JPH0642456B2 - 表面光処理方法 - Google Patents
表面光処理方法Info
- Publication number
- JPH0642456B2 JPH0642456B2 JP59244444A JP24444484A JPH0642456B2 JP H0642456 B2 JPH0642456 B2 JP H0642456B2 JP 59244444 A JP59244444 A JP 59244444A JP 24444484 A JP24444484 A JP 24444484A JP H0642456 B2 JPH0642456 B2 JP H0642456B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- substrate
- adsorbed
- wavelength
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 16
- 239000000758 substrate Substances 0.000 claims description 36
- 239000000126 substance Substances 0.000 claims description 10
- 239000012495 reaction gas Substances 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 25
- 230000005284 excitation Effects 0.000 description 16
- 238000005530 etching Methods 0.000 description 12
- 239000010409 thin film Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000031700 light absorption Effects 0.000 description 5
- 239000002052 molecular layer Substances 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000003877 atomic layer epitaxy Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 208000018459 dissociative disease Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/12—Gaseous compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/047—Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/482—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/02—Local etching
-
- H01L21/205—
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Drying Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は光を用いた表面光処理方法に係り、一ないし数
原子(分子)層づつ薄膜を形成する方法、あるいは、一
ないし数原子(分子)層づつエッチングする方法に関
し、特に、所定のパターンで薄膜を形成する場合、ある
いは、所定のパターンのエッチングを行う場合に好適な
表面光処理方法に関する。
原子(分子)層づつ薄膜を形成する方法、あるいは、一
ないし数原子(分子)層づつエッチングする方法に関
し、特に、所定のパターンで薄膜を形成する場合、ある
いは、所定のパターンのエッチングを行う場合に好適な
表面光処理方法に関する。
一ないし数原子(分子)層づつ膜形成を行う、いわゆる
原子層エピタクシー法は極めて結晶性のより薄膜を形成
できる、極めて優れた技術である。
原子層エピタクシー法は極めて結晶性のより薄膜を形成
できる、極めて優れた技術である。
従来の原子層エピタクシー法は、応用物理,53,516(198
4)に記載されているように、所定の温度に保たれた基板
を設置したチャンバーに第1の原料ガスを導入し、その
後、排気すると、基板上に吸着されたガスが一分子層だ
け残る。次に、第2の原料ガス(あるいは、第1の原料
ガス)を導入し、その後、再び排気すると、第1の一分
子層の上に第2の分子層が、あるいは、両者が反応した
結果生じる新たな分子層が形成される。この方法を順次
繰返すことにより、原子単位の精度で膜形成ができる長
所がある。しかし、一方では、原料ガスの導入,排気を
交互に繰返す必要があり、高速で膜成長を行うことがで
きない欠点があった。
4)に記載されているように、所定の温度に保たれた基板
を設置したチャンバーに第1の原料ガスを導入し、その
後、排気すると、基板上に吸着されたガスが一分子層だ
け残る。次に、第2の原料ガス(あるいは、第1の原料
ガス)を導入し、その後、再び排気すると、第1の一分
子層の上に第2の分子層が、あるいは、両者が反応した
結果生じる新たな分子層が形成される。この方法を順次
繰返すことにより、原子単位の精度で膜形成ができる長
所がある。しかし、一方では、原料ガスの導入,排気を
交互に繰返す必要があり、高速で膜成長を行うことがで
きない欠点があった。
したがって本発明の目的は、一ないし数原子(分子)層
づつ膜形成を行い結晶性のより薄膜を高速で形成し得る
方法、および、一ないし数原子(分子)層づつ高速でエ
ッチングし得る表面光処理方法を提供することにある。
づつ膜形成を行い結晶性のより薄膜を高速で形成し得る
方法、および、一ないし数原子(分子)層づつ高速でエ
ッチングし得る表面光処理方法を提供することにある。
上記目的を達成するため本発明においては、基板に反応
ガスを吸着させる工程と、自由空間にある反応ガスによ
る吸収が無視でき、かつ、吸着した反応ガスがエネルギ
ーを吸収できる波長の光を照射する工程とを備えた表面
光処理方法としたことを特徴としている。
ガスを吸着させる工程と、自由空間にある反応ガスによ
る吸収が無視でき、かつ、吸着した反応ガスがエネルギ
ーを吸収できる波長の光を照射する工程とを備えた表面
光処理方法としたことを特徴としている。
かかる特徴的な構成によって、高速で膜形成したり高速
でエッチングすることができるようになるので、スルー
プットを大幅に増大できるようになった。
でエッチングすることができるようになるので、スルー
プットを大幅に増大できるようになった。
以下、本発明を図を用いて詳述する。
はじめに、本発明の原理について述べる。
本発明は、基板に分子が吸着されている状態での光吸収
スペクトルが、その分子の自由空間での光吸収スペクト
ルと異なることを利用したものである。この現象は,オ
プテイックス レターズ,第5巻,第9号,1980年
9月,ページ368〜370(Optics Letters,Vol.
5,No.9,September1980,p.368〜37
0),などに記載されている。基材の材料、表面処理用
の反応ガス、照射する励起光の波長の組合せを適当に選
べば、つぎのようなことが可能となる。第1図(a)に示
すように、基板1に吸着した分子2は、基板1との相互
作用により、自由空間に存在する同種の分子3とは異な
る光吸収特性を持つ。たとえば、第1図(b)に示すよ
うに、自由空間にある同種の分子の吸収係数の分光分布
3bと吸着分子の吸収係数の分光分布2bとは、そのス
ペクトルの形状は大きく異なる。そこで、第1図(b)
の破線で示す波長λ1の光12を照射すると、この光1
2は、自由空間にある分子3には、ほとんど吸収される
ことはなく、吸着分子2によってのみ強く吸収される。
その結果、基板1に吸着されている分子2のみが励起さ
れる。
スペクトルが、その分子の自由空間での光吸収スペクト
ルと異なることを利用したものである。この現象は,オ
プテイックス レターズ,第5巻,第9号,1980年
9月,ページ368〜370(Optics Letters,Vol.
5,No.9,September1980,p.368〜37
0),などに記載されている。基材の材料、表面処理用
の反応ガス、照射する励起光の波長の組合せを適当に選
べば、つぎのようなことが可能となる。第1図(a)に示
すように、基板1に吸着した分子2は、基板1との相互
作用により、自由空間に存在する同種の分子3とは異な
る光吸収特性を持つ。たとえば、第1図(b)に示すよ
うに、自由空間にある同種の分子の吸収係数の分光分布
3bと吸着分子の吸収係数の分光分布2bとは、そのス
ペクトルの形状は大きく異なる。そこで、第1図(b)
の破線で示す波長λ1の光12を照射すると、この光1
2は、自由空間にある分子3には、ほとんど吸収される
ことはなく、吸着分子2によってのみ強く吸収される。
その結果、基板1に吸着されている分子2のみが励起さ
れる。
この場合、光12を吸収する物質が基板1であるか、吸
着分子2であるかは判別できないが、要は、吸収された
光12のエネルギーが最終的に吸着分子2の励起、ある
いは、解離に使われることが本質的である。
着分子2であるかは判別できないが、要は、吸収された
光12のエネルギーが最終的に吸着分子2の励起、ある
いは、解離に使われることが本質的である。
本発明で薄膜形成を行う場合は、基板1に吸着した原料
ガス分子2は解離し、所望の原子(分子)層が基板1の
上に形成できる。あるいは解離した吸着分子2が原料ガ
スと反応して所望の原子(分子)層が形成できる。基板
1は適当な温度に加熱しておく方がよい。基板1の加熱
温度、原子(分子)層の形成速度を適当に選ぶと、原子
(分子)層を一原子(分子)層づつ、結晶構造に成長さ
せることができる。
ガス分子2は解離し、所望の原子(分子)層が基板1の
上に形成できる。あるいは解離した吸着分子2が原料ガ
スと反応して所望の原子(分子)層が形成できる。基板
1は適当な温度に加熱しておく方がよい。基板1の加熱
温度、原子(分子)層の形成速度を適当に選ぶと、原子
(分子)層を一原子(分子)層づつ、結晶構造に成長さ
せることができる。
また、本発明でエッチングを行う場合は、基板1に吸着
したエッチング用ガスのみが活性化され、あるいは、解
離してラジカルとなり、1原子(分子)層、あるいは、
数原子(分子)層づつエッチングを行うことができる。
したエッチング用ガスのみが活性化され、あるいは、解
離してラジカルとなり、1原子(分子)層、あるいは、
数原子(分子)層づつエッチングを行うことができる。
以上述べたことから明らかなように、吸着分子と入射光
の相互作用が強いことが重要であるから、吸着分子が存
在する場所で光の電場強度が強くなるよう条件を設定す
る方が好ましい。物質の表面では、入射光と反射光が干
渉し合って、その干渉の結果電場の強さが決まる。反射
の様子は、その物質の屈折率(損失も考慮した複素屈折
率を意味する)、入射光の偏光状態、入射角に依存する
ので、これらを適当に選択することも重要である。
の相互作用が強いことが重要であるから、吸着分子が存
在する場所で光の電場強度が強くなるよう条件を設定す
る方が好ましい。物質の表面では、入射光と反射光が干
渉し合って、その干渉の結果電場の強さが決まる。反射
の様子は、その物質の屈折率(損失も考慮した複素屈折
率を意味する)、入射光の偏光状態、入射角に依存する
ので、これらを適当に選択することも重要である。
次に、本発明を薄膜形成に応用した一実施例を第2図に
より説明する。反応室4の中に基板1を置き、排気口7
により反応室4内を排気した後、原料ガス導入口6より
原料ガスを所定の圧力で導入する。そこで、原料ガスの
光吸収の波長範囲より長波長λ1の励起光を放出する光
源8からの光を窓5を通して基板1に照射する。基板1
に吸着された原料ガス分子のみが解離反応を起こす。基
板1を、たとえば、赤外などの波長λ2の光を放射する
第2の光源9によって加熱すると、薄膜が形成され、励
起条件,加熱条件を適当に選べば、一原子(分子)層づ
つ薄膜を形成することができる。この場合、原料ガスは
励起光を吸収しないので、窓5が汚れることはない。場
合によっては、原料ガスとして、第1,第2の2種類の
原料ガスを導入し、第1の原料ガスの吸着分子を光で励
起し、これと第2の原料ガスとの反応により膜形成を行
うこともできる。また、基板1を低温に冷却して反応ガ
スが吸着し易くするのも効果的である。
より説明する。反応室4の中に基板1を置き、排気口7
により反応室4内を排気した後、原料ガス導入口6より
原料ガスを所定の圧力で導入する。そこで、原料ガスの
光吸収の波長範囲より長波長λ1の励起光を放出する光
源8からの光を窓5を通して基板1に照射する。基板1
に吸着された原料ガス分子のみが解離反応を起こす。基
板1を、たとえば、赤外などの波長λ2の光を放射する
第2の光源9によって加熱すると、薄膜が形成され、励
起条件,加熱条件を適当に選べば、一原子(分子)層づ
つ薄膜を形成することができる。この場合、原料ガスは
励起光を吸収しないので、窓5が汚れることはない。場
合によっては、原料ガスとして、第1,第2の2種類の
原料ガスを導入し、第1の原料ガスの吸着分子を光で励
起し、これと第2の原料ガスとの反応により膜形成を行
うこともできる。また、基板1を低温に冷却して反応ガ
スが吸着し易くするのも効果的である。
励起光の照射は連続的に行うこともできるが、一原子
(分子)層づつ薄膜を形成する場合は、第3図に示すよ
うに周期T,パルス幅τのパルス状にする方がよい。吸
着分子の光吸収断面積をσ,光源8から基板1の表面に
単位面積当り、単位時間に照射される波長λ1の光量子
の数をnとすると、パルス幅τは 以上とすることが必要である。通常、 以上にするのがよい。この場合、励起光は波長λ1の単
色光である必要はなく、実質的に自由空間の分子に吸収
される波長の光を含まず、吸着分子に吸収される波長の
光を含んでいればよい。たとえば、自由空間にある分子
による吸収係数をk,窓5から基板1までの距離をlと
すると、kl10Nσを満足すればよい。ここで、N
は基板表面の単位面積当り吸着される原料ガス分子の数
である。
(分子)層づつ薄膜を形成する場合は、第3図に示すよ
うに周期T,パルス幅τのパルス状にする方がよい。吸
着分子の光吸収断面積をσ,光源8から基板1の表面に
単位面積当り、単位時間に照射される波長λ1の光量子
の数をnとすると、パルス幅τは 以上とすることが必要である。通常、 以上にするのがよい。この場合、励起光は波長λ1の単
色光である必要はなく、実質的に自由空間の分子に吸収
される波長の光を含まず、吸着分子に吸収される波長の
光を含んでいればよい。たとえば、自由空間にある分子
による吸収係数をk,窓5から基板1までの距離をlと
すると、kl10Nσを満足すればよい。ここで、N
は基板表面の単位面積当り吸着される原料ガス分子の数
である。
また、加熱用の波長λ2の光を放射する光源9もパルス
光源にすることができる。基板1の熱伝導度をk,比熱
をc,密度ρ,波長λ2の光に対する吸収率をaとする
と、厚みδの範囲を温度Tだけ温度上昇させるには、単
位表面積当り、 だけの光のエネルギーで、大体 の時間照射すればよい。この場合、加熱用光源9も、波
長λ2の単色である必要はなく、連続光でよい。その場
合は、吸収率aとして光源9の分光分布についての平均
値を取ればよい。
光源にすることができる。基板1の熱伝導度をk,比熱
をc,密度ρ,波長λ2の光に対する吸収率をaとする
と、厚みδの範囲を温度Tだけ温度上昇させるには、単
位表面積当り、 だけの光のエネルギーで、大体 の時間照射すればよい。この場合、加熱用光源9も、波
長λ2の単色である必要はなく、連続光でよい。その場
合は、吸収率aとして光源9の分光分布についての平均
値を取ればよい。
基板1の温度を低温に保つためには、基板1の薄膜を形
成する面の裏側からの熱伝導による冷却と加熱のバラン
スを考えればよい。すなわち、基板1の厚みをdとする
と、加熱用光源9のパルスの周期を 程度以上にすればよい。
成する面の裏側からの熱伝導による冷却と加熱のバラン
スを考えればよい。すなわち、基板1の厚みをdとする
と、加熱用光源9のパルスの周期を 程度以上にすればよい。
第4図(a),(b)に励起光源8からの光パルスと加熱用の
光源9からの光パルスとの関係の一例を示す。励起光パ
ルスと加熱用の光パルスとは重なっている必要はなく、
両者の間に時間間隔があっても良い。第4図(a),(b)の
ようにすると、一番短かい時間で膜形成が可能である。
光源9からの光パルスとの関係の一例を示す。励起光パ
ルスと加熱用の光パルスとは重なっている必要はなく、
両者の間に時間間隔があっても良い。第4図(a),(b)の
ようにすると、一番短かい時間で膜形成が可能である。
特殊な場合には、2種類以上の原料ガスA,Bを同時に
反応室4に封入し、励起光の波長を選択することによ
り、波長λAの光は吸着分子Aのみに吸収され、波長λ
Bの光は吸着分子Bのみに吸収されるようにする。そし
て、励起光λAと励起光λBとを交互に照射することに
より、異なる原子(分子)層を一原子(分子)層づつ交
互に形成することも可能である。
反応室4に封入し、励起光の波長を選択することによ
り、波長λAの光は吸着分子Aのみに吸収され、波長λ
Bの光は吸着分子Bのみに吸収されるようにする。そし
て、励起光λAと励起光λBとを交互に照射することに
より、異なる原子(分子)層を一原子(分子)層づつ交
互に形成することも可能である。
また、本発明によれば、特定の物質の上のみに薄膜を形
成させることができる。すなわち、吸着分子との相互作
用は基板上の物質により異なるので、第1図(b)に示
した分光吸収特性が所望の基板上の物質のみで生じるよ
うに原料ガスの種類と励起光の波長λ1を選べばよい。
この方法は、基板表面の物質と同種の物質の膜を堆積さ
せる場合に、とくに有効である。この方法は、基板表面
の平坦化やスルーホールを導体でうめる等に適用でき
る。この方法によると、マスク等により露光する場合に
問題な位置合わせが不要となり、分解能も光の限界を越
えて高くできる。
成させることができる。すなわち、吸着分子との相互作
用は基板上の物質により異なるので、第1図(b)に示
した分光吸収特性が所望の基板上の物質のみで生じるよ
うに原料ガスの種類と励起光の波長λ1を選べばよい。
この方法は、基板表面の物質と同種の物質の膜を堆積さ
せる場合に、とくに有効である。この方法は、基板表面
の平坦化やスルーホールを導体でうめる等に適用でき
る。この方法によると、マスク等により露光する場合に
問題な位置合わせが不要となり、分解能も光の限界を越
えて高くできる。
第5図は他の実施例を示す。励起用光源8からの波長λ
1の光でマスク10を照射し、レンズ11でマスク10
の像を基板1上に作る。このようにすると、基板1上に
マスク10のパターンに応じて、所望のパターンで薄膜
を形成できる。なお、レンズ11は凹面鏡を使用しても
よいことは言うまでもなく、基板1は第2図に示した如
くヒーターや光源9などで加熱する手段を設ける方がよ
い。これらは、第5図では省略してある。
1の光でマスク10を照射し、レンズ11でマスク10
の像を基板1上に作る。このようにすると、基板1上に
マスク10のパターンに応じて、所望のパターンで薄膜
を形成できる。なお、レンズ11は凹面鏡を使用しても
よいことは言うまでもなく、基板1は第2図に示した如
くヒーターや光源9などで加熱する手段を設ける方がよ
い。これらは、第5図では省略してある。
なお、上記の実施例はすべてデポジションについてのも
のであるが、エッチングについても、すべての実施例に
ついてまったく同様に行うことができる。すなわち、吸
着したエッチング用ガスのみが励起光を吸収して活性化
され、あるいは、解離してラジカルとなりエッチングが
起ように、エッチング用ガスの種類,励起光の波長
λ1,エッチングする部分の材質の間の関係を選択すれ
ばよい。
のであるが、エッチングについても、すべての実施例に
ついてまったく同様に行うことができる。すなわち、吸
着したエッチング用ガスのみが励起光を吸収して活性化
され、あるいは、解離してラジカルとなりエッチングが
起ように、エッチング用ガスの種類,励起光の波長
λ1,エッチングする部分の材質の間の関係を選択すれ
ばよい。
以上述べたように本発明によれば、原料ガス、あるい
は、エッチングガスを反応室に満した状態で、基板の表
面に吸着した分子のみを励起、あるいは、解離できるの
で、一ないし数原子(分子)層づつ膜形成を行う場合
も、一ないし数原子(分子)層づつエッチングを行う場
合も、大幅にスループットを増大できる。
は、エッチングガスを反応室に満した状態で、基板の表
面に吸着した分子のみを励起、あるいは、解離できるの
で、一ないし数原子(分子)層づつ膜形成を行う場合
も、一ないし数原子(分子)層づつエッチングを行う場
合も、大幅にスループットを増大できる。
第1図(a),(b)は本発明の原理説明図、第2図,第3
図,第4図(a),(b),第5図は本発明の実施例を示す図
である。 1は基板,2は吸着分子,3は自由空間の分子,4は反
応室,8は励起用光源,9は加熱用光源である。
図,第4図(a),(b),第5図は本発明の実施例を示す図
である。 1は基板,2は吸着分子,3は自由空間の分子,4は反
応室,8は励起用光源,9は加熱用光源である。
Claims (3)
- 【請求項1】基板に反応ガスを吸着させる工程と、自由
空間にある上記反応ガスによる吸収が無視でき、かつ、
上記吸着した反応ガスがエネルギーを吸収できる波長の
光を照射する工程とを有することを特徴とする表面光処
理方法。 - 【請求項2】上記基板上に形成されているパターンの特
定物質の上にのみ膜形成を行うことを特徴とする特許請
求の範囲第1項記載の表面光処理方法。 - 【請求項3】上記基板上の特定物質のみをエッチングす
ることを特徴とする特許請求の範囲第1項記載の表面光
処理方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59244444A JPH0642456B2 (ja) | 1984-11-21 | 1984-11-21 | 表面光処理方法 |
KR1019850008241A KR940000497B1 (ko) | 1984-11-21 | 1985-11-05 | 표면 광 처리방법 |
DE8585308442T DE3571836D1 (en) | 1984-11-21 | 1985-11-20 | Method of surface treatment |
EP85308442A EP0184352B1 (en) | 1984-11-21 | 1985-11-20 | Method of surface treatment |
US06/799,976 US4678536A (en) | 1984-11-21 | 1985-11-20 | Method of photochemical surface treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59244444A JPH0642456B2 (ja) | 1984-11-21 | 1984-11-21 | 表面光処理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61124123A JPS61124123A (ja) | 1986-06-11 |
JPH0642456B2 true JPH0642456B2 (ja) | 1994-06-01 |
Family
ID=17118741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59244444A Expired - Lifetime JPH0642456B2 (ja) | 1984-11-21 | 1984-11-21 | 表面光処理方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US4678536A (ja) |
EP (1) | EP0184352B1 (ja) |
JP (1) | JPH0642456B2 (ja) |
KR (1) | KR940000497B1 (ja) |
DE (1) | DE3571836D1 (ja) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987003741A1 (en) * | 1985-12-05 | 1987-06-18 | Ncr Corporation | Selective deposition process |
JPS635531A (ja) * | 1986-06-25 | 1988-01-11 | Nec Corp | Si表面清浄化・平坦化方法及びその装置 |
DE3751755T2 (de) * | 1986-06-30 | 1997-04-03 | Nihon Sinku Gijutsu K K | Verfahren und Vorrichtung zum Abscheiden aus der Gasphase |
EP0252667B1 (en) * | 1986-06-30 | 1996-03-27 | Nihon Sinku Gijutsu Kabushiki Kaisha | Chemical vapour deposition methods |
JP2560064B2 (ja) * | 1987-07-27 | 1996-12-04 | 日本電信電話株式会社 | 半導体膜の形成方法 |
JP2771164B2 (ja) * | 1987-08-24 | 1998-07-02 | 日本電気株式会社 | 突起形成法 |
USH1264H (en) | 1988-04-04 | 1993-12-07 | Xerox Corporation | Method of in situ stoiciometric and geometrical photo induced modifications to compound thin films during epitaxial growth and applications thereof |
US5407867A (en) * | 1988-05-12 | 1995-04-18 | Mitsubishki Denki Kabushiki Kaisha | Method of forming a thin film on surface of semiconductor substrate |
US5174881A (en) * | 1988-05-12 | 1992-12-29 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for forming a thin film on surface of semiconductor substrate |
US5318662A (en) * | 1989-12-20 | 1994-06-07 | Texas Instruments Incorporated | Copper etch process using halides |
EP0436812B1 (en) * | 1989-12-20 | 1994-08-31 | Texas Instruments Incorporated | Copper etch process and printed circuit formed thereby |
JPH0464234A (ja) * | 1990-07-04 | 1992-02-28 | Mitsubishi Electric Corp | 配線パターンの形成方法 |
DE4114741C2 (de) * | 1990-07-04 | 1998-11-12 | Mitsubishi Electric Corp | Verfahren zur Bildung einer Leiterbahn auf einem Halbleitersubstrat |
DE4021541C1 (ja) * | 1990-07-06 | 1991-12-19 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De | |
US5171610A (en) * | 1990-08-28 | 1992-12-15 | The Regents Of The University Of Calif. | Low temperature photochemical vapor deposition of alloy and mixed metal oxide films |
EP0501278B1 (en) | 1991-02-28 | 1998-09-30 | Texas Instruments Incorporated | Method to produce masking |
JP2680202B2 (ja) * | 1991-03-20 | 1997-11-19 | 国際電気株式会社 | 気相成長方法及び装置 |
US5705224A (en) * | 1991-03-20 | 1998-01-06 | Kokusai Electric Co., Ltd. | Vapor depositing method |
US5129991A (en) * | 1991-04-30 | 1992-07-14 | Micron Technology, Inc. | Photoelectron-induced selective etch process |
JPH0582490A (ja) * | 1991-09-19 | 1993-04-02 | Hitachi Ltd | 選択エツチングの方法、装置 |
US5282925A (en) * | 1992-11-09 | 1994-02-01 | International Business Machines Corporation | Device and method for accurate etching and removal of thin film |
JP3394602B2 (ja) * | 1993-07-05 | 2003-04-07 | 株式会社荏原製作所 | 高速原子線を用いた加工方法 |
US5460693A (en) * | 1994-05-31 | 1995-10-24 | Texas Instruments Incorporated | Dry microlithography process |
US6124211A (en) * | 1994-06-14 | 2000-09-26 | Fsi International, Inc. | Cleaning method |
US6015503A (en) * | 1994-06-14 | 2000-01-18 | Fsi International, Inc. | Method and apparatus for surface conditioning |
US5534107A (en) * | 1994-06-14 | 1996-07-09 | Fsi International | UV-enhanced dry stripping of silicon nitride films |
JPH0864559A (ja) * | 1994-06-14 | 1996-03-08 | Fsi Internatl Inc | 基板面から不要な物質を除去する方法 |
US5580421A (en) * | 1994-06-14 | 1996-12-03 | Fsi International | Apparatus for surface conditioning |
US5635102A (en) | 1994-09-28 | 1997-06-03 | Fsi International | Highly selective silicon oxide etching method |
US5603848A (en) * | 1995-01-03 | 1997-02-18 | Texas Instruments Incorporated | Method for etching through a substrate to an attached coating |
US7025831B1 (en) | 1995-12-21 | 2006-04-11 | Fsi International, Inc. | Apparatus for surface conditioning |
US5847390A (en) * | 1996-04-09 | 1998-12-08 | Texas Instruments Incorporated | Reduced stress electrode for focal plane array of thermal imaging system and method |
US5954884A (en) | 1997-03-17 | 1999-09-21 | Fsi International Inc. | UV/halogen metals removal process |
US6465374B1 (en) | 1997-10-21 | 2002-10-15 | Fsi International, Inc. | Method of surface preparation |
US6165273A (en) | 1997-10-21 | 2000-12-26 | Fsi International Inc. | Equipment for UV wafer heating and photochemistry |
US6080987A (en) * | 1997-10-28 | 2000-06-27 | Raytheon Company | Infrared-sensitive conductive-polymer coating |
US6083557A (en) * | 1997-10-28 | 2000-07-04 | Raytheon Company | System and method for making a conductive polymer coating |
US6337102B1 (en) * | 1997-11-17 | 2002-01-08 | The Trustees Of Princeton University | Low pressure vapor phase deposition of organic thin films |
US6808758B1 (en) * | 2000-06-09 | 2004-10-26 | Mattson Technology, Inc. | Pulse precursor deposition process for forming layers in semiconductor devices |
JP5254308B2 (ja) * | 2010-12-27 | 2013-08-07 | 東京エレクトロン株式会社 | 液処理装置、液処理方法及びその液処理方法を実行させるためのプログラムを記録した記録媒体 |
EP3875633A1 (en) * | 2020-03-03 | 2021-09-08 | Stichting Nederlandse Wetenschappelijk Onderzoek Instituten | Method and apparatus for forming a patterned layer of material |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2841477A (en) * | 1957-03-04 | 1958-07-01 | Pacific Semiconductors Inc | Photochemically activated gaseous etching method |
US3364087A (en) * | 1964-04-27 | 1968-01-16 | Varian Associates | Method of using laser to coat or etch substrate |
JPS5898929A (ja) * | 1981-12-09 | 1983-06-13 | Seiko Epson Corp | 原子層エツチング法 |
WO1983004269A1 (en) * | 1982-06-01 | 1983-12-08 | Massachusetts Institute Of Technology | Maskless growth of patterned films |
FR2543581B1 (fr) * | 1983-03-31 | 1986-11-14 | Fiori Costantino | Procede pour former une couche d'oxyde sur la surface d'un substrat en materiau semiconducteur |
US4478677A (en) * | 1983-12-22 | 1984-10-23 | International Business Machines Corporation | Laser induced dry etching of vias in glass with non-contact masking |
US4566937A (en) * | 1984-10-10 | 1986-01-28 | The United States Of America As Represented By The United States Department Of Energy | Electron beam enhanced surface modification for making highly resolved structures |
-
1984
- 1984-11-21 JP JP59244444A patent/JPH0642456B2/ja not_active Expired - Lifetime
-
1985
- 1985-11-05 KR KR1019850008241A patent/KR940000497B1/ko not_active Expired - Fee Related
- 1985-11-20 US US06/799,976 patent/US4678536A/en not_active Expired - Lifetime
- 1985-11-20 DE DE8585308442T patent/DE3571836D1/de not_active Expired
- 1985-11-20 EP EP85308442A patent/EP0184352B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE3571836D1 (en) | 1989-08-31 |
EP0184352A1 (en) | 1986-06-11 |
KR860004566A (ko) | 1986-06-23 |
EP0184352B1 (en) | 1989-07-26 |
KR940000497B1 (ko) | 1994-01-21 |
US4678536A (en) | 1987-07-07 |
JPS61124123A (ja) | 1986-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0642456B2 (ja) | 表面光処理方法 | |
Gluck et al. | Mechanisms of laser interaction with metal carbonyls adsorbed on Si (111) 7× 7: Thermal vs photoelectronic effects | |
Beckmann et al. | Hydrides and hydroxyls in thin silicon dioxide films | |
Creighton | Photodecomposition of Mo (CO) 6 adsorbed on Si (100) | |
Baratta et al. | A comparison of ion irradiation and UV photolysis of CH4 and CH3OH | |
Montereali | Point defects in thin insulating films of lithium fluoride for optical microsystems | |
So et al. | Photon-induced reactions of No adsorbed on GaAs (110) | |
Ishitani et al. | Prebaking and silicon epitaxial growth enhanced by UV radiation | |
JP5072287B2 (ja) | 基板の表面処理方法とその装置 | |
Delfino et al. | Wavelength-specific pyrometry as a temperature measurement tool | |
JPH0774452B2 (ja) | 光化学気相成長法による機能性堆積膜の形成方法 | |
Catalano et al. | Infrared laser single photon absorption reaction chemistry in the solid state. I. The system SiH4–UF6 a | |
EP0216933B1 (en) | Method for fabricating an insulating oxide layer on semiconductor substrate surface | |
JPH0786560B2 (ja) | X―線透過窓の製造方法 | |
JP2890617B2 (ja) | 薄膜の形成方法 | |
JPH0555186A (ja) | 表面処理方法 | |
Grimbergen | Metastable defects in hydrogenated amorphous silicon formed by optical and electron-beam irradiation | |
JPH0775224B2 (ja) | 薄膜形成装置 | |
JPS609116A (ja) | 半導体製造方法 | |
Fuhrman et al. | Kinetics of titanium oxidation in water vapor argon ambient mixtures | |
Boyd | The enhancement of optical effects on rough metal surfaces and photoluminescence from the noble metals | |
Bykovskii et al. | Photophysical processes stimulated in nanoporous silicon by high-power laser radiation | |
JPS6092475A (ja) | 光化学的薄膜製造方法および装置 | |
McGonigal et al. | Infrared reflection absorption spectroscopy study of chemisorption on the Ni (001)-c (2× 2) Si surface | |
JP3157510B2 (ja) | 光励起処理方法 |