifically, they are continuously refracted at the portion of the refractive index gradient.
本発明は上記知見に基づいて完成したものである。The present invention has been completed based on the above findings.
透明基板内に、この基板面法線方向に光軸をもち、且つ
光軸方向および光軸に直交する方向に向けてなだらかに
変化する屈折率勾配をもつレンズを一体形成した平板状
レンズにおいて、前記光軸上でのレンズ厚みをdとし、
基板面上でのレンズ径を2aとたとき、d/aを0.46ないし
0.78の範囲内とする。In a transparent lens, a plate-shaped lens integrally formed with a lens having an optical axis in the normal direction of the substrate surface and having a refractive index gradient that gently changes toward the optical axis direction and a direction orthogonal to the optical axis, Let d be the lens thickness on the optical axis,
When the lens diameter on the substrate surface is 2a, d / a is 0.46 or
Within the range of 0.78.
上記のように屈折率勾配レンズ部分の断面形状を偏平に
すると略半円形の場合に比べて、レンズ収差が小さくな
り後述具体例に示すように、それだけレンズの有効開口
数を大きくすることができる。When the cross-sectional shape of the gradient index lens portion is made flat as described above, the lens aberration becomes smaller than in the case of a substantially semi-circular shape, and the effective numerical aperture of the lens can be correspondingly increased as shown in a specific example described later. .
以下本発明を図面に示した実施例に基づいて詳細に説明
する。The present invention will be described below in detail based on the embodiments shown in the drawings.
第1図は本発明に係る平板マイクロレンズ10の断面図
であり、透明ガラス基板11内に屈折率勾配レンズ12
が一体に形成されている。このレンズ12は基板面法線
方向に光軸13をもち、この光軸13と基板表面との交
点14近傍で、拡散したイオンの濃度が最大となり、屈
折率も最大で、基板深部および側方に向けて放射状に次
第に、拡散したイオンの濃度とともに、屈折率が減少す
る屈折率分布をもっている。FIG. 1 is a sectional view of a flat plate microlens 10 according to the present invention, in which a refractive index gradient lens 12 is provided in a transparent glass substrate 11.
Are integrally formed. This lens 12 has an optical axis 13 in the direction normal to the substrate surface, and the concentration of diffused ions is maximized near the intersection 14 of this optical axis 13 and the substrate surface, and the refractive index is also maximized. It has a refractive index distribution in which the refractive index gradually decreases with the concentration of diffused ions.
上記の屈折率勾配レンズ12は前述したイオン拡散法に
より、ガラス基板面に設けたマスクの開口を通して基板
ガラスの屈折率を増加させる陽イオン、一例としてタリ
ウムイオンを、ガラス中に含有されているナトリウム、
カリウム等のイオンと交換拡散させ、ガラス中に侵入し
たイオンの濃度分布によって形成されている。このよう
に、ガラス中にタリウムイオンを拡散してレンズを形成
した場合、そのイオンが拡散している領域とそうでない
領域との間には、はっきりとした境界面を示す現象がみ
られる。以下、この境界面を拡散フロントと呼ぶことに
する。The refractive index gradient lens 12 is a sodium ion containing cations, for example, thallium ions, which increase the refractive index of the substrate glass through the opening of the mask provided on the surface of the glass substrate by the ion diffusion method described above. ,
It is formed by the concentration distribution of ions that have penetrated into the glass by being exchange-diffused with ions such as potassium. As described above, when a lens is formed by diffusing thallium ions in glass, there is a phenomenon that a clear boundary surface is shown between a region where the ions are diffused and a region where the ions are not diffused. Hereinafter, this boundary surface will be referred to as a diffusion front.
上記のようにして得られた平板マイクロレンズの切断面
を観察すると拡散フロント12Aが見られる。この拡散フ
ロント12Aは、タリウムイオンが比較的急峻に変化して
いるため見られるものである。タリウムイオンを拡散し
た部分のガラスは、その硬度が下がりイオン拡散の進行
が促進されるようになる。このため、一般的なイオン拡
散とは異なり、タリウムイオンが拡散している領域とそ
うでない領域との境界付近における、タリウムイオンの
濃度の変化は急激となる。この部分を光学的に観察する
と、ガラス基板中のタリウムイオンの最大濃度より数%
下がった部分で、境界面が観察される。When the cut surface of the flat plate microlens obtained as described above is observed, the diffusion front 12A can be seen. This diffusion front 12A is seen because the thallium ions change relatively sharply. The hardness of the glass in the portion where the thallium ions are diffused is lowered and the progress of ion diffusion is promoted. Therefore, unlike general ion diffusion, the concentration of thallium ions changes sharply in the vicinity of the boundary between the region where thallium ions are diffused and the region where thallium ions are not diffused. Optically observing this part, it was several percent higher than the maximum concentration of thallium ions in the glass substrate.
A boundary surface is observed in the lowered part.
そして上記の拡散フロント、一般的に言えば断面を観察
して基板のバルク部分との境界線として認められる輪郭
曲線12Aを以後レンズ12の基板内側外形面とする。Then, the above-mentioned diffusion front, generally speaking, the cross section is observed, and the contour curve 12A recognized as the boundary line with the bulk portion of the substrate is hereinafter referred to as the substrate-inside outer surface of the lens 12.
上記のようにガラス中のタリウムイオン濃度で屈折率勾
配が与えられている平板マイクロレンズの光学的性質
は、タリウムイオンが与える屈折率差と屈折率分布の形
状によってきまる。As described above, the optical properties of a flat plate microlens having a refractive index gradient depending on the thallium ion concentration in the glass are determined by the refractive index difference given by the thallium ions and the shape of the refractive index distribution.
一般的には、レンズの集光力を示す開口数は、この場合
タリウムイオンが与える最大屈折率差が大きいほど大き
くなるが、分布の形状が適当でないと収差が大きくなの
レンズとして有効に使える開口数は大きくとれなくな
る。In general, the numerical aperture showing the condensing power of a lens increases in this case as the maximum refractive index difference given by thallium ions increases, but if the shape of the distribution is not appropriate, the aberration will be large and the aperture can be used effectively as a lens. The number is too big to be taken.
この最大屈折率差はこの場合ガラス中のタリウムイオン
濃度にほぼ比例し、イオン交換においては、基板ガラス
中に含まれるアルカリイオンと、タリウムイオンとがほ
ぼ1対1に置き換って屈折率分布を形成するため、ガラ
ス基板中で交換したアルカリイオンの濃度によってきま
る。In this case, this maximum refractive index difference is almost proportional to the thallium ion concentration in the glass, and in the ion exchange, the alkali ions contained in the substrate glass and the thallium ions are replaced by approximately 1: 1 and the refractive index distribution is changed. Are formed by the concentration of alkali ions exchanged in the glass substrate.
しかしながら、基板ガラス中に含有させるアルカリイオ
ンの量は、ガラスの化学的安定性や耐候性の面で限界が
ある。However, the amount of alkali ions contained in the substrate glass is limited in terms of chemical stability and weather resistance of the glass.
したがって有効開口数の大きなレンズを得るためには屈
折率分布をもつ領域の輪郭形状を適当な形に定めること
が必要となる。このレンズの輪郭形状は、作製しようと
するレンズ半径aと、マスクの開口の半径rmの比率を
変更することにより、制御することができる。ここで、
所望するレンズ半径をa、マスクの開口半径(ライン状
開口の場合は、半幅)をrmとし、a/rmをマスク開
口比と定義する。Therefore, in order to obtain a lens having a large effective numerical aperture, it is necessary to set the contour shape of the region having the refractive index distribution to an appropriate shape. The contour shape of the lens can be controlled by changing the ratio of the lens radius a to be manufactured and the radius rm of the opening of the mask. here,
Let a be the desired lens radius, rm be the aperture radius of the mask (half-width in the case of a line aperture), and a / rm be the mask aperture ratio.
一般的に、拡散はマスクの開口から、基板表面方向と深
さ方向に等方的に広がる。前述の開口比を5以上に設定
すると、拡散フロントの断面形状はほぼ半円状となり、
この拡散のモードは、ほとんど点拡散とみなすことがで
きる。Generally, the diffusion spreads isotropically from the opening of the mask in the direction of the substrate surface and in the direction of the depth. When the above-mentioned aperture ratio is set to 5 or more, the cross-sectional shape of the diffusion front becomes almost semicircular,
This mode of diffusion can almost be regarded as point diffusion.
一方、前述の開口比を小さくしていく(つまり、レンズ
半径に対してマスクの開口が十分に大きくする)と、拡
散のモードは点拡散から、点拡散と面拡散との中間状態
となる。このとき、拡散フロントの断面形状は、半円状
からそれを偏平した形状になっていく。そして平板マイ
クロレンズにおける上記の屈折率分布をもつ領域の形
状、つまりレンズの形状と有効開口数との関係について
実験を重ねた結果、基板面上におけるレンズ12の径を
2a、光軸上におけるレンズ厚みをdとすると、レンズの
有効開口数はd/aの値に依存し、このd/aが1.0以下
の特定の値近傍でレンズ有効開口数は極大値となり、d
/aが上記特定値が大きい方向および小さい方向に外れ
るにつれてレンズの収差が大となって、有効開口数が小
さくなることが判明した。On the other hand, when the aperture ratio is decreased (that is, the aperture of the mask is made sufficiently large with respect to the lens radius), the diffusion mode changes from point diffusion to an intermediate state between point diffusion and surface diffusion. At this time, the cross-sectional shape of the diffusion front changes from a semicircular shape to a flattened shape. Then, as a result of repeated experiments on the shape of the region having the above-described refractive index distribution in the flat plate microlens, that is, the relationship between the lens shape and the effective numerical aperture, the diameter of the lens 12 on the substrate surface was determined.
2a, where d is the thickness of the lens on the optical axis, the effective numerical aperture of the lens depends on the value of d / a, and the effective numerical aperture of the lens has a maximum value near this specific value where d / a is 1.0 or less. And d
It has been found that the lens aberration increases and the effective numerical aperture decreases as / a deviates in the larger and smaller specific values.
すなわち、前述したイオン拡散処理時間を長くする等に
より最終的に得られるレンズの断面形状がほぼ半円形
(d/a≒1.0)に近づくと、第3図に示すように、レ
ンズの周辺部近くに入射する光線の焦点15A位置が近軸
光線の焦点15B位置よりも相対的にレンズ面から遠ざか
る正の球面収差があらわれ、レンズの有効開口数が小さ
くなる。That is, when the cross-sectional shape of the lens finally obtained approaches a substantially semicircular shape (d / a≈1.0) by increasing the above-mentioned ion diffusion processing time, etc., as shown in FIG. A positive spherical aberration occurs in which the focal point 15A position of the light beam incident near the lens portion is further away from the lens surface than the focal point 15B position of the paraxial light beam, and the effective numerical aperture of the lens is reduced.
そして、上記d/a(偏平率)の値が小さくなるにつれ
て、上記収差は小さくなるが、その一方偏平率が小さく
なりすぎると第4図に示すように、レンズ中央のレンズ
外形面が平坦に近い部分に入射する光線に対して、周辺
部の曲率の大きい領域に入射した光線が大きく曲げられ
るため、負の球面収差が大きくなってレンズの有効開口
数がやはり小さくなる。そして、基板内側のレンズ外形
面が本発明で規定するように、偏平率d/aの値で0.46
ないし0.78の範囲内となるような曲面とすることによ
り、第2図に示すように近軸光と周辺光の焦点15位置
のずれによる収差が小さくなってほぼ0.1以上の大きな
有効開口数を得ることができ、特にd/aが0.5ないし0.6
9 の範囲内が好ましい。Then, as the value of d / a (flatness) becomes smaller, the aberration becomes smaller, but when the flatness becomes too small, the lens outer surface in the center of the lens becomes flat as shown in FIG. Since the light ray incident on the peripheral portion having a large curvature is largely bent with respect to the light ray incident on the near portion, the negative spherical aberration is increased and the effective numerical aperture of the lens is also decreased. Then, as defined by the present invention, the lens outer surface inside the substrate has a flatness ratio d / a of 0.46.
By setting the curved surface so that it falls within the range of 0.78 to 0.78, the aberration due to the shift of the focal point 15 position of the paraxial light and the peripheral light becomes small as shown in FIG. 2, and a large effective numerical aperture of approximately 0.1 or more is obtained. Can be achieved, especially d / a of 0.5 to 0.6
A range of 9 is preferred.
次に本発明に係る平板マイクロレンズを製造する好適な
方法について説明する。Next, a suitable method for manufacturing the flat plate microlens according to the present invention will be described.
第5図に示すようにまず透明ガラス板の基板10の面を
金属薄膜等から成るイオン透過防止マスク16で被覆
し、このマスク16に周知のパターニング技術を用いて
イオン拡散用開口17を設ける。この開口17の平面形
状は得ようとするレンズの平面形状と相似形、例えば円
形レンズであれば開口17を円形に、またライン状であ
れば線状とし、レンズの配列パターンに応じて適宜間隔
をおいて配置する。As shown in FIG. 5, the surface of the substrate 10 made of a transparent glass plate is first covered with an ion permeation preventive mask 16 made of a metal thin film or the like, and the mask 16 is provided with an ion diffusion opening 17 by using a well-known patterning technique. The planar shape of the opening 17 is similar to the planar shape of the lens to be obtained, for example, if the lens is a circular lens, the opening 17 is circular, and if it is line-shaped, it is linear, and the intervals are appropriately set according to the lens arrangement pattern. Place it.
ここでマスク開口17の大きさは非常に重要であり、こ
の開口17があまり小さいと後のイオン拡散処理によっ
て得られるレンズの断面形状が半円形となって前述した
ようにレンズの有効開口数が小さくなる。またマスク開
口17をあまり大きくすると得られるレンズの断面形状
の偏平率が小さくなりすぎて有効開口数が小さくなる。Here, the size of the mask aperture 17 is very important, and if the aperture 17 is too small, the cross-sectional shape of the lens obtained by the subsequent ion diffusion process becomes a semicircle, and the effective numerical aperture of the lens is as described above. Get smaller. If the mask aperture 17 is too large, the flatness of the cross-sectional shape of the lens obtained will be too small, and the effective numerical aperture will be small.
そしてマスク開口の半径(ライン状開口の場合・半幅)
をrm、得ようとするレンズ半径をaとして、マスク開口
比a/rmが1.75ないし4.5の範囲内に設定することに
より、d/aの値が0.46ないし0.78 の範囲内であり、収
差の小さな結果として有効開口数の大きいレンズが得ら
れ、特にa/rmを1.9ないし3.3の範囲内とすることによ
り、有効開口数が約0.16 以上のレンズを得ることがで
きる。And the radius of the mask opening (in the case of line-shaped opening, half width)
Where rm is the lens radius to be obtained and the mask aperture ratio a / rm is set within the range of 1.75 to 4.5, the d / a value is within the range of 0.46 to 0.78 and the aberration is small. As a result, a lens having a large effective numerical aperture can be obtained. Particularly, by setting a / rm within the range of 1.9 to 3.3, a lens having an effective numerical aperture of about 0.16 or more can be obtained.
次いで上記のように設定した開口をもつマスクを設けた
基板11にイオン拡散処理を施す。このイオン拡散処理
は従来方法と同じであってよい。一例として、基板ガラ
スの屈折率を増加させるタリウム(Tl)等の陽イオンを
含む硫酸塩、硝酸塩等の溶融塩に基板のマスク面側を浸
漬する。イオン加算処理温度は低すぎると拡散係数が小
さく所望の大きさのレンズを得るまでに時間がかかりす
ぎ、処理温度が高すぎると基板ガラスに熱変形を生じる
ので、ガラスの転移温度(Tg)の上下50℃幅の範囲内で
イオン拡散処理することが望ましい。Next, the substrate 11 provided with the mask having the opening set as described above is subjected to the ion diffusion treatment. This ion diffusion treatment may be the same as the conventional method. As an example, the mask surface side of the substrate is immersed in a molten salt such as sulfate or nitrate containing a cation such as thallium (Tl) that increases the refractive index of the substrate glass. If the ion addition treatment temperature is too low, the diffusion coefficient is small and it takes too much time to obtain a lens of a desired size, and if the treatment temperature is too high, the substrate glass is thermally deformed, so the glass transition temperature (Tg) It is desirable to carry out ion diffusion treatment within a range of 50 ° C above and below.
以上、基板としてガラスを用いた場合を例にとり説明し
たが、プラスチック等も使用可能である。例えばプラス
チックで平板マイクロレンズを成形する場合には、まず
相対的に低い屈折率の重合体を形成する単量体を一部重
合させてゲル状の基板をつくり、このゲル基板の面を所
定の大きさの開口を設けたマスク材で被覆し、上記開口
を通して、相対的に高い屈折率の重合体を形成する単量
体を基板内に拡散させた後全体を加熱処理して重合を完
結させる方法をとることができる。Although the case where glass is used as the substrate has been described above as an example, plastic or the like can also be used. For example, in the case of molding a flat plate microlens with plastic, first, a monomer that forms a polymer having a relatively low refractive index is partially polymerized to form a gel-like substrate, and the surface of the gel substrate is formed into a predetermined shape. A mask material having an opening of a size is provided, and a monomer forming a polymer having a relatively high refractive index is diffused into the substrate through the opening, and then the whole is heat treated to complete the polymerization. You can take the way.
次に本発明の具体例について説明する。Next, specific examples of the present invention will be described.
具体例1 モル%でSiO2 60%,B2O3 4%,ZnO 15%,K2O 8%,Na
2O 13%の組成を有するガラスから成る大きさ48mm×48m
m×2mm の基板を4枚用意した。Specific example 1 mol% SiO 2 60%, B 2 O 3 4%, ZnO 15%, K 2 O 8%, Na
48 mm x 48 m consisting of glass with a composition of 2 O 13%
Four m × 2 mm substrates were prepared.
これら基板ガラス表面に、イオン透過防止マスクとして
厚さ1μmのTi膜をスパッタリングにより付着させた
後、フォトリソグラフィの手法とフッ酸系のエッチャン
トを用いて、直径を10μm〜100μmの範囲で10μm間
隔で段階的に変えた10種類の円形開口をそれぞれ設
け、これらガラス基板のマスク面を、Tl2SO4 60モル
%,ZnSO4 40モル%の混塩を490℃に加熱溶解した溶融
塩中に浸漬して、イオン交換処理を2時間、4時間、8
時間、12.5 時間、17時間の5種類行なった。After depositing a Ti film with a thickness of 1 μm as an ion permeation preventive mask on these substrate glass surfaces by sputtering, a photolithography method and a hydrofluoric acid-based etchant are used to make the diameter 10 μm to 100 μm at intervals of 10 μm. provided stepwise varied with ten circular apertures, respectively, immersed mask surface of the glass substrate, Tl 2 sO 4 60 mol%, in the molten salt heated dissolved混塩of ZnSO 4 40 mol% to 490 ° C. Then, the ion exchange treatment is performed for 2 hours, 4 hours, and 8 hours.
5 kinds of time, 12.5 hours, 17 hours.
イオン交換後、基板表面を研磨してTi膜を除去するとと
もに表面を平滑にして、基板中に形成された屈折率勾配
レンズの特性を測定した。After the ion exchange, the surface of the substrate was polished to remove the Ti film and the surface was smoothed, and the characteristics of the gradient index lens formed in the substrate were measured.
その結果を、イオン交換処理時間別に第1表ないし第5
表に示す。The results are shown in Tables 1 to 5 by ion exchange treatment time.
Shown in the table.
第1〜5表において、レンズの焦点距離fは、波長633n
mのHe-Neレーザ光を拡散面の反対側から入射した時、光
が集光して基板表面から輝度が最大となる位置までの距
離を測定した。 In Tables 1 to 5, the focal length f of the lens is the wavelength 633n.
When He-Ne laser light of m was incident from the opposite side of the diffusion surface, the distance from the substrate surface where the light was condensed and the maximum brightness was measured.
NAfはレンズの半径を焦点距離で割った値で開口数を表
わす。しかしこの開口数はレンズに収差があるときは全
域で有効に使うことはできない。NAf represents the numerical aperture as a value obtained by dividing the radius of the lens by the focal length. However, this numerical aperture cannot be used effectively over the entire range when the lens has aberrations.
そこで第6図に示すように平板マイクロレンズ10の前
方60mmの所に間隔2mmの格子縞状のパターン18を配
置し、上記レンズによる結像パダーンを2.5×5倍の顕微
鏡19で観察した。Therefore, as shown in FIG. 6, a grid-striped pattern 18 having a distance of 2 mm was arranged 60 mm in front of the flat plate microlens 10, and the image forming padan by the lens was observed with a microscope 19 of 2.5 × 5.
この観察によるとレンズに収差がある場合には、収差の
あるレンズの領域は結像に寄与しないため画角が小さく
なる。この画角の半角の正弦(Sin)を有効開口数NAPと
して第1〜5表中に示した。また第7図にレンズの偏平
率d/aの有効開口数NAPとの関係をグラフで示す。同グ
ラフから、平板マイクロレンズの有効開口数はレンズの
偏平率d/aが約0.58 付近で極大となることがわかる。
これは上記点付近でレンズの球面収差が負から正に変化
するためで、収差が極小となる。また偏平率d/aが0.5
ないし0.69の範囲内で0.16以上の有効開口数が得られ、
0.46ないし0.78 の範囲内でおよそ0.1以上の有効開口数
が得られることがわかる。According to this observation, when the lens has an aberration, the area of the lens having the aberration does not contribute to image formation, so that the angle of view becomes small. The half-width sine (Sin) of this angle of view is shown in Tables 1 to 5 as the effective numerical aperture NAP. FIG. 7 is a graph showing the relationship between the lens flatness d / a and the effective numerical aperture NAP. From the graph, it can be seen that the effective numerical aperture of the flat microlens has a maximum when the aspect ratio d / a of the lens is around 0.58.
This is because the spherical aberration of the lens changes from negative to positive in the vicinity of the above point, and the aberration becomes minimum. The flatness ratio d / a is 0.5
To obtain an effective numerical aperture of 0.16 or more within the range of 0.69,
It can be seen that an effective numerical aperture of about 0.1 or more can be obtained within the range of 0.46 to 0.78.
また第8図に、マスク開口比とレンズの有効開口数NAP
との関係をグラフで示した。同図グラフの横軸は、レン
ズ径2aとマスク開口径2rmとの比をとっている。Figure 8 shows the mask aperture ratio and the effective numerical aperture NAP of the lens.
The relationship with is shown in the graph. The horizontal axis of the graph in the figure represents the ratio of the lens diameter 2a to the mask opening diameter 2rm.
同図から、a/rmが1.75ないし4.5の範囲内で約0.1以上
の有効開口数が得られ、特にa/rmが1.9ないし3.3の範
囲内では約0.16以上の大きい有効開口数が得られること
がわかる。From the figure, an effective numerical aperture of about 0.1 or more is obtained within the range of a / rm of 1.75 to 4.5, and particularly a large effective numerical aperture of about 0.16 or more is obtained within the range of a / rm of 1.9 to 3.3. I understand.
具体例2 具体例1と同一の組成のガラス基板3枚を用意し、イオ
ン拡散防止マスクとしてT膜をこれら基板表面に付着し
た後、マスク膜に直径400μmφの開口を設け、これら
マスク付き基板を490℃の溶融塩にそれぞれ16時間、
144時間、576時間浸漬して平板マイクロレンズを
製作した。Specific Example 2 Three glass substrates having the same composition as in Specific Example 1 were prepared, T films were attached to the surfaces of these substrates as ion diffusion preventing masks, then openings with a diameter of 400 μm were provided in the mask films, and these substrates with masks were prepared. 16 hours each at 490 ℃ molten salt,
A flat plate microlens was manufactured by immersing it for 144 hours and 576 hours.
基板中に形成されたレンズの直径2aは、上記各処理時間
に対してそれぞれ0.6mm,0.9mm,1.6mm,レンズの厚みd
は0.1mm,0.25mm,0.6mm,焦点距離は2.5mm,2.25mm,6.7mm
であり、格子縞パターンから観察された有効開口数NAP
は0.12,0.2,0.12であった。The diameter 2a of the lens formed in the substrate is 0.6 mm, 0.9 mm, 1.6 mm, and the lens thickness d for the above processing times, respectively.
Is 0.1mm, 0.25mm, 0.6mm, focal length is 2.5mm, 2.25mm, 6.7mm
And the effective numerical aperture NAP observed from the checkered pattern
Was 0.12, 0.2, 0.12.
またそれぞれのレンズの偏平率d/aは、0.33,0.56,0.
75,レンズ半径aとマスク開口半径rmとの比、すなわち
マスク開口比a/rmは1.5,2.25,4.0 であった。The flatness d / a of each lens is 0.33, 0.56, 0.
75, the ratio of the lens radius a to the mask aperture radius rm, that is, the mask aperture ratio a / rm was 1.5, 2.25, 4.0.
以上の結果から、0.9mm径程度の大きさのレンズに対し
ても偏平率を0.56 付近にすることにより、レンズの収
差を極小化、NAを極大化できることが確認できた。From the above results, it was confirmed that the aberration of the lens can be minimized and the NA can be maximized by setting the aspect ratio to about 0.56 even for a lens having a diameter of about 0.9 mm.
本発明によれば、収差が小さく有効開口数の大きい平板
マイクロレンズを得ることができる。According to the present invention, it is possible to obtain a flat plate microlens with a small aberration and a large effective numerical aperture.
本発明に係る平板マイクロレンズは、一般の画像伝送
用、光ビーム集光・コリメート用光学系など広範な用途
で有用である。INDUSTRIAL APPLICABILITY The flat plate microlens according to the present invention is useful in a wide range of applications such as general image transmission and optical system for condensing / collimating a light beam.
第1図は本発明の平板マイクロレンズの実施例を示す断
面図、第2図は第1図のレンズの集光機能を示す断面
図、第3図はレンズ断面の偏平度が小さすぎる場合の集
光状態を示す断面図、第4図はレンズの偏平度が大きす
ぎる場合の集光状態を示す断面図、第5図は本発明に係
るレンズを製作する場合のマスク開口とレンズ径との関
係を説明する断面図、第6図はレンズの有効開口数の測
定方法を模式的に示す斜視図、第7図はレンズ偏平率d
/aとレンズの有効開口数NAPとの関係を示すグラフ、第
8図はイオン拡散処理時に基板面に設けたマスクの開口
の径と得られるレンズ径との比に対するレンズ有効開口
数の関係を示すグラフ、第9図は従来の平板マイクロレ
ンズの断面図、第10図および第11図は平板マイクロ
レンズのレンズ形状例を示す平面図、第12図はイオン
拡散処理の方法例を示す断面図、第13図は従来の平板
マイクロレンズにおけるレンズ径とレンズ厚みとの関係
を説明する断面図である。 1,10……平板マイクロレンズ、2,11……基板 3,12……屈折率勾配レンズ 5,16……イオン透過防止マスク 6,17……マスク開口、7……溶融塩 13……光軸、15,15A,15B……焦点 18……パターン、19……顕微鏡FIG. 1 is a sectional view showing an embodiment of a flat plate microlens of the present invention, FIG. 2 is a sectional view showing a condensing function of the lens of FIG. 1, and FIG. 3 is a case where the flatness of the lens section is too small. FIG. 4 is a sectional view showing a condensing state, FIG. 4 is a sectional view showing a condensing state when the flatness of the lens is too large, and FIG. 5 shows a mask aperture and a lens diameter when manufacturing the lens according to the present invention. FIG. 6 is a sectional view for explaining the relationship, FIG. 6 is a perspective view schematically showing a method for measuring the effective numerical aperture of the lens, and FIG. 7 is a lens flatness ratio d.
/ A and the effective numerical aperture NAP of the lens, Fig. 8 shows the relationship of the effective numerical aperture of the lens to the ratio of the diameter of the aperture of the mask provided on the substrate surface at the time of ion diffusion treatment and the obtained lens diameter. The graph which shows, FIG. 9 is sectional drawing of the conventional flat plate micro lens, FIG.10 and FIG.11 is the top view which shows the lens shape example of a flat plate micro lens, FIG.12 is sectional drawing which shows the example of the method of an ion diffusion process. FIG. 13 is a cross-sectional view for explaining the relationship between the lens diameter and the lens thickness in the conventional flat plate microlens. 1,10 …… Flat microlens, 2,11 …… Substrate 3,12 …… Gradient index lens 5,16 …… Ion permeation prevention mask 6,17 …… Mask opening, 7 …… Molten salt 13 …… Light Axis, 15,15A, 15B …… Focus 18 …… Pattern, 19 …… Microscope
Claims (2)
線方向に光軸をもち、且つ光軸方向および光軸に直交す
る方向に向けて、屈折率増大に寄与する物質をイオン拡
散させることによって、なだらかに変化する屈折率勾配
を持ちレンズとして作用する領域を一体に形成した平板
状レンズにおいて、前記光軸上での前記物質の拡散領域
をレンズ厚みdとし、基板面上での前記物質の拡散領域
をレンズ径2aとしたとき、d/aを0.46ないし
0.78の範囲内としたことを特徴とする平板状レン
ズ。1. A substance, which has an optical axis in the direction normal to the substrate surface and which contributes to an increase in the refractive index, is ion-diffused in a substantially parallel glass substrate in the direction normal to the substrate surface. By doing so, in a flat lens in which a region having a gently changing refractive index gradient and acting as a lens is integrally formed, a diffusion region of the substance on the optical axis is defined as a lens thickness d, and A flat lens, wherein d / a is within a range of 0.46 to 0.78 when a lens diffusion diameter is 2a for the substance.
aとの比が、0.5≦d/a≦0.69の範囲内である
平板状レンズ。2. A flat lens according to claim 1, wherein the ratio of d to a is within the range of 0.5 ≦ d / a ≦ 0.69.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60125896A JPH0644082B2 (en) | 1985-06-10 | 1985-06-10 | Flat lens |
DE19863607259 DE3607259A1 (en) | 1985-03-05 | 1986-03-05 | MICRO LENS PLATE AND METHOD FOR THEIR PRODUCTION |
FR868603088A FR2578658B1 (en) | 1985-03-05 | 1986-03-05 | MICROLENTINE PLATE AND MANUFACTURING METHOD THEREOF |
GB8605371A GB2173915B (en) | 1985-03-05 | 1986-03-05 | Plate microlens having gradient index lenses and manufacture thereof |
US07/317,079 US4952037A (en) | 1985-03-05 | 1989-02-28 | Plate microlens and method for manufacturing the same |
US07/616,734 US5104435A (en) | 1985-03-05 | 1990-11-21 | Method of making a plate microlens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60125896A JPH0644082B2 (en) | 1985-06-10 | 1985-06-10 | Flat lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61284702A JPS61284702A (en) | 1986-12-15 |
JPH0644082B2 true JPH0644082B2 (en) | 1994-06-08 |
Family
ID=14921589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60125896A Expired - Lifetime JPH0644082B2 (en) | 1985-03-05 | 1985-06-10 | Flat lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0644082B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006332347A (en) * | 2005-05-26 | 2006-12-07 | Sharp Corp | Inlay lens, solid-state image sensing element, electronic information device, formation method of inlay lens and manufacturing method of solid-state image sensing element |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63169601A (en) * | 1987-01-07 | 1988-07-13 | Nippon Sheet Glass Co Ltd | Distributed index type optical element |
US5359440A (en) * | 1989-10-23 | 1994-10-25 | Sharp Kabushiki Kaisha | Image display apparatus with microlens plate having mutually fused together lenses resulting in hexagonal shaped microlenses |
JPH04151461A (en) * | 1990-10-16 | 1992-05-25 | Agency Of Ind Science & Technol | Condenser by plane lens and heat collector using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5753702A (en) * | 1980-09-16 | 1982-03-30 | Nippon Sheet Glass Co Ltd | Lens body |
JPS6059615B2 (en) * | 1982-09-01 | 1985-12-26 | 株式会社明電舎 | input/output device |
-
1985
- 1985-06-10 JP JP60125896A patent/JPH0644082B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006332347A (en) * | 2005-05-26 | 2006-12-07 | Sharp Corp | Inlay lens, solid-state image sensing element, electronic information device, formation method of inlay lens and manufacturing method of solid-state image sensing element |
Also Published As
Publication number | Publication date |
---|---|
JPS61284702A (en) | 1986-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5104435A (en) | Method of making a plate microlens | |
JP2794084B2 (en) | Optical device and manufacturing method thereof | |
US7113336B2 (en) | Microlens including wire-grid polarizer and methods of manufacture | |
US5910256A (en) | Method for manufacturing a diffraction type optical element | |
JPS5753702A (en) | Lens body | |
JP2002122712A (en) | Filtering device | |
JP2601802B2 (en) | Graded index collimator lens | |
JPH0644082B2 (en) | Flat lens | |
US20050069676A1 (en) | Etched article, mold structure using the same and method for production thereof | |
CN112462454B (en) | Micro-optical element with high bonding strength between glass substrate and microstructure layer | |
JP3726790B2 (en) | Manufacturing method of micro lens array | |
JP3271312B2 (en) | Cylindrical flat plate microlens and method of manufacturing the same | |
JP4051436B2 (en) | Concave lens, concave lens array and manufacturing method thereof | |
JPH0442641B2 (en) | ||
JPS60235102A (en) | Transmissive light scattering element | |
JP3566331B2 (en) | Optical device and optical device manufacturing method | |
JPH07104106A (en) | Method for manufacturing aspherical microlens array | |
JPH01187502A (en) | Flat lens array and liquid crystal display device equipped with flat lens array | |
JPS5964547A (en) | Preparation of lens having refractive index distribution in axial direction | |
JP4361186B2 (en) | Microlens manufacturing method | |
US20240219742A1 (en) | Optical element with diffractive focusing features and diffractive anti-reflection features | |
JPH0573705B2 (en) | ||
JPH0749407A (en) | Infrared Fresnel lens | |
JPS61275710A (en) | Distributed index anamorphic plane microlens and its manufacture | |
JPH0723922B2 (en) | Flat micro lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |