JPH0640951B2 - Method for producing uniformly coated composite particles - Google Patents
Method for producing uniformly coated composite particlesInfo
- Publication number
- JPH0640951B2 JPH0640951B2 JP61057806A JP5780686A JPH0640951B2 JP H0640951 B2 JPH0640951 B2 JP H0640951B2 JP 61057806 A JP61057806 A JP 61057806A JP 5780686 A JP5780686 A JP 5780686A JP H0640951 B2 JPH0640951 B2 JP H0640951B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- shell
- core
- forming
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/04—Making microcapsules or microballoons by physical processes, e.g. drying, spraying
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Description
【発明の詳細な説明】 [発明の目的] 本発明は、無機質粒子又は高分子粒子からなるコア粒子
の表面を、無機質粒子又は高分子粒子からなるシェル形
成用粒子で均一に被覆した複合体粒子の製造方法および
該複合体粒子をコア粒子として、更にシェル形成用粒子
で均一に被覆することを1回以上繰り返した複合体粒子
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is a composite particle in which the surface of a core particle composed of inorganic particles or polymer particles is uniformly coated with shell-forming particles composed of inorganic particles or polymer particles. And a method for producing composite particles, in which the composite particles are used as core particles and further uniformly coated with shell-forming particles one or more times.
[従来技術とその欠点] 従来、無機物と樹脂を配合して加工性の改善、物理的特
性の改良、耐熱性の付与、難燃性の付与、耐薬品性及び
電気的性質の向上などが試みられてきた。しかしなが
ら、樹脂と無機質微粒子を単に混合するだけでは無機質
微粒子の樹脂への分散が困難なため、不均一な複合体し
かえられず、従って各種特性にムラが生じるという欠点
がある。又、改良法として、 (イ)無機物を粉砕しながら新生表面の活性によって、モ
ノマーをグラフトさせるか、又はポリマーを切断しなが
らグラフトさせるメカノケミカル的改質や、 (ロ)高エネルギー電子線を用いて、無機質粒子表面にビ
ニルポリマーを結合させる改質や、 (ハ)無機物に重合開始剤、モノマー、ポリマーなどを吸
着させた後、懸濁重合や乳化重合して改質する方法など
があるが、これらの改質法は均一に被覆できない許りで
なく、工程が複雑になったりするという欠点がある。こ
とに、(ハ)は無機物に対する樹脂の複合化が不十分であ
ったり、また、ポリマーのみの生成が多かったりして収
率が低いという欠点があった。[Prior art and its drawbacks] Conventionally, an inorganic material and a resin have been blended to improve workability, improve physical properties, impart heat resistance, impart flame retardancy, improve chemical resistance and electrical properties. Has been. However, since it is difficult to disperse the inorganic fine particles in the resin by simply mixing the resin and the inorganic fine particles, there is a drawback that a non-uniform composite is obtained and thus various characteristics are uneven. Further, as an improved method, (a) mechanochemical modification in which a monomer is grafted or a polymer is grafted while being cut depending on the activity of a new surface while pulverizing an inorganic substance, and (b) using a high-energy electron beam For example, there is a method of modifying by binding a vinyl polymer to the surface of the inorganic particles, or (c) a method of adsorbing a polymerization initiator, a monomer, a polymer, etc. on the inorganic material, and then modifying by suspension or emulsion polymerization. However, these modification methods have the drawback that the coating cannot be performed uniformly and the process becomes complicated. In particular, (C) has a drawback that the yield is low because the resin is not sufficiently complexed with the inorganic substance, and only a large amount of the polymer is produced.
[課題解決の手段] 本発明者らは、かかる改質方法の必要性とその問題点に
鑑み、無機質粒子の表面を高分子粒子で均一に被覆する
ばかりでなく、高分子粒子の表面を無機質粒子で均一に
被覆したり、あるいは無機質粒子を無機質粒子で、又は
高分子粒子を高分子粒子で均一に被覆した複合体粒子を
うるべく鋭意研究を重ねた結果、反対に荷電した粒子を
特定の条件で混合することによりきわめて強固にかつ均
一に被覆された複合体粒子がえられることを見出し本発
明を完成した。[Means for Solving the Problems] In view of the necessity and the problem of such a modifying method, the present inventors not only uniformly coat the surface of the inorganic particles with the polymer particles, but also As a result of earnest research to obtain a composite particle in which the particles are uniformly coated, or the inorganic particles are uniformly coated with the inorganic particles, or the polymer particles are uniformly coated with the polymer particles, the oppositely charged particles are identified. The present invention has been completed by discovering that composite particles can be obtained which are extremely strongly and uniformly coated by mixing under the conditions.
すなわち本発明は、(A)荷電した無機質粒子又は高分子
粒子からなるコア粒子と、(B)粒子径がコア粒子よりも
小さく、かつ反対に荷電した無機質粒子又は高分子粒子
からなるシェル形成用粒子とを、コア粒子の粒子径に対
するシェル形成用粒子の粒子径の比(コア粒子の粒子径
/形成用粒子の粒子径)の値(P)が1.7<P<120であ
り、かつシェル形成用粒子の数をコア粒子の数で割った
粒子数比(R)が [a=コア粒子の平均半径、b=シェル形成用粒子の平
均半径]を満足する条件で、分散液状態で混合すること
を特徴とするコア粒子をシェル形成用粒子で均一に被覆
した複合体粒子の製造方法、およびこれを複数回繰り返
して多層に被覆した複合体粒子を製造する方法である。That is, the present invention, (A) a core particle composed of charged inorganic particles or polymer particles, and (B) a particle diameter smaller than the core particles, and for forming a shell composed of oppositely charged inorganic particles or polymer particles. The ratio of the particle diameter of the shell-forming particles to the particle diameter of the core particles (particle diameter of the core particles / particle diameter of the forming particles) (P) is 1.7 <P <120 and the shell-forming The particle number ratio (R) obtained by dividing the number of particles for use by the number of core particles is A composite in which core particles are uniformly coated with shell-forming particles, which are mixed in a dispersion state under the condition that [a = average radius of core particles, b = average radius of particles for shell-forming] It is a method for producing particles, and a method for producing composite particles in which multi-layer coating is performed by repeating the method a plurality of times.
[構成の説明] 本発明において、無機質粒子又は高分子粒子が、他の無
機質粒子又は高分子粒子で均一に被覆された複合体粒子
をつくる要件としては、(1)被覆する粒子(以下、シェ
ル形成用粒子という)は被覆される粒子(以下、コア粒
子という)の粒子径よりも小さく、コア粒子の粒子径に
対するシェル形成用粒子の粒子径の比(コア粒子の粒子
径/シェル形成用粒子の粒子径)の値(P)が1.7<P≦12
0であることが必要である。[Description of Configuration] In the present invention, the inorganic particles or polymer particles, the requirements to make a composite particle uniformly coated with other inorganic particles or polymer particles, (1) particles to be coated (hereinafter, shell The forming particles are smaller than the particle diameter of the particles to be coated (hereinafter referred to as core particles), and the ratio of the particle diameter of the shell forming particles to the particle diameter of the core particles (particle diameter of core particles / shell forming particles). Value (P) is 1.7 <P ≦ 12
Must be 0.
