JPH0643345A - Coated optical fiber - Google Patents
Coated optical fiberInfo
- Publication number
- JPH0643345A JPH0643345A JP4199859A JP19985992A JPH0643345A JP H0643345 A JPH0643345 A JP H0643345A JP 4199859 A JP4199859 A JP 4199859A JP 19985992 A JP19985992 A JP 19985992A JP H0643345 A JPH0643345 A JP H0643345A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- resin
- heating
- layer
- contraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 34
- 239000011347 resin Substances 0.000 claims abstract description 34
- 229920005989 resin Polymers 0.000 claims abstract description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 239000011247 coating layer Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 abstract description 18
- 239000004925 Acrylic resin Substances 0.000 abstract description 7
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 abstract description 7
- 230000008602 contraction Effects 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 2
- 238000003848 UV Light-Curing Methods 0.000 abstract 3
- 238000001723 curing Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 23
- 239000011248 coating agent Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- 230000003287 optical effect Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、加熱による光伝送損失
の増大がほとんど生じない光ファイバ心線に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber core which causes almost no increase in optical transmission loss due to heating.
【0002】[0002]
【従来の技術】近年、光ファイバを保護する被覆材料と
して、シリコーン樹脂やナイロンに代わって、紫外線硬
化型樹脂が高速硬化性の点から広く採用されるようにな
ってきている。そして、このような樹脂が被覆された光
ファイバ心線においては、通常ヒートサイクル特性(H
/C特性)などを基準として紫外線硬化型樹脂の選定を
行い、プライマリ層(1次被覆)とバッファ層(緩衝
層)あるいはセカンダリ層(2次被覆)との組合わせか
らなる2層被覆が行われている。そして、このような樹
脂選定の基準となる特性としては、粘度や硬化性のよう
な加工性、線膨脹係数やガラス転移点(Tg)のような
H/C特性、吸水率や水素発生量および光ファイバを構
成するガラスとの密着性のような安定性、並びに、ヤン
グ率または側圧特性、ゲル分率、硬化収縮性、あるいは
屈折率などが知られている。2. Description of the Related Art In recent years, as a coating material for protecting an optical fiber, an ultraviolet curable resin has been widely used in place of silicone resin or nylon in view of high speed curability. In the optical fiber core wire coated with such a resin, the normal heat cycle characteristic (H
/ C characteristics) is used as a reference to select an ultraviolet curable resin, and a two-layer coating consisting of a combination of a primary layer (primary coating) and a buffer layer (buffer layer) or a secondary layer (secondary coating) is performed. It is being appreciated. The characteristics that are the criteria for selecting the resin include workability such as viscosity and curability, H / C characteristics such as linear expansion coefficient and glass transition point (Tg), water absorption rate and hydrogen generation amount, and Stability such as adhesion to glass constituting an optical fiber, Young's modulus or lateral pressure characteristics, gel fraction, curing shrinkage, or refractive index are known.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前記し
たような特性を基準に選定された紫外線硬化型樹脂を被
覆し、プライマリ層とバッファ層をそれぞれ形成した光
ファイバ心線においては、樹脂の組合わせによっては特
性にばらつきが生じたり、あるいは特性が十分でなかっ
たりする場合があった。However, in an optical fiber core wire coated with an ultraviolet curable resin selected on the basis of the above-mentioned characteristics and having a primary layer and a buffer layer formed respectively, a combination of resins is used. Depending on the characteristics, the characteristics may vary or the characteristics may not be sufficient.
【0004】また、通常ナイロン被覆の場合には、成形
加工時の歪みが成形後に緩和されるため、ヒートサイク
ルなどにより光伝送損失がかえって低下する場合があ
り、さらに従来から、樹脂の結晶化による収縮をできる
だけ小さくするために、空気冷却などの操作が行われて
いるが、紫外線硬化型樹脂が被覆された光ファイバ心線
においては、このような応力が光伝送特性に及ぼす影響
がほとんど考慮されていなかった。Further, in the case of nylon coating, the strain during molding is usually relaxed after molding, so that the light transmission loss may be rather reduced due to heat cycles, etc. Further, conventionally, due to crystallization of resin. Operations such as air cooling are performed to minimize shrinkage, but in optical fiber cores coated with UV-curable resin, the effects of such stress on optical transmission characteristics are mostly considered. Didn't.
【0005】本発明はこれらの点に鑑みてなされたもの
で、紫外線硬化型樹脂の保護被覆が設けられた光ファイ
バ心線において、硬化後の樹脂の寸法変化を基準に樹脂
の選定を行い、光伝送損失が小さくかつ安定した光ファ
イバ心線を提供することを目的とする。The present invention has been made in view of these points, and in an optical fiber core wire provided with a protective coating of an ultraviolet curable resin, the resin is selected on the basis of the dimensional change of the resin after curing, An object of the present invention is to provide a stable optical fiber core wire with a small optical transmission loss.
【0006】[0006]
【課題を解決するための手段】本発明の光ファイバ心線
は、光ファイバの上に、加熱による長さ寸法の収縮率が
0.5%以下である紫外線硬化型樹脂の被覆層を設けてな
ることを特徴とする。The optical fiber core wire of the present invention has a lengthwise shrinkage factor caused by heating on the optical fiber.
It is characterized in that a coating layer of 0.5% or less of an ultraviolet curable resin is provided.
【0007】本発明において、光ファイバ上に被覆す
る、加熱による寸法収縮率が 0.5%以下の紫外線硬化型
樹脂としては、例えばウレタン−アクリレート樹脂など
がある。本発明においては、このような樹脂の中で低ヤ
ング率のものと高ヤング率のものとを組合わせ、プライ
マリ層とバッファ層あるいはセカンダリ層とをそれぞれ
形成する。ここで、紫外線硬化型樹脂の加熱による収縮
率を 0.5%以下に限定したのは、加熱収縮率が 0.5%を
越える樹脂を被覆した場合には、樹脂硬化物の加熱収縮
により内側の光ファイバに大きな応力が生じ、そのため
光伝送損失が増大して好ましくないためである。In the present invention, examples of the ultraviolet curable resin having a dimensional shrinkage of 0.5% or less due to heating, which is coated on the optical fiber, include urethane-acrylate resin. In the present invention, such a resin having a low Young's modulus and a resin having a high Young's modulus are combined to form a primary layer and a buffer layer or a secondary layer, respectively. Here, the shrinkage rate of the UV-curable resin due to heating is limited to 0.5% or less, when the resin with a heat shrinkage rate exceeding 0.5% is coated, the inner optical fiber will be heated by the shrinkage of the cured resin. This is because a large stress is generated, which increases optical transmission loss and is not preferable.
【0008】[0008]
【作用】本発明の光ファイバ心線においては、高屈折率
のコアと低屈折率のクラッドとからなる光ファイバの上
に、硬化物の加熱による収縮率が 0.5%以下である紫外
線硬化型樹脂が被覆され、これによりプライマリ層およ
びバッファ層等がそれぞれ形成されているので、加熱に
よる樹脂被覆層の収縮が小さく、光ファイバに収縮によ
る応力がほとんど生じない。したがって、光伝送損失の
増大がほとんどなく、安定した伝送特性を有する。In the optical fiber core wire of the present invention, an ultraviolet curable resin having a shrinkage factor of 0.5% or less due to heating of a cured product is provided on an optical fiber composed of a high refractive index core and a low refractive index clad. Since the primary layer, the buffer layer and the like are respectively formed by the coating, the shrinkage of the resin coating layer due to heating is small, and the stress due to the shrinkage hardly occurs in the optical fiber. Therefore, there is almost no increase in optical transmission loss, and stable transmission characteristics are provided.
【0009】[0009]
【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.
【0010】実施例1〜4 まず紫外線硬化型樹脂として、表1に示すヤング率とゲ
ル分率およびTgを有するウレタン−アクリレート樹脂
を用意し、これらの樹脂の試料を次のようにして作成し
た。すなわち、AおよびBのプライマリ層用ウレタン−
アクリレート樹脂とC〜Eのバッファ層用ウレタン−ア
クリレート樹脂のそれぞれについて、10〜 100μm の厚
さ、より好ましくは光ファイバ心線における被覆厚に相
当する厚さの塗膜を成形した後、これらの塗膜に石英板
上で、予め確認された硬化物の物性が飽和する線量の紫
外線を照射して硬化させ、シート状の試料を作成した。Examples 1 to 4 First, as an ultraviolet curable resin, urethane-acrylate resins having Young's modulus, gel fraction and Tg shown in Table 1 were prepared, and samples of these resins were prepared as follows. . That is, urethane for the primary layer of A and B-
For each of the acrylate resin and the urethane-acrylate resin for the buffer layer of C to E, after forming a coating film having a thickness of 10 to 100 μm, more preferably a thickness corresponding to the coating thickness in the optical fiber core, The coating film was irradiated on a quartz plate with ultraviolet rays at a dose at which the physical properties of the cured product confirmed in advance were saturated and cured to prepare a sheet-shaped sample.
【0011】次に、このようにして作成されたシート状
の各試料に対して、加熱による長さ寸法の収縮率および
減量率を、それぞれ以下に示す方法で測定した。これら
の測定結果を表1に示す。Next, with respect to each of the sheet-shaped samples thus prepared, the shrinkage rate and the weight loss rate of the length dimension due to heating were measured by the following methods. The results of these measurements are shown in Table 1.
【0012】<加熱収縮率の測定>チャック間(20mm)
にシート状の試料を挟み、5gの荷重により張力をかけた
状態で、TMA(熱機械分析)を用いて70℃に加熱した
ときの加熱による収縮率(%)を測定した。なお、加熱
の際は 5℃/分の割合で昇温し、70℃の温度に試料を保
持し、20時間測定を行った。ただし、20時間で収縮が完
了しない場合には、時間を延長し収縮が飽和に達するま
で加熱を行った。<Measurement of heat shrinkage rate> Between chucks (20 mm)
The sheet-shaped sample was sandwiched between and the shrinkage rate (%) due to heating when heated to 70 ° C. was measured using TMA (thermo-mechanical analysis) in a state where tension was applied by a load of 5 g. During heating, the temperature was raised at a rate of 5 ° C / min, the sample was kept at a temperature of 70 ° C, and measurement was performed for 20 hours. However, when the shrinkage was not completed in 20 hours, the time was extended and heating was performed until the shrinkage reached saturation.
【0013】<加熱減量率の測定>シート状の試料を 1
00℃の温度で24時間真空乾燥させ、加熱前後の重量を秤
量し、減少率を求めた。なお、秤量は0.1gの精度で行
い、重量減少率は 0.1%のオーダーまで計算した。<Measurement of heating loss rate> 1 sheet-shaped sample
It was vacuum dried at a temperature of 00 ° C. for 24 hours, weighed before and after heating, and the reduction rate was obtained. The weighing was performed with an accuracy of 0.1 g, and the weight reduction rate was calculated to the order of 0.1%.
【0014】[0014]
【表1】 次に、図1に示すように、高屈折率のコアと低屈折率の
クラッドとからなる外径 125μm のシングルモードタイ
プの光ファイバ1上に、表2に示す組合わせで前記A〜
Eのウレタン−アクリレート樹脂をそれぞれ被覆した
後、紫外線ランプ(高圧水銀灯)により紫外線を照射し
て前記樹脂を硬化させ、プライマリ層2(被覆後の外径
185μm )とバッファ層3(被覆後の外径 240μm )と
をそれぞれ形成した。[Table 1] Next, as shown in FIG. 1, on the single mode type optical fiber 1 having an outer diameter of 125 μm, which is composed of a high refractive index core and a low refractive index clad, the combinations A to A
After coating each urethane-acrylate resin of E, the resin is cured by irradiating ultraviolet rays with an ultraviolet lamp (high pressure mercury lamp), and the primary layer 2 (external diameter after coating)
185 μm) and a buffer layer 3 (outer diameter after coating 240 μm) were respectively formed.
【0015】次いで、こうして得られた実施例および比
較例の光ファイバ心線について、ヒートサイクル特性
(H/C特性)と高温加熱特性をそれぞれ以下に示すよ
うにして測定した。すなわち、H/C特性は、 -40℃〜
80℃のヒートサイクルを、2サイクル/1日の割合で光
ファイバ心線にかけた後室温に戻し、このときの1.55μ
m での光伝送損失の増加量を、10サイクルめおよび 100
サイクルめにそれぞれ測定した。また、高温加熱特性
は、60℃および80℃に1ヵ月放置した後室温に戻し、光
伝送損失の増加量をそれぞれ測定した。これらの測定結
果を表2に示す。Next, the heat cycle characteristics (H / C characteristics) and the high temperature heating characteristics of the optical fibers of the examples and comparative examples thus obtained were measured as follows. That is, the H / C characteristics are from -40 ℃
Heat cycle at 80 ℃ at a rate of 2 cycles / day, after applying it to the optical fiber core, and then returning it to room temperature.
Increase the optical transmission loss at m for the 10th cycle and 100
Each measurement was made during the first cycle. Regarding the high-temperature heating characteristics, the temperature was raised to room temperature after being left at 60 ° C. and 80 ° C. for 1 month, and the increase in optical transmission loss was measured. The results of these measurements are shown in Table 2.
【0016】[0016]
【表2】 これらの測定結果から、硬化物の加熱収縮率が 0.5%以
下の紫外線硬化型ウレタン−アクリレート樹脂(A、
B、C、D)を被覆することにより、プライマリ層とバ
ッファ層とがそれぞれ形成された実施例の光ファイバ心
線は、長期間高温に放置したりあるいはヒートサイクル
を加えた場合にも、ほとんど光伝送損失が増大せず安定
した伝送特性を示すことがわかった。これに対して、比
較例の光ファイバ心線は、加熱収縮率の大きなEのウレ
タン−アクリレート樹脂によりバッファ層が形成されて
いるので、長時間の加熱あるいはヒートサイクルにより
収縮が加速されて、光ファイバ本体に収縮の応力が生
じ、そのため光伝送損失が大きく増大することがわかっ
た。[Table 2] From these measurement results, the UV-curable urethane-acrylate resin (A,
The optical fiber core wire of the embodiment in which the primary layer and the buffer layer are respectively formed by coating (B, C, D) is almost the same even when left at high temperature for a long time or subjected to heat cycle. It was found that the optical transmission loss did not increase and stable transmission characteristics were exhibited. On the other hand, in the optical fiber core wire of the comparative example, since the buffer layer is formed of the urethane-acrylate resin of E having a large heat shrinkage rate, the shrinkage is accelerated by heating for a long time or a heat cycle, and It was found that a contraction stress is generated in the fiber body, which greatly increases the optical transmission loss.
【0017】なお、以上の実施例では通常の丸形の光フ
ァイバ心線について説明したが、本発明はこれに限定さ
れない。すなわち、複数本の光ファイバを平行に並置
し、それらの外側にプライマリ層とバッファ層とを一括
して被覆した構造のテープ型心線においても、硬化物の
加熱収縮率が 0.5%以下の紫外線硬化型樹脂を被覆する
ことにより、同様な効果が得られる。また、着色用の紫
外線硬化型樹脂により着色被覆層を形成した光ファイバ
心線においても、加熱収縮率が 0.5%以下の紫外線硬化
型樹脂を使用することにより、同様な効果が得られるこ
とはいうまでもない。In the above embodiments, the ordinary round optical fiber core wire has been described, but the present invention is not limited to this. That is, even in a tape type core wire having a structure in which a plurality of optical fibers are juxtaposed in parallel and a primary layer and a buffer layer are collectively covered on the outside thereof, ultraviolet rays having a heat shrinkage of 0.5% or less of a cured product The same effect can be obtained by coating with a curable resin. In addition, it is said that similar effects can be obtained by using an ultraviolet curable resin having a heat shrinkage of 0.5% or less even in an optical fiber core wire in which a colored coating layer is formed of an ultraviolet curable resin for coloring. There is no end.
【0018】[0018]
【発明の効果】以上説明したように本発明の光ファイバ
ー心線によれば、加熱による被覆層の収縮が小さく、収
縮により光ファイバーに生じる応力が小さいので、加熱
により光伝送損失がほとんど増大せず、安定した伝送特
性を示す。As described above, according to the optical fiber core wire of the present invention, the shrinkage of the coating layer due to heating is small and the stress generated in the optical fiber due to the shrinkage is small, so that the optical transmission loss hardly increases due to heating, Shows stable transmission characteristics.
【図1】本発明の光ファイバ心線の実施例の構造を示す
横断面図。FIG. 1 is a cross-sectional view showing a structure of an embodiment of an optical fiber core wire of the present invention.
1………光ファイバ 2………プライマリ層 3………バッファ層 1 ………… Optical fiber 2 ………… Primary layer 3 ……… Buffer layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 良雄 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 塩野 武男 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshio Ishida, Inventor Yoshio Ishida, 2-1-1, Oda Sakae, Kawasaki-ku, Kanagawa Prefecture No. 1-1 No. 1 Showa Electric Cable Co., Ltd.
Claims (1)
の収縮率が 0.5%以下である紫外線硬化型樹脂の被覆層
を設けてなることを特徴とする光ファイバ心線。1. An optical fiber core wire comprising an optical fiber and a coating layer of an ultraviolet curable resin having a shrinkage factor of 0.5% or less in a length dimension due to heating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4199859A JPH0643345A (en) | 1992-07-27 | 1992-07-27 | Coated optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4199859A JPH0643345A (en) | 1992-07-27 | 1992-07-27 | Coated optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0643345A true JPH0643345A (en) | 1994-02-18 |
Family
ID=16414841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4199859A Pending JPH0643345A (en) | 1992-07-27 | 1992-07-27 | Coated optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0643345A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011014510A (en) * | 2009-07-06 | 2011-01-20 | Mitsubishi Cable Ind Ltd | Insulated wire and terminal processing method for the same |
US20110091166A1 (en) * | 2009-10-15 | 2011-04-21 | Seldon David Benjamin | Fiber Optic Connectors and Structures for Large Core Optical Fibers and Methods for Making the Same |
-
1992
- 1992-07-27 JP JP4199859A patent/JPH0643345A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011014510A (en) * | 2009-07-06 | 2011-01-20 | Mitsubishi Cable Ind Ltd | Insulated wire and terminal processing method for the same |
US20110091166A1 (en) * | 2009-10-15 | 2011-04-21 | Seldon David Benjamin | Fiber Optic Connectors and Structures for Large Core Optical Fibers and Methods for Making the Same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4904051A (en) | Optical fiber provided with a synthetic resin coating | |
JP5100125B2 (en) | Optical fiber core and optical fiber ribbon | |
JP5202943B2 (en) | Optical fiber | |
JP5041450B2 (en) | Optical fiber colored core | |
WO2008012926A1 (en) | Optical fiber | |
JP2008224744A (en) | Optical fiber | |
US5446821A (en) | Coated optical fiber | |
JPS6198305A (en) | Manufacture of optical fiber having synthetic resin coating and optical fiber having synthetic resin coating produced thereby | |
EP1350131A2 (en) | Optical fiber ribbon cables with controlled bending behavior | |
CA1276845C (en) | Method of manufacturing an optical fibre | |
JPH0933773A (en) | Coated optical fiber tape | |
JPH0643345A (en) | Coated optical fiber | |
JP7370995B2 (en) | Optical fiber core wire and optical fiber cable | |
JPS6322872A (en) | Ultraviolet-curing coating compound and optical fiber using same | |
JP2004341297A (en) | Optical fiber | |
JP2006113103A (en) | Colored optical fiber | |
JPH0425685Y2 (en) | ||
JPH05241052A (en) | Coated optical fiber | |
JPS61170711A (en) | Optical fiber core | |
KR0142676B1 (en) | Polymer coating composition for optical fiber waveguide | |
JP3321930B2 (en) | Glass fiber for optical transmission and method of manufacturing the same | |
JPH0343603B2 (en) | ||
JPH08129119A (en) | Optical fiber | |
JPS62244005A (en) | Fiber for optical transmission | |
JPH0429101A (en) | Chalcogenide glass fiber for transmitting co2 laser energy |