しかして、粒径分布は狭い方がより均一に被覆される。Therefore, the narrower the particle size distribution, the more uniform the coating.
(2)シェル形成用粒子とコア粒子は分散液状態で混合し
なければならない。(2) Shell-forming particles and core particles must be mixed in a dispersion state.
(3)シェル形成用粒子とコア粒子は互いに反対に荷電し
ていなければならない。そのためには、分散液のpHが重
要なポイントとなることがある。(3) The shell-forming particles and the core particles must be oppositely charged. To that end, the pH of the dispersion may be an important point.
(4)形成用粒子およびコア粒子は、無機質粒子、高分子
粒子のいずれでもよい。しかし、実用上は無機質粒子を
高分子粒子で被覆した複合体粒子、又は高分子粒子を無
機質粒子で被覆した複合体粒子が好ましい。(4) The forming particles and the core particles may be either inorganic particles or polymer particles. However, in practice, composite particles obtained by coating inorganic particles with polymer particles or composite particles obtained by coating polymer particles with inorganic particles are preferable.
(5)均一に被覆するための最も大切な要件は、シェル形
成用粒子とコア粒子の粒子数の比、すなわちシェル形成
用粒子の数をコア粒子の数で割った粒子数比(R)が次式
を満足することである。(5) The most important requirement for uniform coating is the ratio of the particle numbers of shell-forming particles and core particles, that is, the particle number ratio (R) obtained by dividing the number of shell-forming particles by the number of core particles. It is to satisfy the following formula.
N×2≧R≧N×0.5 N:コア粒子1ケの表面を最密に被覆するに要するシェ
ル形成用粒子の数 P:コア粒子1ケの表面に、シェル形成用粒子が被覆し
たときの表面積=半径(a+b)の球面=4π(a+b)2……
(第1図) Q:シェル形成用粒子がコア粒子の表面を最密に被覆し
たときのシェル形成用粒子1ケ当りの占める 本発明に於て、均一に被覆するということは最密に被覆
する必要はなく、偏りなく、平均的に被覆していること
が大切である。そのためには(R)はNの50%以上、好まし
くは70%以上でなければならない。これを模型図として
示すと第3図のようになる。N × 2 ≧ R ≧ N × 0.5 N: Number of shell-forming particles required to cover the surface of one core particle in the closest packing P: Surface area of one core particle when the shell-forming particle is covered = radius (a + b) Sphere = 4π (a + b) 2 ……
(FIG. 1) Q: Occupy per shell-forming particle when the shell-forming particle covers the surface of the core particle at the closest density. In the present invention, the uniform coating does not need to be the densest coating, and it is important that the coating is uniform without unevenness. For that purpose, (R) must be 50% or more, preferably 70% or more of N. This is shown in FIG. 3 as a model diagram.
(R)がNの50%未満では、露出部分が多くなり、そのため
大きい凝集体を形成することになる。これを模型図とし
て示すと第4図のようになる。すなわち、露出している
コア粒子の負のイオン性により疎らに被覆した正の粒子
を介して他のコア粒子が密着し、凝集して大きい凝集体
となる。(R)の上限は200%で、余分のシェル形成用粒子
はいたずらに浮遊しているだけであるから、実用的には
150%以下が適当である。When (R) is less than 50% of N, the exposed portion becomes large, and thus large aggregates are formed. This is shown in FIG. 4 as a model diagram. That is, other core particles adhere to each other through the positive particles that are sparsely covered by the negative ionicity of the exposed core particles, and agglomerate into large aggregates. The upper limit of (R) is 200%, and since the extra shell-forming particles are only floating inadvertently, practically,
150% or less is suitable.
本発明で用いる無機質粒子としては、金、銀、銅、鉄、
アルミニウムなどの金属粉、シリカ、アルミナ、酸化
鉄、酸化チタン、酸化亜鉛などの金属酸化物、炭酸カル
シウム、蓚酸カルシウム、硫酸バリウムなどの塩などが
適当である。しかして、これらの無機質粒子は、平均粒
径0.005〜100μmのものが適当である。The inorganic particles used in the present invention include gold, silver, copper, iron,
Suitable are metal powders such as aluminum, metal oxides such as silica, alumina, iron oxide, titanium oxide and zinc oxide, salts such as calcium carbonate, calcium oxalate and barium sulfate. Therefore, it is suitable that these inorganic particles have an average particle size of 0.005 to 100 μm.
本発明で用いる高分子粒子としては、ポリ酢酸ビニル、
ポリアクリル酸エステル、ポリエチレン、ポリプロピレ
ン、ポリスチレン、酢酸ビニル−エチレンコポリマー、
酢酸ビニル−(メタ)アクリル酸エステルコポリマー、
スチレン−(メタ)アクリル酸エステルコポリマー、酢
酸ビニル−ベオバ(シェル化学(株)製のビニルエステ
ル)コポリマーなどの熱可塑性高分子粒子やポリエステ
ル、エポキシ樹脂、尿素樹脂、メラミン樹脂、シリコン
樹脂、フッ素樹脂などの熱硬化性高分子粒子などがあ
る。これらの高分子粒子は、平均粒径0.01〜50μmのも
のが適当である。The polymer particles used in the present invention include polyvinyl acetate,
Polyacrylic acid ester, polyethylene, polypropylene, polystyrene, vinyl acetate-ethylene copolymer,
Vinyl acetate- (meth) acrylic acid ester copolymer,
Thermoplastic polymer particles such as styrene- (meth) acrylic acid ester copolymer and vinyl acetate-Veoba (vinyl ester manufactured by Shell Chemical Co., Ltd.) copolymer, polyester, epoxy resin, urea resin, melamine resin, silicone resin, fluororesin Such as thermosetting polymer particles. It is suitable that these polymer particles have an average particle size of 0.01 to 50 μm.
これらの粒子の分散液としては水性分散液が最もよい
が、イオンに解離できる程度の水分が含有されていれば
非水性分散液でもよい。使用できる非水溶剤としてはシ
クロヘキサン、ヘプタン、ヘキサンなどの無極性有機溶
剤が好ましい。An aqueous dispersion is most preferable as a dispersion of these particles, but a non-aqueous dispersion may be used as long as it contains water that can dissociate into ions. The non-aqueous solvent that can be used is preferably a non-polar organic solvent such as cyclohexane, heptane or hexane.
無機質粒子の分散液を作るには、前述の無機質物質を粉
砕し、三本ロール、ペブルミル、超音波分散などの公知
の方法で水又は含水した非水溶剤に分散させるか、又は
コロイドゾル合成法により合成すればよい。In order to make a dispersion liquid of inorganic particles, the above-mentioned inorganic substance is crushed and dispersed in water or a non-aqueous solvent containing water by a known method such as three rolls, pebble mill, ultrasonic dispersion, or by a colloid sol synthesis method. Just synthesize them.
このようにして、粒子径0.005〜100μmの範囲の無機質
粒子の分散液がえられる。In this way, a dispersion liquid of inorganic particles having a particle diameter of 0.005 to 100 μm is obtained.
えられた分散液は無機物質の種類によって正又は負に荷
電しているが、中にはpHを変えることによってζ電位が
変り、負又は正に変るものがある。このような荷電は、
水素イオン、水酸イオン、電位決定イオン、又は高原子
価を有する対イオンによってもたらされる。その強さは
ζ電位として測定することができる。のことは後述する
高分子粒子についても同様である。The obtained dispersion liquid is positively or negatively charged depending on the type of the inorganic substance, but in some cases, the ζ potential is changed by changing the pH, and thus it is changed to negative or positive. Such charges are
It is provided by hydrogen ions, hydroxide ions, potential determining ions, or counterions with high valence. Its strength can be measured as the ζ potential. The same applies to polymer particles described later.
高分子粒子の分散液は、乳化重合法や懸濁重合法によっ
て作ることができる。又、ポリマーを後乳化することに
よっても作ることができる。このようにして平均粒子径
0.01〜50μmの範囲の高分子粒子の分散液がえられる。
「 えられる分散液は、組成や製法によって正又は負に荷電
させることができる。荷電させる方法としては、カチオ
ン性又はアニオン性単量体、および正又は負のポリマー
末端を与える重合開始剤、およびカチオン性又はアニオ
ン性の重合性乳化剤のいずれかを選択的に単独又は併用
して、必要により非イオン性単量体や他の乳化剤ととも
にラジカル重合する方法が用いられる。The dispersion liquid of polymer particles can be prepared by an emulsion polymerization method or a suspension polymerization method. It can also be made by post-emulsifying the polymer. In this way the average particle size
A dispersion liquid of polymer particles in the range of 0.01 to 50 μm is obtained.
“The obtained dispersion liquid can be positively or negatively charged depending on the composition and the production method. As a method for charging, a cationic or anionic monomer, and a polymerization initiator which gives a positive or negative polymer terminal, and A method is used in which either a cationic or anionic polymerizable emulsifying agent is selectively used alone or in combination, and radical polymerization is optionally carried out together with a nonionic monomer or other emulsifying agent.
カチオン性単量体としては、たとえばジエチルアミノエ
チルメタクリレート、ジメチルアミノエチルメタクリレ
ートなどがあげられ、アニオン性単量体としては、たと
えばアクリル酸、メタクリル酸などがあげられる。これ
らのイオン性単量体はそれぞれ単独で重合してもよく、
又他のイオン性単量体と組合せて用いてもよい。Examples of the cationic monomer include diethylaminoethyl methacrylate and dimethylaminoethyl methacrylate, and examples of the anionic monomer include acrylic acid and methacrylic acid. Each of these ionic monomers may be polymerized alone,
It may also be used in combination with other ionic monomers.
イオン性単量体だけで荷電させるためには、非イオン性
単量体100重量部に対して、イオン性単量体0.01重量部
以上、ことに0.2重量部以上の使用が好ましい。0.01重
量部未満ではえられた粒子の帯電量が不足し、本発明の
目的に使用できない。In order to charge with only the ionic monomer, it is preferable to use 0.01 part by weight or more, especially 0.2 part by weight or more of the ionic monomer with respect to 100 parts by weight of the nonionic monomer. If the amount is less than 0.01 parts by weight, the amount of charge of the obtained particles is insufficient and the particles cannot be used for the purpose of the present invention.
正のポリマー末端を与える重合開始剤としては、たとえ
ば2,2′−アゾビス(2-アミジノプロパン)塩酸塩などが
あげられる。負のポリマー末端を与える重合開始剤とし
ては、たとえば過硫酸ナトリウム、過硫酸カリウム、過
硫酸アンモニウムなどがあげられる。これらの重合開始
剤は、ラジカル重合性単量体100重量部に対して0.01〜2
0重量部、ことに0.2〜10重量部の使用が好ましい。Examples of the polymerization initiator that gives a positive polymer terminal include 2,2'-azobis (2-amidinopropane) hydrochloride. Examples of the polymerization initiator that gives a negative polymer terminal include sodium persulfate, potassium persulfate, and ammonium persulfate. These polymerization initiators are 0.01 to 2 with respect to 100 parts by weight of the radical polymerizable monomer.
Preference is given to using 0 parts by weight, especially 0.2 to 10 parts by weight.
また、正又は負のポリマー末端を与えない重合開始剤、
たとえば過酸化ベンゾイル、過酸化ラウリルなどを併用
してもよい。Further, a polymerization initiator which does not give a positive or negative polymer terminal,
For example, benzoyl peroxide, lauryl peroxide and the like may be used in combination.
カチオン性の重合性乳化剤としては、アルキルジメチル
アンモニウムクロライドとアリルエーテル化合物との合
成化合物があり、アニオン性の重合性乳化剤としては、
アルキルアリルスルホサクシネートのアルカリ塩や、ビ
ニルスルホン酸のアルカリ塩などがある。勿論他の乳化
剤と併用してもよい。As the cationic polymerizable emulsifier, there is a synthetic compound of alkyldimethylammonium chloride and an allyl ether compound, and as the anionic polymerizable emulsifier,
Examples thereof include alkali salts of alkylallyl sulfosuccinate and alkali salts of vinyl sulfonic acid. Of course, you may use together with another emulsifier.
しかし乍ら、重合性乳化剤を使用するか又は全く乳化剤
を使用せずに重合した、所謂ソープフリー重合法でえら
れた乳化重合体は、とくに均一に被覆された複合体粒子
を作るために好適である。However, an emulsion polymer obtained by a so-called soap-free polymerization method, which is polymerized using a polymerizable emulsifier or no emulsifier at all, is particularly suitable for producing uniformly coated composite particles. Is.
本発明の複合体粒子を作るには、無機質粒子を高分子粒
子で均一に被覆した複合体粒子を作る場合を例にとって
説明すると、たとえば水に分散させた、平均粒子径1.5
μmのシリカ粒子のごとき無機質粒子をコア粒子として
選び、その表面を正又は負に帯電させるために酸又は塩
基を加え撹拌混合してpHを調整し、目的の電荷、たとえ
ば負に帯電させる。つぎに、同一pHで正に荷電してい
る、たとえば水に分散させた平均粒子径0.3μmのポリ
スチレン粒子をシェル形成用粒子として選び、この場合
Nは130なので、この粒子数をシリカ粒子に対して130×
0.5=65以上になるように両方の分散液を調整して混合
し、緩やかに10分〜2時間撹拌すればコア粒子にシェル
形成用粒子がきわめて均一に、かつ強固に付着し、無機
質粒子を高分子粒子で均一に被覆した複合体粒子の分散
液がえられる。In order to produce the composite particles of the present invention, the case of producing composite particles in which inorganic particles are uniformly coated with polymer particles will be described as an example. For example, the composite particles are dispersed in water and have an average particle diameter of 1.5.
Inorganic particles such as silica particles of μm are selected as core particles, an acid or a base is added to the surface of the core particles to charge them positively or negatively, and the mixture is stirred and mixed to adjust the pH, and the desired charge, for example, negatively charged. Next, polystyrene particles having an average particle diameter of 0.3 μm dispersed in water, which are positively charged at the same pH, are selected as the shell-forming particles. In this case, N is 130. 130 ×
If both dispersions are adjusted and mixed so that 0.5 = 65 or more, and gently stirred for 10 minutes to 2 hours, the shell-forming particles adhere to the core particles extremely uniformly and firmly, and the inorganic particles are removed. A dispersion liquid of composite particles uniformly coated with polymer particles is obtained.
両分散液を混合する場合、硫酸カリウム、塩化マグネシ
ウム、塩化アルミニウムなどの無機電解質を添加する
と、これは無機電解質がシェル形成用粒子のシャドー効
果を減少させるため被覆率の増加をもたらすものと考え
られる。When mixing both dispersions, adding an inorganic electrolyte such as potassium sulfate, magnesium chloride, aluminum chloride is considered to bring about an increase in coverage because the inorganic electrolyte reduces the shadow effect of the shell-forming particles. .
また、ソープフリー製法による高分子粒子分散液を使用
すると、より均一に、かつ強く被覆することができる。
これは高分子分散液中にポリビニルアルコール、メチル
セルロースなどの高分子物質や、その他いわゆる乳化剤
が含まれていないので、これらによる被覆の阻害がない
ためと考えられる。Further, by using the polymer particle dispersion liquid produced by the soap-free method, it is possible to coat more uniformly and strongly.
It is considered that this is because the polymer dispersion does not contain polymer substances such as polyvinyl alcohol and methyl cellulose, and other so-called emulsifiers, so that the coating does not hinder these.
又、本発明によればさらに多層に複合した粒子を作るこ
とができる。その製造方法としては、前述によってえら
れた粒子表面が正又は負に荷電し、かつ均一に被覆され
た複合体粒子の分散液に、粒子径がこの複合体粒子より
も小さく、かつ反対に荷電した無機質粒子又は高分子粒
子の分散液を添加し、ゆるやかに撹拌混合すればよい。Further, according to the present invention, it is possible to produce particles in which the composite is further multilayered. As a method for producing the same, the particle surface obtained by the above is positively or negatively charged, and the dispersion liquid of the uniformly coated composite particles has a particle diameter smaller than that of the composite particles, and is oppositely charged. The dispersion liquid of the inorganic particles or polymer particles may be added and gently mixed with stirring.
この操作を繰り返すことにより、より多層に被覆した複
合体粒子がえられる。By repeating this operation, composite particles coated in more layers can be obtained.
[効果] 本発明によって均一に被覆された複合体粒子がえられる
生成機構については、コア粒子の表面電荷とシェル形成
用粒子の反対電荷との静電的相互作用によるものと思わ
れるが、普通反対電荷に荷電した分散液同士を混合する
と、凝集沈殿を起こすものであるが、本発明によるとき
わめて均一に被覆された複合体粒子が凝集することなく
安定に個々に分散した分散液がえられ、粒子の比重など
によって沈降することがあっても、軽く振盪するだけで
容易に再分散させることができる。又、被覆はきわめて
強固であり数度の水洗によってもシェル形成用粒子が殆
んど脱離することがないというすぐれた効果を示す。こ
れは加え合わすコア粒子とシェル形成用粒子の粒子径の
比の値(P)および粒子数比(R)を限定したことによるもの
である。[Effect] The formation mechanism by which the composite particles uniformly coated according to the present invention are obtained is considered to be due to electrostatic interaction between the surface charge of the core particles and the opposite charge of the shell-forming particles. When dispersions having opposite charges are mixed with each other, aggregation and precipitation occur. However, according to the present invention, a dispersion liquid in which the composite particles coated extremely uniformly are stably dispersed individually without aggregation is obtained. Even if the particles may settle due to the specific gravity of the particles, they can be easily redispersed by simply shaking them. Further, the coating is extremely strong and shows an excellent effect that the shell-forming particles are hardly detached even by washing with water several times. This is because the value (P) and the particle number ratio (R) of the particle diameters of the core particles and the shell-forming particles to be added are limited.
複合体粒子の完成後は、コア粒子と付着した粒子の電荷
を異符号に保ちさえすれば殆んど脱離することがなく、
付着粒子の電荷で安定化された複合体粒子の安定な分散
系となる。After the completion of the composite particles, if the charges of the particles attached to the core particles and the particles attached to the particles are maintained with different signs, there is almost no desorption,
It becomes a stable dispersion system of the composite particles stabilized by the charge of the adhered particles.
つぎに製造例、実施例、比較例をあげて本発明を説明す
る。Next, the present invention will be described with reference to production examples, examples and comparative examples.
製造例1 撹拌器、還流冷却器、滴下漏斗、温度計を備えた容量2
の四ツ口フラスコ中に水36.1g、28%アンモニア水280.
4g、エタノール793gを加えて撹拌したのち、58.3gのア
ルトケイ酸エチルを加え30分間撹拌した。ついで466.6g
のオルトケイ酸エチルを添加撹拌後、透析して固形分1
9.2%、平均粒子径1.59μmのシリカコロイド水性分散液
をえた。Production Example 1 Volume 2 equipped with stirrer, reflux condenser, dropping funnel, thermometer
In a four-necked flask, 36.1 g of water, 28% ammonia water 280.
After adding 4 g and 793 g of ethanol and stirring, 58.3 g of ethyl altosilicate was added and stirred for 30 minutes. Then 466.6 g
Ethyl orthosilicate was added and stirred, and then dialyzed to obtain a solid content of 1
An aqueous silica colloidal dispersion having 9.2% and an average particle diameter of 1.59 μm was obtained.
製造例2 製造例1で用いたものと同様の四ツ口フラスコ中に水17
50g、ジエチルアミノエチルメタクリレート17.5gを入
れ、この混合液のpHが1.2になるように塩酸を加える。
ついでスチレン158.6g、過硫酸カリウム3.5gを入れ、窒
素置換後、70℃まで昇温し、6時間重合反応を行なっ
た。冷却後、凝集塊を除去し、透析して固形分9.8%、平
均粒子径0.25μmのラテックスをえた。Production Example 2 Water in a four-necked flask similar to that used in Production Example 1 was used.
50 g and 17.5 g of diethylaminoethyl methacrylate are added, and hydrochloric acid is added so that the pH of this mixed solution becomes 1.2.
Then, 158.6 g of styrene and 3.5 g of potassium persulfate were added, the atmosphere was replaced with nitrogen, the temperature was raised to 70 ° C., and a polymerization reaction was carried out for 6 hours. After cooling, aggregates were removed and dialyzed to obtain a latex having a solid content of 9.8% and an average particle size of 0.25 μm.
製造例3 製造例1で用いたものと同様の四ツ口フラスコ中に水15
12g、アクリルアミド14g、ジメチルホルムアミド168g、
塩化ナトリウム4g、過硫酸カリウム6gを入れ、窒素置換
後70℃まで昇温し、1時間重合反応を行なった。ついで
スチレン280gを添加し、70℃で4時間重合反応を行な
い、つぎにジエチルアミノエチルメタクリレートを14g
加え、さらに1時間重合反応を行なった。冷却後、凝集
塊を除去し、透析し平均粒子径が1.8μmのラテックス
をえた。Production Example 3 Water in a four-necked flask similar to that used in Production Example 1 was used.
12 g, acrylamide 14 g, dimethylformamide 168 g,
Sodium chloride (4 g) and potassium persulfate (6 g) were added, the atmosphere was replaced with nitrogen, and the temperature was raised to 70 ° C. to carry out a polymerization reaction for 1 hour. Next, 280 g of styrene was added and the polymerization reaction was carried out at 70 ° C for 4 hours, then 14 g of diethylaminoethyl methacrylate was added.
In addition, the polymerization reaction was further performed for 1 hour. After cooling, aggregates were removed and dialyzed to obtain a latex having an average particle size of 1.8 μm.
製造例4 製造例1で用いたものと同様の四ツ口フラスコ中に水14
40g、スチレン310g、過硫酸カリウム0.12gを入れ、70℃
まで昇温し、8時間重合反応を行なった。冷却後、凝集
塊を除去し、透析して平均粒子径が0.44μmのラテック
スをえた。Production Example 4 Water in a four-necked flask similar to that used in Production Example 1 was used.
40g, styrene 310g, potassium persulfate 0.12g, 70 ℃
The temperature was raised to and the polymerization reaction was carried out for 8 hours. After cooling, aggregates were removed and dialyzed to obtain a latex having an average particle size of 0.44 μm.
製造例5 製造例1で用いたものと同様の四ツ口フラスコ中に水13
00g、ジエチルアミノエチルメタクリレート93g、スチレ
ン52g、ラテムルK-180(花王石鹸(株)製のカチオン性
重合性乳化剤)18.5gを入れ、80℃まで昇温し、V-50
(和光純薬工業(株)製、2,2′−アゾビス(2-アミジ
ノプロパン)塩酸塩の商品名)の5%水溶液30gを入れ、
5時間重合反応を行なった。冷却後、凝集塊を除去し、
平均粒子径0.06μmのラテックスをえた。Production Example 5 Water in a four-necked flask similar to that used in Production Example 1 was used.
Add 00g, 93g of diethylaminoethyl methacrylate, 52g of styrene, 18.5g of Latemur K-180 (Cationic polymerizable emulsifier manufactured by Kao Soap Co., Ltd.), heat to 80 ° C, and add V-50.
(Wako Pure Chemical Industries, Ltd., product name of 2,2'-azobis (2-amidinopropane) hydrochloride) 5% aqueous solution 30g,
The polymerization reaction was carried out for 5 hours. After cooling, remove agglomerates,
A latex having an average particle size of 0.06 μm was obtained.
製造例6 製造例1で用いたものと同様の四ツ口フラスコ中に水14
00g、スチレン70g、メチルメタクリレート70g、コータ
ミン86Pコンク(花王石鹸(株)製のカチオン乳化剤)1
2gを入れ、70℃まで昇温し、V-50の5%水溶液28%を加え
て、6時間重合反応を行なった。冷却後、凝集塊を除去
し、粒子径0.1μmのラテックスをえた。Production Example 6 Water in a four-necked flask similar to that used in Production Example 1 was used.
00g, styrene 70g, methylmethacrylate 70g, ketamine 86P conc (cationic emulsifier manufactured by Kao Soap Co., Ltd.) 1
2 g was added, the temperature was raised to 70 ° C., 28% of a 5% aqueous solution of V-50 was added, and a polymerization reaction was carried out for 6 hours. After cooling, the agglomerates were removed to obtain a latex having a particle size of 0.1 μm.
製造例1〜6の粒子について、pHと電荷の関係は第1表
の通りであった。The relationship between pH and charge of the particles of Production Examples 1 to 6 is as shown in Table 1.
実施例1 製造例1でえたシリカコロイド分散液を水で5%に稀釈
し、その2.0gをとり、塩酸でpHを6に調整し、緩やかに
撹拌した。この稀釈コロイド分散液は負に帯電してい
た。別に製造例2でえたラテックスを水で2%に稀釈し、
塩酸でpHを6に調製した。この稀釈ラテックスは正に帯
電していた。 Example 1 The silica colloidal dispersion obtained in Production Example 1 was diluted to 5% with water, 2.0 g of the diluted solution was adjusted to pH 6 with hydrochloric acid, and gently stirred. This diluted colloidal dispersion was negatively charged. Separately, the latex obtained in Production Example 2 was diluted to 2% with water,
The pH was adjusted to 6 with hydrochloric acid. This diluted latex was positively charged.
この稀釈ラテックスの1.74gを。前記の稀釈コロイド分
散液に徐々に加え、緩やかに撹拌して、無機質粒子が高
分子粒子で均一に被覆された複合体粒子の分散液をえ
た。この分散液は正に帯電していた。このときの、粒子
数比(R)はNの約100%に当る。1.74g of this diluted latex. It was gradually added to the diluted colloidal dispersion and gently stirred to obtain a dispersion of composite particles in which inorganic particles were uniformly coated with polymer particles. This dispersion was positively charged. At this time, the particle number ratio (R) is about 100% of N.
顕微鏡で観察すると、シリカコロイドの粒子表面が充分
均一にラテックス粒子で覆われており、静置により沈降
しても軽く振盪するだで容易に再分散した。When observed under a microscope, the surface of the silica colloid particles was sufficiently uniformly covered with the latex particles, and even if it settled by standing, it was easily redispersed by shaking gently.
実施例2 製造例3でえたラテックスを水で10%に稀釈し、塩酸でp
Hを5に調整した。この稀釈のラテックスは正に帯電し
ていた。Example 2 The latex obtained in Production Example 3 was diluted to 10% with water and p-diluted with hydrochloric acid.
Adjusted H to 5. This diluted latex was positively charged.
別に平均粒子径0.015μmのスノーテックス0(日産化
学工業(株)製のシリカゾル)の10%分散液をpH5に調
整した。このスノーテックス分散液は負に帯電してい
た。この分散液0.42gを、前記の稀釈ラテックス10gに添
加し、緩やかに撹拌して、高分子粒子が無機質粒子で均
一に被覆された複合体粒子の分散液をえた。このとき
の、粒子数比(R)はNの約60%に当る。走査型電子顕微鏡
で観察すると、ラテックス粒子表面がシリカ粒子で充分
均一に覆われており、静置により沈降しても軽く振盪す
るだけで容易に再分散した。Separately, a 10% dispersion of Snowtex 0 (silica sol manufactured by Nissan Chemical Industries, Ltd.) having an average particle diameter of 0.015 μm was adjusted to pH 5. This Snowtex dispersion was negatively charged. 0.42 g of this dispersion was added to 10 g of the diluted latex and gently stirred to obtain a dispersion of composite particles in which polymer particles were uniformly coated with inorganic particles. At this time, the particle number ratio (R) is about 60% of N. When observed with a scanning electron microscope, the surface of the latex particles was sufficiently uniformly covered with silica particles, and even if it settled by standing, it was easily redispersed by only shaking gently.
実施例3 平均粒子径が0.015μmのスノーテックス0の10%分散液
をpH4に調整した。このスノーテックス分散液は負に帯
電していた。このスノーテックス分散液0.19gを実施例
1でえた正に帯電しているシリカコロイド/ラテックス
複合体粒子の分散液10gに徐々に添加し、緩やかに撹拌
して、高分子粒子で均一に被覆された無機質粒子をさら
に無機質粒子で均一に被覆した多層複合体粒子の分散液
をえた。Example 3 A 10% dispersion of Snowtex 0 having an average particle diameter of 0.015 μm was adjusted to pH 4. This Snowtex dispersion was negatively charged. 0.19 g of this snowtex dispersion was gradually added to 10 g of the dispersion of positively charged silica colloid / latex composite particles obtained in Example 1 and gently stirred to uniformly coat with polymer particles. The inorganic particles were further uniformly coated with the inorganic particles to obtain a dispersion liquid of the multilayer composite particles.
この分散液を電気泳動装置で電荷を測定すると添加した
シリカコロイドと同じ負の電荷を示し、多層複合体粒子
が生成していることを証明した。静置により沈降しても
軽く振盪するだけで容易に再分散した。When the charge of this dispersion liquid was measured by an electrophoretic device, it showed the same negative charge as the added silica colloid, demonstrating that multilayer composite particles were formed. Even if it settled by standing, it was easily redispersed by only shaking gently.
実施例4 製造例3でえたラテックスを水で10%に稀釈し、pHを6.5
に調整した。この稀釈ラテックスは正に帯電していた。Example 4 The latex obtained in Preparation Example 3 was diluted to 10% with water and the pH was adjusted to 6.5.
Adjusted to. This diluted latex was positively charged.
別に酸化チタンJR(帝国化工(株)製の平均粒子径0.3
μmのルチル型酸化チタン)をボールミルで水に分散さ
せて5%の水性分散液を作り、pHを6.5に調整した。この
分散液は負に帯電していた。Separately, titanium oxide JR (manufactured by Teikoku Kako Co., Ltd. average particle size 0.3
μm rutile type titanium oxide) was dispersed in water with a ball mill to prepare a 5% aqueous dispersion, and the pH was adjusted to 6.5. This dispersion was negatively charged.
この分散液47gを前記の稀釈ラテックス10gに添加し、緩
やかに撹拌して高分子粒子が無機質粒子で均一に被覆さ
れた複合体粒子の分散液をえた。47 g of this dispersion was added to 10 g of the diluted latex and gently stirred to obtain a dispersion of composite particles in which polymer particles were uniformly coated with inorganic particles.
顕微鏡で観察すると、ラテックス粒子表面が酸化チタン
粒子で充分均一に被覆されており、静置により沈降して
も軽く振盪するだで容易に再分散した。When observed under a microscope, the surface of the latex particles was sufficiently uniformly coated with titanium oxide particles, and even if it settled by standing, it was easily redispersed by shaking gently.
実施例5 実施例1において、稀釈ラテックスとともに0.1モル/
の硫酸カリウム水溶液1gを添加した以外は、実施例1
と同様に行なって、無機質粒子が高分子粒子で均一に被
覆された複合体粒子の分散液をえた。Example 5 In Example 1, with the diluted latex, 0.1 mol /
Example 1 except that 1 g of an aqueous potassium sulfate solution was added.
In the same manner as above, a dispersion liquid of the composite particles in which the inorganic particles were uniformly coated with the polymer particles was obtained.
静置により沈降しても軽く振盪するだで容易に再分散し
た。顕微鏡で観察すると、シリカコロイド粒子の表面が
きわめて密にラテックス粒子で覆われていた。この複合
体粒子を沈降させて採取し、示差熱分析法によりシリカ
とラテックス樹脂の比率を調べたところ、実施例1でえ
たものよりも約10%多くラテックス樹脂が検出された。
これは硫酸カリウムの作用によるものと考えられる。Even if it settled by standing, it was easily redispersed by shaking gently. When observed under a microscope, the surface of the silica colloidal particles was very densely covered with the latex particles. When these composite particles were collected by sedimentation and the ratio of silica and latex resin was examined by a differential thermal analysis method, about 10% more latex resin than that obtained in Example 1 was detected.
This is considered to be due to the action of potassium sulfate.
実施例6 製造例4でえたラテックスを水で5%に稀釈し、塩酸でpH
を5に調整した。このラテックスは負に帯電していた。Example 6 The latex obtained in Production Example 4 was diluted to 5% with water and adjusted to pH with hydrochloric acid.
Was adjusted to 5. This latex was negatively charged.
別に製造例2でえたラテックスを水で5%に稀釈し、塩酸
でpHを5に調整した。このラテックスは正に帯電してい
た。Separately, the latex obtained in Production Example 2 was diluted to 5% with water, and the pH was adjusted to 5 with hydrochloric acid. This latex was positively charged.
この正に帯電しているラテックス76gと、前記の負に帯
電しているラテックス10gを混合し、緩やかに撹拌し
て、高分子粒子が高分子粒子で均一に被覆された複合体
粒子の分散液をえた。This positively charged latex (76 g) and the negatively charged latex (10 g) are mixed and gently stirred to obtain a dispersion liquid of composite particles in which polymer particles are uniformly coated with polymer particles. I got it.
えられた複合体粒子を電気泳動装置で測定すると正の電
位を有しており、顕微鏡では小さいラテックス粒子が大
きいラテックス粒子を充分均一に被覆しているのが観察
された。When the obtained composite particles were measured by an electrophoresis apparatus, they had a positive potential, and it was observed under a microscope that the small latex particles covered the large latex particles uniformly.
実施例7 製造例1でえたシリカコロイド分散液を、水で5%に稀釈
し、その100gをとり塩酸でpHを7に調整した。この稀釈
コロイド分散液は負に帯電していた。Example 7 The silica colloidal dispersion obtained in Production Example 1 was diluted to 5% with water, and 100 g of the diluted solution was taken and the pH was adjusted to 7 with hydrochloric acid. This diluted colloidal dispersion was negatively charged.
別に製造例5でえたラテックスを水で2%に稀釈し、水酸
化ナトリウムでpHを7に調整した。この稀釈ラテックス
は正に帯電していた。この稀釈ラテックス32.8gを前記
の稀釈コロイド分散液に徐々に加え、緩やかに撹拌し
て、無機質粒子が高分子粒子で均一に被覆された複合体
粒子の分散液をえた。このときの粒子数比(R)はNの約2
00%に当る。Separately, the latex obtained in Production Example 5 was diluted to 2% with water, and the pH was adjusted to 7 with sodium hydroxide. This diluted latex was positively charged. 32.8 g of this diluted latex was gradually added to the above-mentioned diluted colloidal dispersion and gently stirred to obtain a dispersion of composite particles in which inorganic particles were uniformly coated with polymer particles. The particle number ratio (R) at this time is about 2 of N.
Hits 00%.
えられた複合体粒子を走査型電子顕微鏡で観察すると、
シリカ粒子表面がラテックス粒子で充分均一に被覆され
ており、静置により沈降した複合体粒子は軽く振盪する
だで容易に再分散した。Observing the obtained composite particles with a scanning electron microscope,
The surface of the silica particles was sufficiently uniformly covered with the latex particles, and the composite particles settled by standing were easily redispersed by shaking gently.
比較例1 実施例1において、系のpHを9に調整した以外は、実施
例1と同様に行なった。このとき、シリカコロイドは負
に帯電しており、ラテックスも負に帯電していた。Comparative Example 1 Example 1 was repeated except that the pH of the system was adjusted to 9. At this time, the silica colloid was negatively charged, and the latex was also negatively charged.
混合液中には、シリカコロイド、ラテックスとともにそ
れぞれ個々に分散しており、シリカ粒子をラテックスで
被覆したものは見られなかった。In the mixed solution, silica colloid and latex were individually dispersed, and no silica particles were coated with latex.
比較例2 実施例1において、稀釈ラテックスの添加量1.74gを0.3
5gに変えた以外は、実施例1と同様に行なった。この時
の粒子数比(R)はNの約20%であった。Comparative Example 2 In Example 1, the amount of diluted latex added was 1.74 g to 0.3
Example 1 was repeated except that the amount was changed to 5 g. The particle number ratio (R) at this time was about 20% of N.
顕微鏡で観察すると、シリカコロイドとラテックスとが
凝集して大きい凝集塊が多く生成しており、シリカ粒子
をラテックス粒子で均一に被覆したものは殆んど見られ
なかった。When observed under a microscope, silica colloid and latex were aggregated to form many large aggregates, and almost no silica particles were uniformly coated with latex particles.
比較例3 実施例7において、使用した稀釈ラテックス32.8gの代
りに、製造例6でえたラテックスを水で2%に稀釈し、水
酸化ナトリウムでpHを7に調整した稀釈ラテックス57.6
gに変えた以外は、実施例7と同様に行なった。この
時、シリカコロイドは負に、ラテックスは正に帯電して
いた。混合後の粒子を走査型電子顕微鏡で観察すると、
シリカ粒子表面をラテックス粒子が10〜20個程度覆って
いるものも見られたが、殆んどのシリカ粒子には数個の
ラテックスが被覆しているにすぎなかった。Comparative Example 3 In place of 32.8 g of the diluted latex used in Example 7, the latex obtained in Production Example 6 was diluted to 2% with water and the pH was adjusted to 7 with sodium hydroxide.
The same procedure as in Example 7 was repeated except that g was changed. At this time, the silica colloid was negatively charged and the latex was positively charged. When observing the mixed particles with a scanning electron microscope,
Some silica particles were covered with 10 to 20 latex particles, but most of the silica particles were covered with only a few latex particles.
比較例4 実施例2において、使用したスノーテックス0の代わり
に製造例1でえられたシリカコロイド分散液を水で10%
に稀釈し、pHを5に調整した稀釈分散液250gに変えた以
外は、実施例2と同様に行なった。このとき、粒子数比
(R)はNの約100%であり、粒子径の比の値(P)は1.13であ
った。Comparative Example 4 Instead of the Snowtex 0 used in Example 2, the silica colloidal dispersion obtained in Production Example 1 was diluted with water to 10%.
The same procedure as in Example 2 was repeated, except that 250 g of the diluted dispersion liquid whose pH was adjusted to 5 was used. At this time, the particle number ratio
(R) was about 100% of N, and the particle diameter ratio value (P) was 1.13.
顕微鏡で観察すると、ラテックスとシリカコロイドとが
凝集して大きな凝集塊が多く生成しており、ラテックス
粒子をシリカ粒子で均一に被覆したものは殆んど見られ
なかった。When observed under a microscope, latex and silica colloid aggregated to form a large number of large aggregates, and almost no latex particles were uniformly coated with silica particles.
比較例5 比較例4において、製造例1でえられたシリカコロイド
分散液を水で10%に稀釈し、pHを5に調整した稀釈分散
液の量を125gに変えた以外は、比較例4と同様に行なっ
た。このとき、粒子数比(R)はNの約50%であった。Comparative Example 5 Comparative Example 4 except that the silica colloidal dispersion obtained in Production Example 1 was diluted to 10% with water and the pH of the diluted dispersion was adjusted to 5 to 125 g. It carried out similarly to. At this time, the particle number ratio (R) was about 50% of N.
顕微鏡で観察すると、ラテックスとシリカコロイドとが
凝集して大きな凝集塊が多く生成しており、ラテックス
粒子をシリカ粒子で均一に被覆したものは殆んど見られ
なかった。When observed under a microscope, latex and silica colloid aggregated to form a large number of large aggregates, and almost no latex particles were uniformly coated with silica particles.
実施例および比較例について、製造諸元と結果をまとめ
ると第2表の通りである。Table 2 is a summary of the production specifications and results for the examples and comparative examples.
第1図と第2図は、コア粒子1ケの表面を最密に被覆す
るに要するシェル形成用粒子の数Nの算出を説明する図
面であるが、第1図の点線が1回転した面積がPであ
り、第2図はシェル形成用粒子1ケ当りの占める面積Q
を示す。 第3図は、均一に被覆された複合体粒子の模型図であ
り、第4図は、疎らに被覆された複合体粒子の凝集状態
を示す。 なお、図面において用いられいている符号において、1
はコア粒子であり、2はシェル形成用粒子である。又、
は正電荷を示し、は負電荷を示す。FIG. 1 and FIG. 2 are drawings for explaining calculation of the number N of shell-forming particles required to cover the surface of one core particle most closely, but the area where the dotted line in FIG. 1 makes one rotation 2 is P, and FIG. 2 shows the area Q occupied by one shell-forming particle.
Indicates. FIG. 3 is a model diagram of the uniformly coated composite particles, and FIG. 4 shows the aggregated state of the sparsely coated composite particles. In addition, in the reference numerals used in the drawings, 1
Is a core particle, and 2 is a shell-forming particle. or,
Indicates a positive charge and indicates a negative charge.
Claims (3)
からなるコア粒子と、 (B)粒子径がコア粒子よりも小さく、かつ反対に荷電し
た無機質粒子又は高分子粒子からなるシェル形成用粒子
とを、コア粒子の粒子径に対するシェル形成用粒子の粒
子径の比(コア粒子の粒子径/シェル形成用粒子の粒子
径)の値(P)が1.7<P≦120であり、かつシェル形成
用粒子の数をコア粒子の数で割った粒子数比(R)が を満足する条件で、分散液状態で混合することを特徴と
するコア粒子がシェル形成用粒子で均一に被覆された複
合体粒子の製造方法。1. A shell for forming (A) core particles composed of charged inorganic particles or polymer particles, and (B) a smaller particle size than the core particles and composed of oppositely charged inorganic particles or polymer particles. The ratio of the particle diameter of the shell-forming particles to the particle diameter of the core particles (particle diameter of the core particles / particle diameter of the shell-forming particles) (P) is 1.7 <P ≦ 120, and the shell The particle number ratio (R) obtained by dividing the number of forming particles by the number of core particles is The method for producing composite particles, wherein the core particles are uniformly coated with the shell-forming particles, characterized in that they are mixed in a dispersion state under the condition.
からなるコア粒子と、 (B)粒子径がコア粒子よりも小さく、かつ反対に荷電し
た無機質粒子又は高分子粒子からなるシェル形成用粒子
とを、コア粒子の粒子径に対するシェル形成用粒子の粒
子径の比(コア粒子の粒子径/シェル形成用粒子の粒子
径)の値(P)が1.7<P≦120であり、かつシェル形成
用粒子の数をコア粒子の数で割った粒子数比(R)が を満足する条件で、分散液状態で混合してコア粒子をシ
ェル形成用粒子で均一に被覆した粒子を2次コア粒子と
し、該2次コア粒子と、II粒子径が該2次コア粒子より
も小さく、かつ反対に荷電した無機質粒子又は高分子粒
子からなる2次シェル形成用粒子とを、2次シェル形成
用粒子の数を2次コア粒子の数で割った粒子数比(R′)
が を満足する条件で、分散液状態で混合することを1回以
上繰り返すことを特徴とする2次コア粒子が2次シェル
形成用粒子で均一に被覆された複合体粒子の製造方法。2. A shell formation comprising I (A) core particles composed of charged inorganic particles or polymer particles, and (B) a core particle composed of smaller particle diameters than the core particles and oppositely charged inorganic particles or polymer particles. For particles, the ratio (P) of the particle diameter of the shell-forming particles to the particle diameter of the core particles (particle diameter of the core particles / particle diameter of the shell-forming particles) is 1.7 <P ≦ 120, and The particle number ratio (R) obtained by dividing the number of shell-forming particles by the number of core particles is Under the condition that the above condition is satisfied, particles in which the core particles are uniformly coated with the shell-forming particles by mixing in a dispersion state are used as secondary core particles, and the secondary core particles and the II particle diameter are larger than those of the secondary core particles. Particle ratio (R ') obtained by dividing the number of secondary shell-forming particles by the number of secondary core-forming particles with secondary shell-forming particles composed of inorganic particles or polymer particles that are small and oppositely charged.
But The method for producing composite particles, wherein secondary core particles are uniformly coated with secondary shell-forming particles, characterized in that mixing in a dispersion state is repeated one or more times under the condition.
られたものである特許請求の範囲第1項又は第2項記載
の複合体粒子の製造方法。3. The method for producing composite particles according to claim 1 or 2, wherein the polymer particles are obtained by a soap-free manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61057806A JPH0640951B2 (en) | 1986-03-14 | 1986-03-14 | Method for producing uniformly coated composite particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61057806A JPH0640951B2 (en) | 1986-03-14 | 1986-03-14 | Method for producing uniformly coated composite particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62213839A JPS62213839A (en) | 1987-09-19 |
JPH0640951B2 true JPH0640951B2 (en) | 1994-06-01 |
Family
ID=13066162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61057806A Expired - Fee Related JPH0640951B2 (en) | 1986-03-14 | 1986-03-14 | Method for producing uniformly coated composite particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0640951B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0775665B2 (en) * | 1986-10-27 | 1995-08-16 | 日本合成ゴム株式会社 | Method for producing microencapsulated fine particles |
JP2526398B2 (en) * | 1993-07-07 | 1996-08-21 | 工業技術院長 | Method for producing composite ultrafine particles |
EP1647270B1 (en) * | 1998-03-19 | 2009-06-17 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Process for applying several layers of coating substances to template particles |
US7101575B2 (en) | 1998-03-19 | 2006-09-05 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly |
DE69904307T2 (en) * | 1998-03-19 | 2003-09-04 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | MANUFACTURE OF MULTILAYER-COATED PARTICLES AND HOLLOW SHELLS BY ELECTROSTATIC SELF-ORGANIZATION OF NANOCOMPOSITE MULTIPLE LAYERS ON DEGRADABLE STENCILS |
ES2292250T5 (en) * | 1998-07-15 | 2010-09-14 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | ENVELOPES OF POLYELECTROLYTES ON BIOLOGICAL TEMPLATES. |
EP1104778B1 (en) * | 1999-11-22 | 2004-11-03 | JSR Corporation | Method of production of composited particle for chemical mechanical polishing |
US20010028890A1 (en) * | 2000-03-08 | 2001-10-11 | Catalysts & Chemicals Industries Co., Ltd. | Spherical Composite particles and cosmetics with the particles blended therein |
JP4123685B2 (en) * | 2000-05-18 | 2008-07-23 | Jsr株式会社 | Aqueous dispersion for chemical mechanical polishing |
JPWO2007094271A1 (en) * | 2006-02-17 | 2009-07-09 | 株式会社カネカ | Method for producing polymer powder having excellent blocking resistance |
US8496869B2 (en) * | 2006-10-25 | 2013-07-30 | William M. Carty | Controlled distribution of chemistry in ceramic systems |
US20090269579A1 (en) * | 2007-02-19 | 2009-10-29 | Sanyo Chemical Industries, Ltd. | Multilayer structured particle |
JP2009030000A (en) * | 2007-07-30 | 2009-02-12 | Sanyo Chem Ind Ltd | Method for producing nonaqueous resin dispersion |
US20150190840A1 (en) * | 2011-03-31 | 2015-07-09 | National University Corporation Toyohashi University Of Technology | Device and process for producing composite particles |
FR3056984A1 (en) * | 2016-09-30 | 2018-04-06 | Compagnie Generale Des Etablissements Michelin | PROCESS FOR OBTAINING A COAGULUM AND A MASTER MIXTURE OF ELASTOMER AND POLYMERIC LOAD |
CN114276642B (en) * | 2021-12-09 | 2024-03-22 | 浙江邦德管业有限公司 | Silicon core tube resistant to environmental stress cracking and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6145250A (en) * | 1984-08-09 | 1986-03-05 | Toshiba Corp | Microencapsulated electrophotographic toner and its preparation |
-
1986
- 1986-03-14 JP JP61057806A patent/JPH0640951B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS62213839A (en) | 1987-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0640951B2 (en) | Method for producing uniformly coated composite particles | |
JPH06142491A (en) | Composite particle, hollow particle and their production | |
US5834121A (en) | Composite magnetic beads | |
US5318797A (en) | Coated particles, hollow particles, and process for manufacturing the same | |
JP4947288B2 (en) | Magnetic particle, method for producing the same, and carrier for biochemistry | |
JP4628519B2 (en) | Composite particle and method for producing the same | |
JP3738847B2 (en) | Method for producing diagnostic particles | |
JP3229011B2 (en) | Bow-shaped fine particles and their manufacturing method | |
Zhang et al. | Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization | |
JPH05138009A (en) | Production of spherical inorganic hollow particles | |
JPH08176212A (en) | Method of surface-modifying magnetic particle | |
JP3219914B2 (en) | Anti-blocking synthetic resin emulsion powder | |
CN110387008A (en) | A kind of preparation method of coated with silica PMMA microsphere delustering agent | |
JPH11191510A (en) | Magnetic polymer article, its manufacturing and diagnostic medicine | |
WO2016159046A1 (en) | Heat-expandable microspheres | |
JPS63240937A (en) | Microencapsulated fine particle and production thereof | |
JPH0775666B2 (en) | Method for producing encapsulated particles | |
JPH0616444B2 (en) | Method for manufacturing magnetic microspheres | |
JPH0459321B2 (en) | ||
JP2581120B2 (en) | Method for producing microencapsulated fine particles | |
JPS6228178B2 (en) | ||
JPH08176461A (en) | Fine monodisperse particle and its production | |
JP3401851B2 (en) | Method for microencapsulation of solid particles | |
JP4639696B2 (en) | Magnetic composite particles and method for producing the same | |
JP2006275600A (en) | Magnetic particle, manufacturing method thereof, and carrier for biochemistry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |